Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Biological function of RNA interference (RNAi) pathways in the moss Physcomitrella patens (Hedw.) Bruch & Schimp. Inaugural-Dissertation zur Erlangung der Doktorwürde der Fakultät für Biologie der Albert-Ludwigs-Universität Freiburg im Breisgau von Basel Khraiwesh aus Jinin Camp - Palästina Freiburg im Breisgau, 2009 Dekan: Prof. Dr. Ad Aertsen Promotionsvorsitzender: Prof. Dr. Eberhard Schäfer Betreuer: Prof. Dr. Ralf Reski, PD Dr. Wolfgang Frank Referent: Prof. Dr. Ralf Reski, PD Dr. Wolfgang Frank Koreferent: Prof. Dr. Wolfgang R. Hess Tag der Verkündigung des Ergebnisses: 24. April 2009 This work has been created in the Department of Plant Biotechnology Institute of Biology II Faculty of Biology Albert-Ludwigs University of Freiburg under the guidance of Prof. Dr. Ralf Reski and PD Dr. Wolfgang Frank To my marvelous mother and dear family To my wife and my lovely boys, For your support, understanding and always being there for me… Index Index List of contents Publications and manuscripts related to this work I II 1 Chapter Ι: Introduction and Overview……………………………….. 1 1.1 Background………………………………………………………………………… 1 1.1.1 1.1.2 RNA Interference: function and technology…………………………………………… 1 Small RNAs and gene silencing………………………………………………………… 2 1.1.2.1 1.1.2.2 1.1.2.3 1.1.2.4 1.1.2.5 1.1.2.6 1.1.3 1.1.4 1.2 MicroRNAs (miRNAs)…………………………………………………………………3 Trans-acting short interfering RNAs (ta-siRNA)……………………………………5 Repeat-associated RNAs (ra-siRNA)………………………………………………. 6 Natural antisense transcript-derived small interfering RNAs (nat-siRNA)……… 6 Piwi-associated RNAs (piRNAs)……………………………………………………. 7 Secondary transitive siRNA…………………………………………………………. 7 Dicer proteins……………………………………………………………………………... 9 Physcomitrella patens as a model system…………………………………………… 11 Results and Discussion………………………………………………………… 14 1.2.1 DICER-LIKE genes in Physcomitrella patens………………………………………...14 1.2.1.1 Generation and molecular analysis of ΔPpDCL1b knockout mutants…………. 16 1.2.1.1.1 Knockout of PpDCL1b causes developmental disorders……………………..17 1.2.1.1.2 MiRNA biogenesis is not affected and miRNA-directed cleavage of mRNAtargets is abolished in ΔPpDCL1b mutant lines………………………………..17 1.2.1.1.3 Generation of transitive siRNA in ΔPpDCL1b mutant lines…………………...18 Analysis of DNA methylation in ΔPpDCL1b mutants and wild type………….19 1.2.1.1.4 1.2.1.1.5 Analysis of the ta-siRNA pathway in ΔPpDCL1b mutants…………………….20 1.2.1.1.6 Analysis of ΔPpDCL1b mutants and wild type lines expressing amiR-GNT1…………………………………………………………………………21 1.2.1.1.6.1 Specific methylation of a miRNA1026 target gene in response to the phytohormone abscisic acid (ABA)………………………………………….. 21 1.2.1.1.7 Expression profiling of transcription factor genes in ΔPpDCL1b mutant lines…………………………………………………………………………………22 1.2.2 1.3 1.4 2 Highly specific gene silencing by artificial miRNAs in Physcomitrella patens……. 24 Conclusion…………………………………………………………………………27 References………………………………………………………………………… 29 Chapter II: Manuscript 1……………………………………………..34 Transcriptional control of gene expression by microRNAs………………35 3 Chapter III: Publication 1…………………………………………..121 Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockout……………………….122 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Chapter IV: Appendices……………………………………………. 136 Flow cytometric measurements (FCM)……………………………………...136 Physcomitrella patens DCL1b (PpDCL1b) mRNA……………………….. 137 DNA vectors……………………………………………………………………...140 Genes downregulated in ΔPpDCL1b mutants…………………………….. 141 Genes upregulated in ΔPpDCL1b mutants………………………………… 146 Acknowledgments……………………………………………………………... 152 Erklärung………………………………………………………………………....153 I Publications Publications and manuscripts related to this Work: Manuscript #1 - Khraiwesh, B., M. A. Arif, G. I. Seumel, S. Ossowski, D. Weigel, R. Reski, W. Frank. (2009): Transcriptional control of gene expression by microRNAs. Submitted. Publication #1 - Khraiwesh, B., S. Ossowski, D. Weigel, R. Reski, W. Frank (2008): Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiology, 148: 684–693. This work has been presented at the following conferences: Talks (presented by W. Frank) − Frank, W., Khraiwesh, B., Seumel, G. I., Baar, K. M., Reski, R. (2007): Specific epigenetic control of microRNA target genes to compensate for RNAi dysfunctions in a Physcomitrella patens DICER-LIKE mutant. Botanical Congress, September 3-7, 2007, University of Hamburg, Germany. − Khraiwesh, B., Seumel, G. I., Baar, K. M., Reski, R., Frank, W. (2007): Specific epigenetic control of microRNA target genes to compensate for RNAi dysfunctions in a Physcomitrella patens DICER-LIKE mutant. The Annual International Conference for Moss Experimental Research, August 2-5, 2007, Korea University, Seoul, Korea. Posters − Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., Frank, W. (2008): Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Annual Meeting of the RNA Society, July 28-August 3, 2008, Free University Berlin, Germany. − Khraiwesh, B., Seumel, G. I., Baar, K. M., Reski, R., Frank, W. (2007): Knockout of a DICER-LIKE gene causes silencing of microRNA targets in Physcomitrella patens. 5th Colmar Symposium: The New RNA Frontiers, November 8-9, 2007, Colmar, France. − Khraiwesh, B., Seumel, G. I., Baar, K. M., Reski, R., Frank, W. (2007): Knockout of a DICER-LIKE gene causes silencing of microRNA targets in Physcomitrella patens. The Annual International Conference for Moss Experimental Research, August 25, 2007, Korea University, Seoul, Korea. II Chapter I 1 1.1 Background Chapter Ι: Introduction and Overview Background 1.1.1 RNA Interference: function and technology RNA interference (RNAi) is a mechanism regulating gene transcript levels by either transcriptional gene silencing (TGS) or by posttranscriptional gene silencing (PTGS), which acts in genome maintenance and the regulation of development (Hannon, 2002; Agrawal et al., 2003). Since the discovery of RNAi in Caenorhabditis elegans (Lee et al., 1993; Fire et al., 1998) extensive studies have been performed focusing on the different aspects of RNAi. In particular, the elucidation of the essential components of RNAi pathways has advanced extensively (Tomari and Zamore, 2005). RNAi has been discovered in a wide range of organisms from plants and fungi to insects and mammals suggesting that it arose early in the evolution of multicellular organisms (Sharp, 2001; Hannon, 2002). The RNAi pathway is typically initiated by ribonuclease III-like nuclease enzymes, called Dicer, that cleave double stranded RNA molecules (dsRNAs; typically >200 nt) into small fragments bearing a 3’ overhang of two nucleotides. One of these two strands is coupled to a second endonuclease enzyme called Argonaute (AGO) and then integrated into a large complex (RNA-induced silencing complex, RISC). Subsequently, it has been shown that RISC contains at least one member of the AGO protein family, which is likely to act as an endonuclease and cuts the mRNA. In Drosophila and humans, AGO2 has been identified as being responsible for this cleavage and the catalytic component of the RISC complex. It was proposed that small interfering RNA (siRNA) guide the cleavage of mRNA. SiRNAs are key to the RNAi process and they have complementary nucleotide sequences to the targeted RNA strand. In certain systems, in particular plants, worms and fungi, an RNA dependent RNA polymerase (RdRP) plays an important role in generating siRNA (Cogoni and Macino, 1999). Another outcome are epigenetic changes such as histone modification and DNA methylation (Matzke and Matzke, 2004; Schramke and Allshire, 2004) (Figure1). In medical research, RNAi is on the way to becoming an important tool to treat HIV, hepatitis C, and cancer (Hannon and Rossi, 2004) and in plants RNAi technology has been used to improve their nutritional value (Tang and Galili, 2004). For science in general it is already a tool of large scale reverse genetic approaches and aids in unravelling gene functions in many species. 1 Chapter I Background Figure 1: Overview of RNA interference (adapted from Matzke and Matzke, 2004). The Dicer enzymes produce siRNA from dsRNA and mature miRNA from hairpin-like miRNA precursor transcripts. MiRNA or siRNA is bound to an AGO enzyme and an effector complex is formed, either a RISC or RITS (RNA-induced transcriptional silencing) complex. RITS affects the rate of transcription by histone and DNA modifications whereas RISC cleaves mRNA or inhibits its translation. 1.1.2 Small RNAs and gene silencing Small non-coding RNAs (20-24 nucleotides in size) have been increasingly investigated and they are important regulators of PTGS in eukaryotes (Hamilton and Baulcombe, 1999; Mello and Conte, 2004; Baulcombe, 2005). They were first discovered in the nematode Caenorhabditis elegans (Lee et al., 1993) and are responsible for phenomena described as RNAi, co-suppression, gene silencing or quelling (Napoli et al., 1990; de Carvalho et al., 1992; Romano and Macino, 1992). Shortly after these reports were published, it was shown that PTGS in plants is correlated to small RNAs (Hamilton and Baulcombe, 1999). These small RNAs regulate various biological processes, often by interfering with mRNA translation. Based on their biogenesis and function small RNAs are classified as repeatedassociated small interfering RNAs (ra-siRNAs), trans-acting siRNAs (ta-siRNAs), naturalantisense transcript-derived siRNAs (nat-siRNAs) and microRNAs (miRNAs) (Vazquez, 2006) (Table 1). 2 Chapter I Background Table 1: Classes of small RNAs identified in eukaryotes (Chapman and Carrington, 2007) Class Description Biogenesis and genomic origin Function miRNA MicroRNA Processing of foldback miRNA gene transcripts by members of the Dicer and RNaseIII-like families Posttranscriptional regulation of transcripts from a wide range of genes Primary siRNA Small interfering RNA Processing of dsRNA or foldback RNA by members of the Dicer family Secondary siRNA Small interfering RNA RdRP activity at silenced loci (Caenorhabditis elegans) processing of RdRP derived long dsRNA or long foldback RNA by members of the Dicer family (Arabidopsis thaliana) miRNA-dependent cleavage and RdRP dependent conversion of TAS gene transcripts to dsRNA, followed by Dicer processing Dicer processing of dsRNA arising from sense and antisense transcript pairs Binding to complementary target RNA; guide for initiation of RdRP dependent secondary siRNA synthesis Posttranscriptional regulation of transcripts; formation and maintenance of heterochromatin tasiRNA Trans-acting siRNA natsiRNA Natural antisense transcriptderived siRNA Piwi-interacting RNA piRNA A biogenesis mechanism is emerging which is Argonaute dependent but Dicerindependent Posttranscriptional regulation of transcripts Posttranscriptional regulation of genes involved in pathogen defense and stress responses in plants Suppression of transposons and retroelements in the germ lines of flies and mammals 1.1.2.1 MicroRNAs (miRNAs) MiRNAs are ~21nt small RNAs which are encoded by endogenous MIR genes. Their primary transcripts form precursor RNAs exhibiting a partially double-stranded stem-loop structure which are processed by DICER-LIKE proteins to release mature miRNAs (Bartel, 2004). In animals, the primary miRNAs (pri-miRNAs) are cleaved in the nucleus by an enzyme named Drosha to form the pre-miRNAs (Lee et al., 2003). The pre-miRNAs are then transported into the cytoplasm where they are processed into the mature double stranded miRNAs, through cleavage by a second enzyme, Dicer (Bartel, 2004). The first enzyme, Drosha, required for processing of pri-miRNAs in animals, does not exist in plants, so the precursor miRNA is directly cleaved within the nucleus to generate the mature miRNA (Baulcombe, 2004) (Figure 2a). Computational analysis of miRNAs and their potential target mRNAs revealed that many of the miRNA targets belong to the group of transcription factors (Palatnik et al., 2003; Wang et al., 2004). In addition to the control of targets at the post-transcriptional level miRNAs regulate gene expression by epigenetic changes such as DNA and histone methylation (Bao et al., 2004; Lippman and Martienssen, 2004). Overexpression or knockdown of miRNA genes can lead to abnormalities during development (Palatnik et al., 2003; Chen, 2004). For example, plants expressing MIR159, which targets members of MYB transcription factors, exhibit delayed flowering time and male sterility (Achard et al., 2004; Schwab et al., 2005). Plants expressing MIR160, which targets members of the ARF transcription factor family, exhibits agravitropic roots with disorganized root caps and increased lateral rooting (Wang 3 Chapter I Background et al., 2005). Plants expressing MIR166, which targets members of HD-ZIP transcription factors, are arrested in seedling development, and show fasciated apical meristems and femal sterility (Williams et al., 2005). (g) Piwi-interacting RNA (piRNA) Figure 2: Small RNA pathways (modified after Vazquez, 2006; Chapman and Carrington, 2007). (a) The miRNA (b) trans-acting siRNA precursors are non-coding RNAs (c) nat-siRNA precursors derive from cis-antisense overlapping coding transcripts. All three precursors are transcribed by RNA polymerase Pol II. (e) Two miRNAs can guide AGO1-mediated cleavage of TAS precursors. The resultant 5’ fragment (TAS1a, 1b, 1c and 2) or 3’ fragment (TAS3) is used by RDR6 and SGS3 as a template for the production of a long dsRNA , which is then cleaved in a phased fashion every 21-nt by DCL4. (f) ta-siRNAs are then 2’-O-methylated at their 3’ ends by HEN1 and guide a slicer-competent AGO protein (AGO7 for TAS3 siRNAs or an unidentified AGO protein for other ta-siRNAs) to their targets for cleavage. (d) A self-amplifying loop believed to depend on RNA Pol IVa is involved in maintaining ra-siRNA-guided methylation of certain DNA repeats. (g) Piwiinteracting RNA (piRNA) biogenesis. Black bars represent genes, with their transcription initiation sites indicated by arrows. Thin black strands represent transcripts of genes encoding small RNAs, and thin blue strands represent target mRNAs. Boxes with broken lines indicate parts of the ta-siRNA and nat-siRNA pathways for which the cellular location is not well established. In small RNA duplexes, the red strands correspond to the guide strand and the black strands correspond to the passenger strand to show that, in the case of siRNAs, the guide strand can originate from either the original sense strand or the newly RDR-synthesized complementary strand. Target sites in plant miRNAs normally share perfect or nearly perfect complementarity with their target sequence and are often in coding regions (Schwab et al., 2005), whereas in 4 Chapter I Background animals, target sites are often only partially complementary to their miRNAs and are mostly located in the 3'UTR of target genes (Filipowicz, 2005). Currently, hundreds of miRNAs have been identified in plant species and deposited in the miRBase database (http://microrna.sanger.ac.uk/sequences/index.shtml) (Table 2). Table 2: Plant species and number of miRNAs deposited in miRBase database (Version 12.0, 2008) Species Group Number of miRNAs Arabidopsis thaliana Eudicots 184 Medicago truncatula Eudicots 30 Populus trichocarpa Eudicots 215 Oryza sativa Monocots 243 Zea mays Monocots 96 Mosses 220 Physcomitrella patens 1.1.2.2 Trans-acting short interfering RNAs (ta-siRNA) MiRNAs are required for the biogenesis of ta-siRNAs, and both miRNAs and ta-siRNAs regulate mRNA stability and translation (Baulcombe, 2004). Ta-siRNAs arise in plants from specific TAS loci (Figure 2b). TAS transcripts are RNA polymeraseII-dependent and function as highly specialized precursors that feed into an RdRP-dependent siRNA biogenesis pathway. They are targets for cleavage by miRNA-guided mechanisms and yield siRNAs that are in a 21-nt register with the cleavage site (Allen et al., 2005; Rajagopalan et al., 2006; Chapman and Carrington, 2007). Arabidopsis contains different characterized TAS gene families. TAS1a-c and TAS2 ta-siRNA biogenesis is initiated by miR173-guided cleavage on the 5′ side of the ta-siRNA generating region, while TAS3 ta-siRNAs form by miR390-guided cleavage on the 3′ side. MiR390 also interacts in a non cleavage mode with a second site near the 5′ end (Axtell et al., 2006; Montgomery et al., 2008). The resultant 5’ fragment (TAS1a-c and TAS2) or 3’ fragment (TAS3) is used by RDR6 and SGS3 as a template for the production of a long dsRNA, which is then cleaved in a phased fashion every 21-nt by DCL4. This processing involves an interaction between DCL4 with DRB4 for TAS3. Ta-siRNAs are later incorporated into the RISC-like complex and guide cleavage of the complementary mRNAs. However, in Physcomitrella patens, miR173 is absent and therefore miR390 is responsible for the generation of TAS precursors (Axtell et al., 2006). TAS3 ta-siRNAs, but not those from TAS1a-c or TAS2, are dependent on a specialized AGO7 (also called ZIP) (Montgomery et al., 2008). The mechanisms for recognition and routing of transcripts through the ta-siRNA or RDR6/DCL4-dependent pathway are not well understood. Axtell et al. (2006) proposed a 5 Chapter I Background two-hit trigger mechanism, in which transcripts with two or more small RNA target sites are preferentially routed into the RDR6/DCL4 pathway. 1.1.2.3 Repeat-associated RNAs (ra-siRNA) The mechanism of small interfering RNAs (siRNA) and ra-siRNA production is quite similar. They originate from transgenes, viruses and transposons and may require RdRP for dsRNA formation (Waterhouse et al., 2001; Aravin et al., 2003). Unlike miRNAs, the diced siRNA products derived from the long complementary precursors are not uniform in sequence, but correspond to different regions of their precursor. Because these small RNAs are often single stranded, in fact this means that siRNAs work through the same mechanism, but they are not evolutionary conserved (Bartel and Bartel, 2003; Allen et al., 2004; Jones-Rhoades et al., 2006; Axtell et al., 2007). In plants, the cleavage of siRNA occurs by different DICER-LIKE enzymes than the miRNA processing (Xie et al., 2004). They were first described in plants, where it was shown that the silencing of three transgenes involved a small antisense RNA complementary to each targeted mRNA (Hamilton and Baulcombe, 1999; Hamilton et al., 2002; Bonnet et al., 2006). In plants, siRNA have different functions that can be divided into two broad categories: those that are involved in formation and maintenance of heterochromatin and those that derive from and defend against viruses or sense transgene transcripts (Baulcombe, 2004; Bonnet et al., 2006). Ra-siRNAs (24-nt) are derived from repetitive elements and control the maintenance of DNA and histone modifications (Hamilton et al., 2002; Xie et al., 2004) (Figure 2d). Previous studies on Arabidopsis reported that the transcripts of the two canonical repeats, the retrotransposable element AtSN1 and the 5S ribosomal DNA are converted by RDR2 into long dsRNA as a template for DCL3, which processes 24-nt siRNAs that are O-methylated by HEN1 (Xie et al., 2004; Yang et al., 2006). 24-nt ra-siRNAs guide methylation of AtSN1 and 5S rDNA repeat loci by the action of the AGO4 and they have been implicated in chromatin modifications (Zilberman et al., 2003). The ra-siRNA pathway is a positive feedback loop because methylation of these loci is essential for ra-siRNA accumulation (Xie et al., 2004). 1.1.2.4 Natural antisense transcript-derived small interfering RNAs (natsiRNA) Borsani et al. (2005) identified a new class of small RNAs derived from a natural-antisense overlapping transcript pair. The transcripts of P5CDH, a stress-related gene, and SRO5, a gene of unknown function, partially overlap (Figure 2c). In the proposed nat-siRNA pathway, a 760-nt double-stranded region resulting from pairing of cis-antisense transcripts is thought to be processed by DCL2 to generate a unique 24-nt nat-siRNA that guides cleavage of P5CDH transcript through an unidentified AGO protein. In principle, RDR6 and 6 Chapter I Background SGS3 could synthesize a strand complementary to cleaved fragments of P5CDH mRNA leading to a dsRNA that is processed like TAS duplexes in a phased fashion by DCL1. Each resulting 21-nt nat-siRNA reinforces cleavage of P5CDH mRNAs. NRPD1a could be involved in a reinforcing amplification loop using the dsRNA generated by RDR6 and SGS3 as a template. Accumulation of the 24-nt nat-siRNA is correlated with salt stress-induced transcription of the SRO5 gene and is abolished in dcl2, rdr6, sgs3 and nrpd1a mutants. The finding that 4–20% of the genes in many eukaryotes show cis-antisense overlapping organization raises the possibility that the nat-siRNA could be a major mechanism for gene expression regulation (Borsani et al., 2005). 1.1.2.5 Piwi-associated RNAs (piRNAs) Recent studies have revealed a new class of 24-30-nt RNAs that are generated by a Dicerindependent mechanism and that interact with members of the Piwi subfamily of AGO proteins (Chapman and Carrington, 2007; Klattenhoff and Theurkauf, 2008). The proposed piRNA-biogenesis model involves initial targeting of transcripts from transposons and retroelements by a Piwi-like protein that is programmed with a small RNA (Figure 2g). PiRNAs are important for spermatogenesis in mammals and insects. Plants appear to lack these piRNAs (Faehnle and Joshua-Tor, 2007). In Drosophila, the previously identified rasiRNAs have been shown to bind the Piwi family members Piwi and Aubergine (Aub) and thus represent a subset of Drosophila piRNAs. Piwi-associated ra-siRNAs (now referred to as piRNAs) are 24−29nt long than AGO-bound siRNAs/miRNAs and are derived predominately from repetitive genomic loci like transposons or satellite repeats (Aravin et al., 2003; Chapman and Carrington, 2007). 1.1.2.6 Secondary transitive siRNA Previous studies on A. thaliana and C. elegans reported the amplification of silencing related RNA via transitivity, and explain how strong, persistent silencing can be initiated with small amounts of initiator dsRNA (Axtell et al., 2006; Pak and Fire, 2007; Sijen et al., 2007). The emergence of transitivity has an important role for RNAi in controlling gene expression and for understanding the effects of silencing RNAs on cell function and organism development. The initiator of transitivity is a dsRNA which is produced by RdRP activity and then processed by DICER-LIKE family into secondary siRNA or a related type of RNA referred to as miRNA, these 21-25 nucleotide single stranded RNAs are the primary silencing RNAs in the transitive process (Baulcombe, 2007; Moissiard et al., 2007). Upon binding to target transcripts, siRNAs can not only trigger their cleavage and subsequent destruction, but also serve as primers for RdRP. These extend the local RNA double strands and generate templates for production of secondary siRNAs by Dicer action. These secondary siRNAs are 7 Chapter I Background unrelated in sequence to the initial trigger (Moissiard et al., 2007; Mlotshwa et al., 2008). In plants, the transitivity occurs in both directions of the initial dsRNA trigger whereas in animals spreading of the initial signal occurs only upstream of the trigger (Figure 3). Figure 3: Models for amplification of silencing signals in C. elegans and A. thaliana (adapted from Chapman and Carrington, 2007). (a) Processing of trigger dsRNA in C. elegans by Dicer 1 (DCR-1) releases primary siRNAs.The primary siRNA associates with an AGO protein, such as RDE-1, and the complexes bind to complementary target RNA. The bound complexes might then recruit RdRP, which uses the target transcript as template for synthesis of the secondary siRNA. Abundant secondary siRNAs are formed by independent initiation events (rather than by Dicer-mediated processing), are complementary to the target RNA and accumulate in phased pools. (b) Processing of trigger dsRNA in A. thaliana by one or more Dicer-like enzymes releases primary siRNAs, which associate with an AGO protein, such as AGO1, and guide cleavage of the target RNA. This event is proposed to recruit an RdRP, such as RDR6, which uses the target transcript as template for synthesis of a long dsRNA. This dsRNA precursor is processed by DCL enzymes to release abundant secondary siRNAs. 8 Chapter I Background 1.1.3 Dicer proteins Dicer and DICER-LIKE (DCL) proteins are RNAaseIII-type enzymes that cleave RNA molecules with dsRNA features into small fragments bearing a 3’ overhang of two nucleotides during PTGS (Elbashir et al., 2001). Dicer is a large multidomain protein conserved in most eukaryotes, consisting of DExD-helicase, helicase-C, Duf283, PAZ (PiwiArgonaute-Zwille), dual RNAase III , and double stranded RNA-binding (dsRB) domains (Bartel and Bartel, 2003) (Figure 4). Figure 4: Crystal structure of Dicer (adapted from Macrae et al., 2006). The linear arrangement of domains typically found in DCL or DCR proteins is depicted above the figure. (a) Front and side view ribbon representations of Dicer showing the N-terminal platform domain (blue), the PAZ domain (orange), the connector helix (red), the RNase IIIa domain (yellow), the RNase III b domain (green) and the RNase-bridging domain (gray). Disordered loops are drawn as dotted lines. (b) Close-up view of the Dicer catalytic sites; conserved acidic residues (sticks); erbium metal ions (purple); and erbium anomalous difference electron density map, contoured at 20s (blue wire mesh). The DExD and helicase-C domains are found towards the N-terminal and C-terminal regions, respectively. There are always two RNase III domains (termed A and B) in a Dicer protein, and the Duf283 is a domain of unknown function but which is strongly conserved among Dicer proteins. The role of the dsRB domain in human Dicer is generally thought to mediate unspecific reactions with dsRNA, with the PAZ, RNase III A and RNase III B domains being crucial for the recognition and spatial cleavage of dsRNAs into siRNA or miRNA (Zhang et al., 2004). In organisms with only one Dicer, this enzyme, with its associated proteins, is presumably the only generator of siRNAs and miRNAs. In organisms with two or more Dicers, there is probably a division of labour. Plants have at least four main types of DCLs (Margis et al., 2006). In A. thaliana, the four different DICER-LIKE proteins (DCL1-DCL4) exhibit predominant functions in particular small RNAs pathways, even 9 Chapter I Background though functional redundancies among these proteins were identified (Henderson et al., 2006). DCL1 produces mature miRNAs which direct cleavage of transcripts containing sequence elements in reverse complementary orientation (Kurihara and Watanabe, 2004). DCL2 mediates the generation of siRNA from RNA of exogenous sources (Xie et al., 2004). DCL3 is required for the formation of heterochromatin-associated endogenous siRNA (Xie et al., 2004) and DCL4 is needed for the formation of ta-siRNA involved in systemic cell-to-cell transmission of silencing signals (Xie et al., 2005). Also all DCLs have been shown to be involved in generation of viral-derived RNAs in coordinated hierarchical actions (Moissiard and Voinnet, 2006). Human, mice and nematodes each contain one Dicer gene, involved in miRNA biogenesis and the generation of siRNAs. Insects and fungi possess two Dicer genes, the two Dicers have related but different roles, one processes miRNAs and the other is necessary for siRNA-mediated RNAi (Margis et al., 2006). Knockout and knockdown experiments indicate that Dicer is essential for vertebrate development (Jaskiewicz and Filipowicz, 2008). Disruption of Dicer in mice arrests embryogenesis (Bernstein et al., 2003). Dicer function was also found to be essential for Zebrafish development and many processes in C. elegans. In Drosophila, Dicer involved in miRNA biogenesis is likewise an essential gene (Jaskiewicz and Filipowicz, 2008). In mammals, Dicer is important for protection against influenza A virus infection (Matskevich and Moelling, 2007). Dicer is also required for the maintenance of epigenetic silencing in human to protect against cancer (Ting et al., 2008). Loss-of-function mutants of DCL1 in Arabidopsis revealed its role in a number of developmental processes including embryogenesis and flower morphogenesis (Golden et al., 2002; Park et al., 2002). The pleiotropic effects observed in these mutants were ascribed to the lack of miRNA which was caused by the loss of miRNA biogenesis. However, other mechanisms controlled by Dicer and related to RNAi, such as DNA methylation, chromatin structure and centromeric silencing, may also contribute to developmental or cellular defects. Although recombinant Dicer is active as a dsRNA endonuclease in vitro, in cells it generally functions in association with other proteins as a component of multiprotein complexes. In animals, Dicer proteins were shown to be associated with other proteins forming complexes which act as RISC or RISC loading complexes (RLC) (Tomari et al., 2004). Thus, miRNA processing and target-RNA cleavage could be coupled. In Drosophila, it was shown that Dcr2, which produces siRNA, also acts in the RISC assembly together with its partner R2D2 by loading one of the two siRNA strands into RISC (Tomari et al., 2004). The C. elegans homologue of this protein, RDE-4 was also found to interact with Dicer (Tabara et al., 2002). Similarly, human Dicer may function in loading siRNA into RISC, as siRNA does not cause PTGS in human cells lacking Dicer (Doi et al., 2003). However, this is dependent on 10 Chapter I Background particular cell types as siRNA triggers gene silencing in Dicer knockout embryonic stem cells (Kanellopoulou et al., 2005). Moreover, human Dicer, TRBP and AGO2 were present in a protein complex which is able to perform siRNA or miRNA directed target RNA cleavage (Gregory et al., 2005). In plants, members of the HYL1/DRB family proteins were identified as DCL-interacting dsRBD (dsRNA-binding domain) partners and implicated in small RNA pathways in Arabidopsis (Hiraguri et al., 2005). Another group of well characterized Dicer partners in animals is represented by PPD or AGO proteins. Members of the PPB protein family contain two signature domains: a PAZ domain in the center and a PIWI domain at the carboxyl terminus (Carmell et al., 2002; Tolia and Joshua-Tor, 2007). Several other proteins have been found to interact with Dicer. RNA-helicase-related protein, which is required for RNAi, was found to interact with RDE-4 and Dicer in C. elegans (Tabara et al., 2002). FMRP, an mRNA-binding protein involved in the pathogenesis of fragile X syndrome, has been shown to interact with Dicer and AGO-1 in mammalian cells (Jin et al., 2004). Biochemical analysis of fission yeast Dicer (Dcr1) revealed its physical and functional association with RNA-directed RNA polymerase complex (RDRC) in transcriptional silencing (Shiekhattar, 2007). Identification of so many Dicer-interacting proteins indicates that Dicer participates in many cellular processes (Jaskiewicz and Filipowicz, 2008). 1.1.4 Physcomitrella patens as a model system The moss Physcomitrella patens is a member of the bryophytes. Physcomitrella patens occupies an important phylogenetic position for the elucidation of the development of higher plants (Figure 5), including other model organisms, such as Arabidopsis, and plants of commercial importance, such as poplar, corn, soybean, sorghum, and rice. In terms of evolutionary distance, Physcomitrella is to the flowering plants what fish is to humans. Figure 5: Land plant evolution (adapted from Rensing et al., 2008). Bryophytes comprise three separate lineages which, together with the vascular plants (including the flowering plants), make up the embryophytes (land plants). These four lineages, remnants of the initial radiation of land plants in the Silurian, began to diverge from each other about 450 million years ago. 11 Chapter I Background The gametophytic phase is divided into the protonema and the gametophore stages, which produce the sporophyte upon particular conditions. Typical for mosses is the heteromorphicheterophasic alteration of generations, which is responsible for the predominant haploid phase of the gametophyte (Figure 6), and a diploid phase that produces haploid spores. Physcomitrella patens is a monoecious, self-fertile species, i.e. one plant carries both the male (antheridia) and the female (archegonia) sex organs. Figure 6: Life cycle of Physcomitrella patens (adapted from http://www.plantbiotech.net). A haploid spore germinates and grows into the filamentous protonema cells. Starting with a three-faced apical cell bud formation is initiated which gives rise to the leafy adult gametophyte. In monoecious moss species both sex organs (antheridia and archegonia) are present on one and the same plant. Fertilization of the egg cell takes place in the presence of water. From the fertilized egg the sporophyte grows out of the archegonia. Within the spore capsule the cells undergo meiosis and new spores are formed. These features, among others, make Physcomitrella advantagous for scientific use. Because protonema grows quickly and simultaneously, it can be cultivated in a bioreactor as a genetically stable cell suspension. Another advantage is that Physcomitrella can be easily manipulated using molecular biology methods (Reski, 1998a). A unique feature is the high efficiency of homologous recombination, therefore targeted disruption and manipulation of single genes can be performed easily (strepp et al., 1998; Schaefer and Zryd, 1997). The rate of homologous recombination in Physcomitrella is found to be several orders of magnitudes higher than in any other characterized plant species 12 Chapter I Background (Reski, 1998b). The high rate of homologous recombination together with the predominant haploid phase make Physcomitrella a highly suitable system to initiate forward and reverse genetics approaches, enabling the study of gene functions related to almost all aspects of plant biology. A considerable collection of mutants (Egener et al., 2002) and around 210.000 expressed sequence tag (EST) sequences are available (Rensing et al., 2002). Analyses have shown that around 95% of Physcomitrella’s transcriptome is covered by these data. The moss Physcomitrella patens genome comprises about 511 Mbp which are dispersed on 27 chromosomes. The sequence contains approximately 30,000 protein coding genes. Most predicted genes are supported by multiple types of evidence, and 84% of the predicted proteins appear to be complete. About 20% of the analyzed genes show alternative splicing, a frequency similar to that of A. thaliana and O. sativa (Rensing et al., 2008). Despite its low evolutionary position at the basis of land plants Physcomitrella shares more features with the seed plant A. thaliana, than Arabidopsis as dicotyledonous plant with the monocotyledon O. sativa (Reski, 1998b). Recently, a small RNA database has been established in Physcomitrella (Arazi et al., 2005; Axtell et al., 2006; Axtell et al., 2007; Fattash et al., 2007) and they are highly conserved in plants. Recent reports have shown that the RNAi machinery is present and working correctly in Physcomitrella. However, in contrast to A. thaliana and other plant species the biological function of the RNAi pathways in Physcomitrella were not studied. The objectives of this study are: 1. To study the biological function of RNAi pathways in the moss Physcomitrella patens, focussing on the function of the key protein of RNAi, Dicer, by the generation of targeted knockout plants and analyzing the pathways of small RNAs and miRNA target genes in Dicer mutants. 2. To study gene silencing using artificial miRNAs (amiRNAs) in the moss Physcomitrella patens as an alternative tool to targeted gene knockouts. 13 Chapter I 1.2 Results and Discussion Results and Discussion 1.2.1 DICER-LIKE genes in Physcomitrella patens To identify genes encoding DCL proteins BLAST searches of a Physcomitrella EST database (Rensing et al., 2002) were performed using the four Arabidopsis DCL proteins as query. The corresponding cDNA clones of the identified ESTs were sequenced. Analysis of these partial cDNA sequences suggested the existence of four DCL genes in Physcomitrella (Table 3). Table 3: Identification of DICER-LIKE genes in Physcomitrella patens. Closest A. thaliana homologue obtained by reverse BLAST searches using the deduced amino acid sequences of the four P. patens genes in the GenPept/nr database. The PpDCL1b sequence used to generate ΔPpDCL1b mutant lines are underlined. A.th. homologues (Acc. No.) P.p. DCL cDNA (Acc. No.) PpDCL1a (EF670436) PpDCL1b (DQ675601) PpDCL3 (EF670437) AtDCL1 (Q9SP32) AtDCL2 (NP_566199) AtDCL3 (NP_189978) AtDCL4 (P84634) 69% identity 81% similarity 65% identity 78% similarity 32% identity 48% similarity PpDCL4 (EF670438) 35% identity 53% similarity These DCL genes have recently been deduced from the Physcomitrella patens genome sequence independently (Axtell et al., 2007). Two of the Physcomitrella patens DCL proteins (PpDCL1a and PpDCL1b) group together with AtDCL1 (Figure 7), the only A. thaliana DCL involved in miRNA processing (Kurihara and Watanabe, 2004). Prediction of protein domains in the Pfam database (Bateman et al., 2004) revealed the existence of all functional domains in the two Physcomitrella patens DCL1 proteins present in the AtDCL1 protein (Figure S2 and S3, Manuscript 1). However, compared to AtDCL1 the PpDCL1b protein lacks approximately 240 amino acids at the N terminus. The other two PpDCL proteins are homologs of AtDCL3 and AtDCL4, whereas an AtDCL2 homolog is lacking. Using the homologous recombination system, M. Asif Arif generated and analyzed (in his ongoing Ph.D. work) two targeted PpDCL1a knockout mutants (ΔPpDCL1a) (Figure S2, Manuscript 1). The ΔPpDCL1a mutant lines show severe developmental abnormalities. 14 Chapter I Results and Discussion Most drastically the ΔPpDCL1a mutant lines are not able to develop leafy gametophores and are developmentally arrested at the protonema stage (Figure 1A and 1B, Manuscript 1). The results show that PpDCL1a is the functional equivalent of the A. thaliana DCL1 protein required for the biogenesis of miRNAs and ta-siRNAs. Compared to wild type the expression levels of miRNA and ta-siRNA target genes were upregulated in ΔPpDCL1a mutant lines (Figure 1C-E, Manuscript 1). However, in Physcomitrella patens miRNAs might be processed by additional DCLs as the detection particular miRNAs albeit at significantly reduced expression levels (Figure 1, Manuscript 1). The additional presence of a second AtDCL1 homolog in Physcomitrella patens suggested potential differences in endogenous RNAi pathways in comparison to the seed plant A. thaliana. Figure 7: Neighbour-joining tree showing the phylogenetic relationships between DICER-LIKE proteins. DICER-LIKE proteins from animals and plants are indicated by vertical lines. The four groups of DICER-LIKE proteins in plants are marked by coloured boxes. Species abbreviations are At (Arabidopsis thaliana), Ce (Caenorhabditis elegans), Cr (Chlamydomonas reinhardtii), Dm (Drosophila melanogaster), Hs (Homo sapiens), Mm (Mus musculus), Mt (Medicago truncatula), Nc (Neurospora crassa), Os (Oryza sativa), Pp (Physcomitrella patens), Pt (Populus trichocarpa), Sp (Schizosaccharomyces pombe). Pp DCL proteins are highlighted in bold. * The sequence of DCL from Chlamydomonas reinhardtii can be retrieved at: http://genome.jgi-psf.org/chlre2. (Figure S1, Manuscript 1). 15 Chapter I Results and Discussion 1.2.1.1 Generation and molecular analysis of ΔPpDCL1b knockout mutants To generate PpDCL1b knockout lines a PpDCL1b gene disruption construct was prepared by inserting an nptII selection marker cassette into a 560 bp fragment of the PpDCL1b cDNA which encompasses the coding region of the second RNAseIII domain present in the DCL1b protein (Seumel, 2004; Figure S3, Manuscript 1). The resulting construct was used for transfection of Physcomitrella protoplasts. After selection of regenerating plants they were analyzed by PCR to identify mutant lines which had integrated the disruption construct at the DCL1b genomic locus. Out of a total of 520 analyzed transgenic lines 8 lines (1.54%) unable to produce PpDCLb1 transcripts were identified. Four lines were used for further studies (ΔPpDCL1b 1-4). The full-length cDNA sequence of PpDCL1b was obtained (Figure 8, Appendix 4.2), the cDNA was termed DCL1b encoding a protein of 1695 amino acids. Furthermore, the haploidy of all ΔPpDCL1b mutant lines was verified by flow cytometry to exclude the possible generation of diploid lines by protoplast fusion during the transformation process (Appendix 4.1). Figure 8: Cloning and sequencing of the PpDCL1b cDNA. The PpDCL1b cDNA is indicated by a black line. The colored arrows above depict cDNA fragments obtained by different cloning steps. The numbers in the arrows refer to the corresponding nucleotide positions in the DCL1 cDNA. First, a cDNA clone comprising the 3’ end of PpDCL1b was sequenced. Subsequently, three 5’ RACE-PCRs using the BD Smart RACE cDNA Amplification Kit (Clontech) and one RT-PCR was performed. The primers for the RT-PCR were derived from available Physcomitrella genomic trace files. All PCR and 5’ RACE primers were selected to give rise to overlapping PCR fragments of already known sequence stretches to confirm that the amplicons were derived from the same cDNA. The following primers were used: 5‘RACE-PCR 1: 5’- GAACTCCCAACGATGGTCGAGACGC-3’ 5’RACE-PCR 2: 5’- CCAGCT CATCGTGATCAGTAAAGTCGGG -3’ 5‘RACE-PCR 3: 5’-TCCCAGCGCCCGTGTCTAGAAATGCAAC -3’ RT-PCR: 5’-GAGAGGCGGTCTGTGTCGAGGTCTAG -3’ and 5’-TTGTAGCCACCAGCAACGTCACCCGT -3’ 16 Chapter I Results and Discussion 1.2.1.1.1 Knockout of PpDCL1b causes developmental disorders The ΔPpDCL1b mutant lines showed developmental disorders throughout all stages of protoplast regeneration including abnormalities in cell division, growth polarity, cell size, cell shape and growth of tissues (Figure 2A, Manuscript 1). Moreover, these mutants developed only a small number of gametophores, which in addition were malformed (Figure 9). The observed developmental effects are consistent with previous studies of Dicer mutants in animals and plants. The pleiotropic effects observed in these mutants were ascribed to the lack of miRNA which was caused by the loss of miRNA biogenesis. Figure 9: Phenotypic analysis of the ΔPpDCL1b mutants. Electron micrographs of gametophores from wild type plants and ΔPpDCL1b mutant 1 (Figure 2B, Manuscript 1). 1.2.1.1.2 MiRNA biogenesis is not affected and miRNA-directed cleavage of mRNA-targets is abolished in ΔPpDCL1b mutant lines The isolated PpDCL1b gene from Physcomitrella shows 65% identitiy and 78% similarity to to the DCL1 gene from Arabidopsis (Table 3), encoding the essential enzyme required for the generation of miRNAs from pre-miRNA precursors. If the high sequence conservation causes considerable overlap in function one would expect the absence of miRNAs in the ΔPpDCL1b mutant lines. Interestingly, the accumulation of miRNAs in ΔPpDCL1b mutant lines compared to the wild-type was present in almost equal amounts (Figure 2C, Manuscript 1), indicating that PpDCL1b is not required for processing of miRNA precursors in Physcomitrella. In contrast, miRNA-triggered cleavage of miRNA target genes, encoding different transcription factors, was abolished in the ΔPpDCL1b mutant lines (Figure 3A, Manuscript 1). The abolished miRNA-directed cleavage of target mRNAs in the ΔPpDCL1b mutant lines suggests a direct involvement of PpDCL1b in this step of miRNA action. The requirement of DCL proteins for target cleavage was not shown in plants. It is unlikely that PpDCL1b directly cleaves mRNA targets as this function is commonly associated with AGO proteins present in the RISC (Liu et al., 2003). Studies in animals have shown Dicer in 17 Chapter I Results and Discussion association with protein complexes (Tabara et al., 2002; Liu et al., 2003; Lee et al., 2004; Pham et al., 2004). Some of these complexes, like the Dcr-2/R2D2 heterodimer from Drosophila act in loading siRNA into RISC (Liu et al., 2003). It is possible that Physcomitrella patens DCL1b functions in RISC loading like Dcr-1 and Dcr-2 from Drosophila. Until now, only the Arabidopsis protein HYL1 was shown to interact with Arabidopsis DCL1 in vitro (Hiraguri et al., 2005). However, even though HYL1 shows high similarity to the Drosophila R2D2, a function in RISC loading is unlikely as dsRNA triggered gene silencing is not affected in hyl1 mutants. Analysis of miRNA expression indicated that HYL1 plays a role in miRNA biogenesis as miRNA levels were reduced in the hyl1 mutant (Han et al., 2004). 1.2.1.1.3 Generation of transitive siRNA in ΔPpDCL1b mutant lines In Physcomitrella wild type, 5’RACE-PCRs performed from the miRNA targets yielded additional fragments besides the expected cleavage products, indicating additional cleavage of the mRNAs at sites other than the miRNA binding site (Figure 3A, Manuscript 1). The mRNA cleavage products may serve as templates for synthesizing cRNA by RdRP (Vaistij et al., 2002) leading to the formation of dsRNA. Subsequently, the dsRNA may be processed into secondary siRNAs resulting in spreading of the initial miRNA signal (Figure 3B, Manuscript 1). In plants, this mechanism, known as transitivity, is initiated by dsRNA triggers (e. g. viruses and transgene transcripts) and transcripts that are targeted by more than one small RNA (Moissiard et al., 2007). In seed plants, the generation of transitive siRNAs from miRNA cleavage products is the exception. To prove the occurrence of transitivity in Physcomitrella, sense and antisense oligonucleotides derived from PpARF and PpC3HDZIP1 mRNA regions upstream and downstream of the miRNA binding sites were used. Sense and antisense siRNAs were only detected in wild type whereas siRNAs derived from miRNA targets were lacking in the ΔPpDCL1b mutants (Figure 10). In Physcomitrella the generation of siRNAs depends on PpDCL1b function and is specific for miRNA-directed cleavage of target RNAs. Figure 10: Detection of transitive siRNAs derived from miRNA target genes. Detection of sense and antisense siRNAs derived from PpARF and PpC3HDZIP1 with oligonucleotides derived from regions upstream and downstream the miRNA binding sites. Hybridisation with an antisense probe for U6snRNA served as control to indicate equal loading (Figure 3C, Manuscript 1). 18 Chapter I Results and Discussion 1.2.1.1.4 Analysis of DNA methylation in ΔPpDCL1b mutants and wild type When miRNA targets are not cleaved, the respective mRNAs are likely to accumulate to higher levels in the ΔPpDCL1b mutant lines. Conversely, in ΔPpDCL1b mutants all miRNA targets analyzed had reduced transcript levels when compared to wild type (Figure 11), although these mRNAs were not cleaved in these mutants. It is tempting to speculate that other RNAi components may sense the defective target cleavage as some of them were shown to direct heterochromatin formation and gene silencing. One probable explanation for these unexpected findings is a yet undiscovered epigenetic control of genes encoding miRNA targets in Physcomitrella. Since methylation of cytosine residues is the most prominent mechanism for transcriptional silencing in eukaryotes (Bender, 2004), this possibility was tested by methylation-specific PCR from the miRNA target genes and the control gene (PpGNT1) which is not regulated by a miRNA. Figure 11: Expression levels of miRNA target genes in ΔPpDCL1b mutants and wild type. RNA blots analysis of miRNA target genes PpARF, PpC3HDZIP1, PpHB10 and PpSBP3 and two control genes, PpGNT1 and PpEF1α. (Figure 4B, Manuscript 1). In some cases, endogenous siRNAs have an influence on epigenetic control, DNA methylation and chromatin structure at target loci and are associated with RNA-directed DNA methylation (RdDM) and chromatin remodeling (Hamilton et al., 2002; Zilberman et al., 2003; Xie et al., 2004). In plants, dsRNAs which contain sequences that are homologous promoter regions can trigger promoter methylation and transcriptional gene silencing (Melquist and Bender, 2003; Matzke and Birchler, 2005). A function of miRNA 165/166 in directing DNA methylation was shown in the regulation of the homeodomain-leucine zipper (HD-ZIP) transcription factor genes PHABULOSA (PHB) and PHAVOLUTA (PHV) in Arabidopsis (Bao et al., 2004). Promoter regions of the miRNA target genes and the control gene were unmethylated in wild type, whereas in the ΔPpDCL1b mutants the promoters of the genes encoding miRNA targets were methylated (Figure 4D, Manuscript 1). In the latter, methylation occurred specifically at CpG residues (Figure S7, Manuscript 1). In contrast, the promoter of the control gene PpGNT1 remained unaffected in the mutants. Taken together, this reveals a specific epigenetic control of genes encoding miRNA targets upon PpDCL1b dysfunction and subsequent impeded miRNA-directed mRNA cleavage. 19 Chapter I Results and Discussion In Physcomitrella the pC3HDZIP1 and PpHB10 harbor an intron within their miRNA binding site (Figure S8, Manuscript 1). Therefore, it is unlikely that DNA methlyation is initiated by the formation of an miRNA:DNA hybrid. The miRNA:mRNA duplex may be required to control the DNA methlyation. In Arabidopsis, the composition of a nucleolar complex involved in the siRNA-directed silencing of endogenous repeat regions has been recently identified (Bao et al., 2004). This complex combines several proteins which have been linked to RdDM including RDR2, DCL3 and AGO4. In the yeast Schizosaccharomyces pombe, the RITS complex containing AGO1, a chromodomain protein (Chp1) and other proteins, was shown to bind siRNAs to direct DNA heterochromatin formation (Verdel et al., 2004). In Physcomitrella, the detection of the miRNA:mRNA duplexes in the ΔPpDCL1b mutant lines (Figure 4G, Manuscript 1) suggests that the miRNAs are not incorporated into the RISC but may form a free duplex. Subsequently, this duplex guides the RITS complex to the corresponding genomic region resulting in the initiation of DNA methylation. 1.2.1.1.5 Analysis of the ta-siRNA pathway in ΔPpDCL1b mutants To challenge the findings obtained from the transitivity and miRNA-dependent DNA methylation the ta-siRNA pathway was analysed. In Physcomitrella, all four ta-siRNA precursors (TAS1-4 RNAs) analyzed to date are cleaved within two distinct miRNA390 binding sites resulting in the production of ta-siRNAs (Axtell et al., 2006; Talmor-Neiman et al., 2006). The mRNA encoding an EREBP/AP2 transcription factor is targeted by one of the ta-siRNAs derived from the TAS4 precursor (Talmor-Neiman et al., 2006). The abolished miRNA390-directed cleavage of TAS4 precursor resulted the lack of ta-siRNAs in ΔPpDCL1b mutant lines (Figure 5A and B, Manuscript 1) revealing that PpDCL1b is required to initiate the ta-siRNA pathway. According to the findings obtained from miRNA target genes, the lack of ta-siRNAs in the ΔPpDCL1b mutants should abolish cleavage of the EREBP/AP2 mRNA and subsequently transitive siRNAs derived from it should be missing. In agreement with findings for miRNA target genes the level of target TAS4-RNA was down-regulated in the ΔPpDCL1b mutants (Figure 12), and the TAS4 genomic locus was methylated in the ΔPpDCL1b mutants but not in wild type (Figure 5D, Manuscript 1). Indeed, the mRNA level of EREBP/AP2 was increased in the ΔPpDCL1b mutants (Figure 12) and the cognate genomic locus was unmethylated in wild type but methylated in the ΔPpDCL1b mutants (Figure 5D, Manuscript 1). Figure 12: Analysis of expression levels of PpTAS4 and PpEREBP/AP2 in ΔPpDCL1b mutants and wild type. RNA blots analysis of PpTAS4 and PpEREBP/AP2. Ethidium bromide staining shown as loading control below. (Figure 5C, Manuscript 1). 20 Chapter I Results and Discussion 1.2.1.1.6 Analysis of ΔPpDCL1b mutants and wild type lines expressing amiR-GNT1 To check whether the mechanism of epigenetic silencing occurred in Physcomitrella wild type, an amiRNA targeting the control gene PpGNT1 in Physcomitrella wild type as well as in the ΔPpDCL1b mutants was used. PpGNT1-amiRNA was expressed from the Arabidopsis thaliana miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression construct showed precise processing of the PpGNT1amiRNA (Figure 6B, Manuscript 1). However, normalization of the PpGNT1-amiRNA hybridization signal to the U6snRNA control revealed amiRNA expression levels which differed between the individual lines (Figure 6B, Manuscript 1). In agreement with the results obtained from miRNA target genes, the cleavage product of PpGNT1 in the ΔPpDCL1b mutant background was not detect (Figure 6C, Manuscript 1), and an efficient knock-down of the PpGNT1 gene in the plants expressing the PpGNT1-amiRNA and the transcript level of PpGNT1 even lower in the ΔPpDCL1b mutant background (Figure 6D, Manuscript 1). The PpGNT1 promoter was methylated in the ΔPpDCL1b mutant background (Figure 6E and Figure S9, Manuscript 1). Also DNA methylation at the PpGNT1 promoter in the wild type background which showed a strong expression of the PpGNT1-amiRNA was detected whereas the PpGNT1 promoter was unmethylated in the wild type background expressing the PpGNT1-amiRNA at a low level (Figure 6E and Figure S9, Manuscript 1). This finding suggests that the ratio of the miRNA and its target mRNA is crucial for the induction of DNA methylation at the target locus. At low concentrations the miRNA might be effectively loaded into a cleavage competent RISC to direct target cleavage. If the miRNA concentration reaches a certain threshold the RISC loading capacity for the miRNA might be limited and excessive miRNAs form a duplex with their targets, the excess miRNA might be loaded immediately into an effector complex such as RITS triggering duplex formation that directs DNA methylation (Figure 7, Manuscript 1). 1.2.1.1.6.1 Specific methylation of a miRNA1026 target gene in response to the phytohormone abscisic acid (ABA) The results obtained from the analysis of PpGNT1-amiRNA expressing lines indicated that in Physcomitrella patens miRNAs control the expression of target RNAs at the posttranscriptional and transcriptional level (Figure 7, Manuscript 1). Expression profiling experiments using a Physcomitrella microarray (unpublished data) revealed an ABAmediated repression of a gene encoding a basic helix-loop-helix transcription factor (PpbHLH) in wild type and was down-regulated in ΔPpDCL1b mutants (Figure 13). This 21 Chapter I Results and Discussion gene has been predicted to be targeted by the Physcomitrella miRNA1026 (Axtell et al., 2007). Figure 13: Expression profile of PpbHLH. Expression level of PpbHLH down-regulated in response to 10 µM ABA and in ΔPpDCL1b mutants. RNA gel blots confirmed the down-regulation of PpbHLH in response to ABA and corresponding ABA-induced increase of miRNA1026 expression levels (Figure 6G and H, Manuscript 1). In agreement with hypothesis that miRNAs control the expression of their targets at the posttranscriptional and transcriptional level, the PpbHLH promoter as well as intragenic regions were found to be methylated in the plants treated with ABA (Figure 6J, Manuscript 1). From these results, epigenetic silencing of miRNA target loci contributes to the control of target gene expression in Physcomitrella was concluded. Although this phenomenon in ΔPpDCL1b mutants was initially discovered, subsequent analyses of the miR1026/PpbHLH regulon confirmed that this type of miRNA-dependent control operates also in wild type. 1.2.1.1.7 Expression profiling of transcription factor genes in ΔPpDCL1b mutant lines Approximately 6% of the protein coding genes are considered to encode transcription factors in Arabidopsis (Riechmann et al., 2000). In addition, more than 50 % of the predicted miRNA target genes belong to the class of transcription factor encoding mRNAs (Rhoades et al., 2002). In Physcomitrella patens, the comparison of the expression pattern of transcription factor encoding genes between wild type and ΔPpDCL1b mutants will identify putative candidate genes, which are regulated by RNAi. It is likely that more genes which are miss-regulated in the ΔPpDCL1b mutants and direct miRNA and ta-siRNA targets were able to be identified. RNA from wild type and two ΔPpDCL1b mutants was hybridized on a custom Combimatrix 12K oligonucleotide microarray representing 1,427 Physcomitrella patens assembled transcript sequences encoding more than 400 Transcription Associated Proteins (TAPs). Corresponding gene models assigned for 1,200 assembled transcripts (Richardt, 2009). In ΔPpDCL1b mutants, all previously analyzed miRNA targets (PpARF, PpC3HDZIP1, PpHB10 and PpSBP3) were downregulated and the ta-siRNA target gene (PpEREBP/AP2) was upregulated when compared to wild type. I hypothesized that the downregulated genes of transcription factors in Physcomitrella ΔPpDCL1b mutants could be putative miRNA target genes and the upregulated ones could be ta-siRNA target genes. Clustering of expression 22 Chapter I Results and Discussion profiles showed different gene expression between ΔPpDCL1b mutant lines and wild-type plants (Figure 14). Figure 14: Expression profiling of genes in ΔPpDCL1b mutant lines and Wild type. Differential gene expression in ΔPpDCL1b mutant lines and wild-type plants, 213 genes which were downregulated and 273 genes upregulated in ΔPpDCL1b mutant lines (Appendix 4 and 5). MiRNA and ta-siRNA target genes supposed to be downregulated and upregulated in ΔPpDCL1b mutant lines, respectively. 46 miRNA target genes are present on the Combimatrix 12K oligonucleotide microarray. Normalization and statistical analysis identified 20 miRNA target genes differentially expressed within Physcomitrella ΔPpDCL1b mutant lines; the analysis revealed 13 miRNA target genes downregulated (Table 4) and 7 miRNA target genes upregulated in ΔPpDCL1b mutant lines. By analyzing all upregulated genes in ΔPpDCL1b mutants, the ta-siRNA target genes were predicted using the RNA hybrid program (I. Fattash, personal communication). The parameters used in this program are adopted from Schwab et al. (2005). In agreement with findings for ta-siRNA target genes, the analysis revealed 19 ta-siRNA target genes upregulated in ΔPpDCL1b mutant lines (Table 5). 23 Chapter I Results and Discussion Table 4: MiRNA target genes downregulated in ΔPpDCL1b mutant lines MiRNAs Target accession (Gene model) miR1026ab miR1026ab miR166 miR166 miR166 miR166 miR414 miR414 miR477a miR538abc miR538abc miR902f miR904 Phypa1_132150 † Phypa1_209063 ‡ Phypa1_116038 ‡ Phypa1_182184 ‡ Phypa1_184087 ‡ Phypa1_192868 ‡ Phypa1_167487 ‡ Phypa1_145753 ‡ Phypa1_130477 ‡ Phypa1_109598 ‡ Phypa1_94754 ‡ Phypa1_199042 † ‡ Phypa1_141045 Sequence ID (EST) PP015054317R PP_12500_C1 PP015020123R PP020016117R PP_SD_92_C1 BJ580674 PP_9369_C1 PP_4238_C1 PP_323_C1 PP020062195R PP_SD_0_C1 PP030015063R PP015071162R Target description (Annotation) 12-oxophytodienoate reductase (OPR1) basic helix-loop-helix (bHLH) family protein class III HD-Zip protein HB12 class III HD-Zip protein HB11 class III HD-Zip protein HB10 class III HD-Zip protein HB14 Helix-loop-helix DNA-binding translation initiation factor 3 subunit 3 / eIF-3 Photosystem subunit V, chloroplast precursor MADS-domain protein PPM2 agamous-like MADS box protein AGL1 polyubiquitin (UBQ4), identical to GI:17677 AGO1-1 (Nicotiana benthamiana) Fold change -1.5 -3.2 -1.5 -2.0 -2.0 -2.0 -1.6 -1.6 -1.6 -2.0 -2.0 -1.5 -1.4 Table 5: Ta-siRNA target genes upregulated in ΔPpDCL1b mutant lines TasiRNAs Target accession (Gene model) † PpTAS2 Phypa1_160018 PpTAS1 PpTAS1 PpTAS2 PpTAS1 PpTAS1 PpTAS2 PpTAS1 PpTAS1 PpTAS3 PpTAS1 PpTAS1 PpTAS1 PpTAS1 PpTAS1 PpTAS1 PpTAS1 PpTAS3 PpTAS3 Phypa1_188484 † Phypa1_170836 † Phypa1_53217 † Phypa1_184404 † Phypa1_123311 † Phypa1_61310 † Phypa1_168363 † Phypa1_175333 † Phypa1_203982 † † Phypa1_13874 Phypa1_216494 † Phypa1_165365 † Phypa1_142162 † Phypa1_15899† Phypa1_138749 † Phypa1_167719 † Phypa1_79139 ‡ Phypa1_161831 † ‡ Sequence ID (EST) PP_10130_C2 PP_10320_C1 PP_13554_C1 PP_12145_C1 PP_13985_C1 PP_15546_C1 PP_15997_C1 PP_17900_C1 PP_18393_C1 PP_10621_C1 PP_584_C1 PP_12254_C1 PP_8332_C1 PP_8343_C1 PP004007192R PP004043210R PP004103024R PP015028003R PP020043294R Target description (Annotation) Q8H9A2 Dehydratiion responsive element binding protein 1 like protein Putative nuclear DNA-binding protein G2p Q9LKG4 Putative DNA binding protein. Homolog of hypothetical protein sativa Arabidopsis thaliana genomic DNA, Q9LW84 Gb|AAF26996.1. Q9SI75 F23N19.11 Hypothetical protein Homolog of (AJ131113) VP1/ABI3-like protein not annotated Physcomitrella patens Q9FPV8 Putative methionine aminopeptidase scarecrow-like transcription factor 3 (SCL3) Homolog of lateral suppressor protein Homolog of AP2 domain, Putative 2-isopropylmalate synthase Q9FJ91 Dbj|BAA78737.1 AT5g52010 Q9SGT9 T6H22.8.2 protein. O99018 Chloroplast protease precursor. Homolog of zinc finger B-box type family Mitochondrial transcription termination factor Fold change 1.8 1.8 1.3 1.8 1.4 1.7 3.0 1.4 2.0 1.3 2.1 1.7 7.8 3.0 2.0 4.1 1.7 3.6 3.3 Target validated, † Target predicted 1.2.2 Highly specific gene Physcomitrella patens silencing by artificial miRNAs in Artificial miRNA (amiRNA) are single-stranded 21-nt small RNAs, which have been used to downregulate single or multiple protein coding genes by guiding their cleavage based on sequence complementarity. Their sequences are designed according to known determinants of target selection for natural miRNAs (Schwab et al., 2005; Schwab et al., 2006). Previous reports have shown that DNA sequences encoding Arabidopsis pre-miRNAs can be expressed from the constitutive CaMV35S promoter in transgenic plants to produce mature 24 Chapter I Results and Discussion miRNAs. Moreover, alterations of several nucleotides within a miRNAs 21-nt sequence do not affect its biogenesis and maturation (Vaucheret et al., 2004). These findings raise the possibility of modifying miRNA sequences according to the determinant miRNA target selection, such that the 21-nt specifically silence their intended target gene(s). In humans miR30 precursor has been modified to generate an amiRNA to downregulate gene expression by translation inhibition (Boden et al., 2004; Dickins et al., 2005). Arabidopsis miRNA precursors have been modified to silence endogenous and exogenous target genes in the dicotyledonous plants Arabidopsis, tomato and tobacco (Parizotto et al., 2004; Alvarez et al., 2006; Niu et al., 2006; Schwab et al., 2006; Qu et al., 2007). Gene silencing in monocotyledon species by amiRNAs has been reported (Warthmann et al., 2008). Previous results have shown that artificial ta-siRNAs (ata-siRNAs) confer consistent and effective gene silencing in Arabidopsis by engineering the TAS1c (ta-siRNAs1c) locus to silence the FAD2 gene (de la Luz Gutierrez-Nava et al., 2008). So amiRNAs and ata-siRNAs make an effective tool for specific gene silencing in plants. In the moss Physcomitrella patens analysis of gene function can be carried out by the generation of targeted gene knockout lines. However, the development of an amiRNA expression system will be a valuable alternative to speed up such analyses. As a proof of concept two amiRNAs, targeting the gene PpFtsZ2-1, which is indispensable for chloroplast division (Strepp et al., 1998), and the gene PpGNT1 encoding an N- acetylglucosaminyltransferase (Koprivova et al., 2003) were designed. Both amiRNAs were expressed from the Arabidopsis thaliana miR319a precursor fused to a constitutive promoter (Figure 1A, Publication 1). Based on the conservation of the miR319 family among land plants and similar secondary structures of miR319 precursor transcripts from Arabidopsis and Physcomitrella (Figure 1B, Publication 1), the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA were correctly processed from the Arabidopsis miR319a precursor. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knockdown of the cognate target mRNAs (Figure 1D and 2A, Publication 1). Furthermore, chloroplast division was impeded in PpFtsZ2-1amiRNA lines which phenocopied PpFtsZ2-1 knockout mutants (Figure 15). The formation of macrochloroplasts in the PpFtsZ2-1-amiRNA lines was observed in all tissues and cells analyzed indicating an efficient production of mature amiRNAs from constitutively expressed precursor transcripts. To investigate the possibility of transitivity, sense and antisense oligonucleotides derived from a PpFtsZ2-1 and PpGNT1 mRNA regions downstream the amiRNA recognition site were used for RNA gel blot analysis. Sense and antisense siRNAs were only detected in PpFtsZ2-1-amiRNA and PpGNT1amiRNA lines, but not in wild type (Figure 2B and C, Publication 1). Additionally, these 25 Chapter I Results and Discussion siRNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach. Figure 15: Impeded plastid divison and formation of macrochloroplasts in PpFtsZ2-1-amiRNA overexpressors. A, Light microscopy from protonema and leaves of wild type (WT) and one PpFtsZ2-1-amiRNA overexpression line (Size bars: 100 µm). B, Confocal laser scanning microscopy from protonema and leaves of wild type (WT) and one PpFtsZ2-1-amiRNA overexpression line (Size bars: 50 µm). Red: chlorophyll autofluorescence in plastids. (Figure 3, Publication 1). 26 Chapter I 1.3 Conclusion Conclusion These findings reveal the existence of novel RNAi pathways in Physcomitrella patens. As opposed to Arabidopsis thaliana, the miRNA-directed posttranscriptional control of target mRNAs in Physcomitrella patens is amplified by transitive siRNAs. Furthermore, we identified a pathway that depends on miRNA:targetRNA duplexes and triggers the silencing of genes encoding miRNA targets. Consequently, ΔPpDCL1b mutants deficient in miRNA target cleavage are not viable in some plants and animals. In contrast, Physcomitrella ΔPpDCL1b mutant lines are viable, although severely affected in several cellular features and in development. From that a model for gene-specific sensing of the levels of specific miRNAs and their target-RNAs (by miRNA:mRNA or miRNA:TAS-RNA duplex formation) was proposed, effective (or ineffective) target cleavage, and subsequent epigenetic control of target-RNA accumulation (Figure 16). In summary, the conclusions are: 1- PpDCL1a is the functional equivalent of Arabidopsis AtDCL1 (miRNA biogenesis). 2- PpDCL1b is essential for miRNA target cleavage (including the ta-siRNA pathway). 3- In Physcomitrella, amplification of miRNA and ta-siRNA signals by transitive siRNAs is a common mechanism. 4- The accumulation of miRNAs and their cognate RNA targets in the ΔPpDCL1b mutants causes a specific hypermethylation of the corresponding genomic loci. 5- MiRNAs induce a specific epigenetic silenicng of miRNA target genes which depends on the miRNA:target ratio and is mediated by the formation of stable miRNA:RNA duplexes. 6- The expression of amiRNAs in Physcomitrella leads to an efficient silencing of their target mRNAs comparable to the effects of targeted gene knockouts. 7- The amplification of the initial amiRNA signal by secondary transitive siRNAs, these siRNAs do not have a major effect on highly conserved gene families, confirming specificity of the amiRNA approach in Physcomitrella. 27 Chapter I Conclusion Figure 16: Model for the post-transcriptional and epigenetic control of miRNA target genes in Physcomitrella patens. (A) Pathways leading to miRNA target cleavage. The maturation of miRNAs from stem-loop precursors is catalyzed by PpDCL1a. PpDCL1b is required for loading miRNAs into cleavage competent RISC. After loading of miRNAs into RISC (consisting of PpDCL1b, AGO and unknown proteins) transient miRNA:target-RNA duplexes form based on sequence complementarity. Subsequently, target-RNAs are cleaved. From the cleavage products dsRNA is produced by the action of RdRP. Subsequently, the dsRNA is processed to generate transitive siRNAs (from mRNA cleavage products) or ta-siRNAs (from TAS-RNAs).Transitive siRNAs lead to an amplification of the miRNA trigger; ta-siRNAs are directed to their mRNA targets guiding their cleavage. (B) Epigenetic control of miRNA target genes. In the ΔPpDCL1b mutant lines miRNAs are not loaded into cleavage competent RISC and target cleavage is abolished. Also in Physcomitrella patens wild type miRNAs can accumulate which cannot be loaded efficiently into RISC. In both cases miRNAs may be loaded into alternative complexes such as the RITS complex and targeted to cognate target-RNAs. These miRNA:RNA duplexes bound by RITS enter the nucleus and initiate DNA methylation at complementary genomic loci. The RITS complex expands into adjacent regions (e. g. promoters) and completes CpG methylation of the entire genomic locus. In consequence, genomic loci are silenced and accumulation of mRNAs is inhibite 28 Chapter I References 1.4 References Achard, P., A. Herr, et al. (2004). "Modulation of floral development by a gibberellinregulated microRNA." Development 131(14): 3357-65. Agrawal, N., P. V. Dasaradhi, et al. (2003). "RNA interference: biology, mechanism, and applications." Microbiol Mol Biol Rev 67(4): 657-85. Allen, E., Z. Xie, et al. (2005). "microRNA-directed phasing during trans-acting siRNA biogenesis in plants." Cell 121(2): 207-21. Allen, E., Z. Xie, et al. (2004). "Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana." Nat Genet 36(12): 1282-90. Alvarez, J. P., I. Pekker, et al. (2006). "Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species." Plant Cell 18(5): 1134-51. Aravin, A. A., M. Lagos-Quintana, et al. (2003). "The small RNA profile during Drosophila melanogaster development." Dev Cell 5(2): 337-50. Aravin, A. A., R. Sachidanandam, et al. (2007). "Developmentally regulated piRNA clusters implicate MILI in transposon control." Science 316(5825): 744-7. Arazi, T., M. Talmor-Neiman, et al. (2005). "Cloning and characterization of micro-RNAs from moss." Plant J 43(6): 837-48. Axtell, M. J., C. Jan, et al. (2006). "A two-hit trigger for siRNA biogenesis in plants." Cell 127(3): 565-77. Axtell, M. J., J. A. Snyder, et al. (2007). "Common functions for diverse small RNAs of land plants." Plant Cell 19(6): 1750-69. Bao, N., K. W. Lye, et al. (2004). "MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome." Dev Cell 7(5): 653-62. Bartel, B. and D. P. Bartel (2003). "MicroRNAs: At the root of plant development?" Plant Physiology 132(2): 709-717. Bartel, D. P. (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function." Cell 116(2): 281-97. Bateman, A., L. Coin, et al. (2004). "The Pfam protein families database." Nucleic Acids Res 32(Database issue): D138-41. Baulcombe, D. (2004). "RNA silencing in plants." Nature 431(7006): 356-63. Baulcombe, D. (2005). "RNA silencing." Trends Biochem Sci 30(6): 290-3. Baulcombe, D. C. (2007). "Molecular biology. Amplified silencing." Science 315(5809): 199200. Bender, J. (2004). "Chromatin-based silencing mechanisms." Curr Opin Plant Biol 7(5): 5216. Bernstein, E., S. Y. Kim, et al. (2003). "Dicer is essential for mouse development." Nat Genet 35(3): 215-7. Boden, D., O. Pusch, et al. (2004). "Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins." Nucleic Acids Res 32(3): 1154-8. Bonnet, E., Y. Van de Peer, et al. (2006). "The small RNA world of plants." New Phytol 171(3): 451-68. Borsani, O., J. Zhu, et al. (2005). "Endogenous siRNAs derived from a pair of natural cisantisense transcripts regulate salt tolerance in Arabidopsis." Cell 123(7): 1279-91. Brennecke, J., A. A. Aravin, et al. (2007). "Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila." Cell 128(6): 1089-103. Carmell, M. A., Z. Xuan, et al. (2002). "The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis." Genes Dev 16(21): 2733-42. Chapman, E. J. and J. C. Carrington (2007). "Specialization and evolution of endogenous small RNA pathways." Nat Rev Genet 8(11): 884-96. Chen, X. (2004). "A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development." Science 303(5666): 2022-5. 29 Chapter I References de Carvalho, F., G. Gheysen, et al. (1992). "Suppression of beta-1,3-glucanase transgene expression in homozygous plants." Embo J 11(7): 2595-602. de la Luz Gutierrez-Nava, M., M. J. Aukerman, et al. (2008). "Artificial trans-Acting siRNAs Confer Consistent and Effective Gene Silencing." Plant Physiol 147(2): 543-51. Dickins, R. A., M. T. Hemann, et al. (2005). "Probing tumor phenotypes using stable and regulated synthetic microRNA precursors." Nat Genet 37(11): 1289-95. Doi, N., S. Zenno, et al. (2003). "Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors." Curr Biol 13(1): 41-6. Egener, T., J. Granado, et al. (2002). "High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library." BMC Plant Biol 2: 6. Elbashir, S. M., J. Harborth, et al. (2001). "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells." Nature 411(6836): 494-8. Elbashir, S. M., W. Lendeckel, et al. (2001). "RNA interference is mediated by 21- and 22nucleotide RNAs." Genes Dev 15(2): 188-200. Faehnle, C. R. and L. Joshua-Tor (2007). "Argonautes confront new small RNAs." Curr Opin Chem Biol 11(5): 569-77. Fattash, I., B. Voss, et al. (2007). "Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution." BMC Plant Biol 7: 13. Filipowicz, W. (2005). "RNAi: the nuts and bolts of the RISC machine." Cell 122(1): 17-20. Fire, A., S. Xu, et al. (1998). "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans." Nature 391(6669): 806-11. Golden, T. A., S. E. Schauer, et al. (2002). "SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis." Plant Physiol 130(2): 808-22. Gregory, R. I., T. P. Chendrimada, et al. (2005). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing." Cell 123(4): 631-40. Grosshans, H. and W. Filipowicz (2008). "Molecular biology: the expanding world of small RNAs." Nature 451(7177): 414-6. Hamilton, A., O. Voinnet, et al. (2002). "Two classes of short interfering RNA in RNA silencing." EMBO J 21(17): 4671-9. Hamilton, A. J. and D. C. Baulcombe (1999). "A species of small antisense RNA in posttranscriptional gene silencing in plants." Science 286(5441): 950-2. Han, M. H., S. Goud, et al. (2004). "The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation." Proc Natl Acad Sci U S A 101(4): 1093-8. Hannon, G. J. (2002). "RNA interference." Nature 418(6894): 244-51. Hannon, G. J. and J. J. Rossi (2004). "Unlocking the potential of the human genome with RNA interference." Nature 431(7006): 371-8. Henderson, I. R., X. Zhang, et al. (2006). "Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning." Nat Genet 38(6): 721-5. Hiraguri, A., R. Itoh, et al. (2005). "Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana." Plant Mol Biol 57(2): 173-88. Jaskiewicz, L. and W. Filipowicz (2008). "Role of Dicer in posttranscriptional RNA silencing." Curr Top Microbiol Immunol 320: 77-97. Jin, P., D. C. Zarnescu, et al. (2004). "Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway." Nat Neurosci 7(2): 113-7. Jones-Rhoades, M. W., D. P. Bartel, et al. (2006). "MicroRNAS and their regulatory roles in plants." Annu Rev Plant Biol 57: 19-53. 30 Chapter I References Kanellopoulou, C., S. A. Muljo, et al. (2005). "Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing." Genes Dev 19(4): 489501. Klattenhoff, C. and W. Theurkauf (2008). "Biogenesis and germline functions of piRNAs." Development 135(1): 3-9. Koprivova, A., F. Altmann, et al. (2003). "N-glycosylation in the moss Physcomitrella patens is organized similarly to that in higher plants." Plant Biol 5: 582-91. Kurihara, Y. and Y. Watanabe (2004). "Arabidopsis micro-RNA biogenesis through Dicerlike 1 protein functions." Proc Natl Acad Sci U S A 101(34): 12753-8. Lee, R. C., R. L. Feinbaum, et al. (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell 75(5): 843-54. Lee, Y., C. Ahn, et al. (2003). "The nuclear RNase III Drosha initiates microRNA processing." Nature 425(6956): 415-9. Lee, Y. S., K. Nakahara, et al. (2004). "Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways." Cell 117(1): 69-81. Lippman, Z. and R. Martienssen (2004). "The role of RNA interference in heterochromatic silencing." Nature 431(7006): 364-70. Liu, Q., T. A. Rand, et al. (2003). "R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway." Science 301(5641): 1921-5. Margis, R., A. F. Fusaro, et al. (2006). "The evolution and diversification of Dicers in plants." FEBS Lett 580(10): 2442-50. Matskevich, A. A. and K. Moelling (2007). "Dicer is involved in protection against influenza A virus infection." J Gen Virol 88(Pt 10): 2627-35. Matzke, M. A. and J. A. Birchler (2005). "RNAi-mediated pathways in the nucleus." Nat Rev Genet 6(1): 24-35. Matzke, M. A. and A. J. Matzke (2004). "Planting the seeds of a new paradigm." PLoS Biol 2(5): E133. Meister, G., M. Landthaler, et al. (2004). "Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs." Mol Cell 15(2): 185-97. Mello, C. C. and D. Conte, Jr. (2004). "Revealing the world of RNA interference." Nature 431(7006): 338-42. Melquist, S. and J. Bender (2003). "Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis." Genes Dev 17(16): 2036-47. Mlotshwa, S., G. J. Pruss, et al. (2008). "DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis." PLoS ONE 3(3): e1755. Moissiard, G., E. A. Parizotto, et al. (2007). "Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins." Rna 13(8): 1268-78. Moissiard, G. and O. Voinnet (2006). "RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins." Proc Natl Acad Sci U S A 103(51): 19593-8. Montgomery, T. A., M. D. Howell, et al. (2008). "Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation." Cell 133(1): 128-41. Napoli, C., C. Lemieux, et al. (1990). "Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans." Plant Cell 2(4): 279-289. Nelson, P. T., A. G. Hatzigeorgiou, et al. (2004). "miRNP:mRNA association in polyribosomes in a human neuronal cell line." Rna 10(3): 387-94. Niu, Q. W., S. S. Lin, et al. (2006). "Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance." Nat Biotechnol 24(11): 1420-8. Pak, J. and A. Fire (2007). "Distinct populations of primary and secondary effectors during RNAi in C. elegans." Science 315(5809): 241-4. 31 Chapter I References Palatnik, J. F., E. Allen, et al. (2003). "Control of leaf morphogenesis by microRNAs." Nature 425(6955): 257-63. Parizotto, E. A., P. Dunoyer, et al. (2004). "In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA." Genes Dev 18(18): 2237-42. Park, W., J. Li, et al. (2002). "CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana." Curr Biol 12(17): 1484-95. Pham, J. W., J. L. Pellino, et al. (2004). "A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila." Cell 117(1): 83-94. Qu, J., J. Ye, et al. (2007). "Artificial microRNA-mediated virus resistance in plants." J Virol 81(12): 6690-9. Rajagopalan, R., H. Vaucheret, et al. (2006). "A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana." Genes Dev 20(24): 3407-25. Rensing, S. A., D. Lang, et al. (2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants." Science 319(5859): 64-9. Rensing, S. A., S. Rombauts, et al. (2002). "Moss transcriptome and beyond." Trends Plant Sci 7(12): 535-8. Reski, R. (1998a). "Development, genetics and molecular biology of mosses." Botanica Acta 111(1): 1-15. Reski, R. (1998b). "Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics." Trends in Plant Science 3(6): 209-210. Rhoades, M. W., B. J. Reinhart, et al. (2002). "Prediction of plant microRNA targets." Cell 110(4): 513-20. Richardt, S. (2009). "Phylogenetic and comparative gene expression analysis of transcription-associated proteins from the abiotic stress-tolerant moss Physcomitrella patens (Hedw.) Bruch & Schimp." Inaugural-Dissertation, University of Freiburg. Riechmann, J. L., J. Heard, et al. (2000). "Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes." Science 290(5499): 2105-10. Romano, N. and G. Macino (1992). "Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences." Mol Microbiol 6(22): 3343-53. Schaefer, D. G. (2001). "Gene targeting in Physcomitrella patens." Curr Opin Plant Biol 4(2): 143-50. Schaefer, D. G. and J. P. Zryd (1997). "Efficient gene targeting in the moss Physcomitrella patens." Plant J 11(6): 1195-206. Schramke, V. and R. Allshire (2004). "Those interfering little RNAs! Silencing and eliminating chromatin." Curr Opin Genet Dev 14(2): 174-80. Schwab, R., S. Ossowski, et al. (2006). "Highly specific gene silencing by artificial microRNAs in Arabidopsis." Plant Cell 18(5): 1121-33. Schwab, R., J. F. Palatnik, et al. (2005). "Specific effects of microRNAs on the plant transcriptome." Dev Cell 8(4): 517-27. Seumel, G. (2004). "Erzeugung gerichteter Knockout-Linien und Mutagenese von an der RNA-Interferenz beteiligten Genen und funktionale Analyse von Ca2+-ATPaseKnockout-Linien im Laubmoos Physcomitrella patens (Hedw.) B.S.G. " Wissenschaftliche Arbeit, University of Freiburg. Sharp, P. A. (2001). "RNA interference--2001." Genes Dev 15(5): 485-90. Shiekhattar, R. (2007). "Dicer finds a new partner in transcriptional gene silencing." Mol Cell 27(4): 519-20. Sijen, T., F. A. Steiner, et al. (2007). "Secondary siRNAs result from unprimed RNA synthesis and form a distinct class." Science 315(5809): 244-7. Strepp, R., S. Scholz, et al. (1998). "Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin." Proc Natl Acad Sci U S A 95(8): 4368-73. 32 Chapter I References Tabara, H., E. Yigit, et al. (2002). "The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans." Cell 109(7): 861-71. Talmor-Neiman, M., R. Stav, et al. (2006). "Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis." Plant J 48(4): 511-21. Tang, G. and G. Galili (2004). "Using RNAi to improve plant nutritional value: from mechanism to application." Trends Biotechnol 22(9): 463-9. Ting, A. H., H. Suzuki, et al. (2008). "A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells." Cancer Res 68(8): 2570-5. Tolia, N. H. and L. Joshua-Tor (2007). "Slicer and the argonautes." Nat Chem Biol 3(1): 3643. Tomari, Y., T. Du, et al. (2004). "RISC assembly defects in the Drosophila RNAi mutant armitage." Cell 116(6): 831-41. Tomari, Y. and P. D. Zamore (2005). "Perspective: machines for RNAi." Genes Dev 19(5): 517-29. Vaistij, F. E., L. Jones, et al. (2002). "Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNAdependent RNA polymerase." Plant Cell 14(4): 857-67. Vaucheret, H., F. Vazquez, et al. (2004). "The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development." Genes Dev 18(10): 1187-97. Verdel, A., S. Jia, et al. (2004). "RNAi-mediated targeting of heterochromatin by the RITS complex." Science 303(5658): 672-6. Wang, J. W., L. J. Wang, et al. (2005). "Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis." Plant Cell 17(8): 2204-16. Wang, X. J., J. L. Reyes, et al. (2004). "Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets." Genome Biol 5(9): R65. Warthmann, N., H. Chen, et al. (2008). "Highly specific gene silencing by artificial miRNAs in rice." PLoS ONE 3(3): e1829. Waterhouse, P. M., M. B. Wang, et al. (2001). "Gene silencing as an adaptive defence against viruses." Nature 411(6839): 834-42. Williams, L., S. P. Grigg, et al. (2005). "Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes." Development 132(16): 3657-68. Xie, Z., E. Allen, et al. (2005). "DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana." Proc Natl Acad Sci U S A 102(36): 12984-9. Xie, Z., L. K. Johansen, et al. (2004). "Genetic and functional diversification of small RNA pathways in plants." PLoS Biol 2(5): E104. Yang, Z., Y. W. Ebright, et al. (2006). "HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide." Nucleic Acids Res 34(2): 667-75. Zhang, H., F. A. Kolb, et al. (2004). "Single processing center models for human Dicer and bacterial RNase III." Cell 118(1): 57-68. Zilberman, D., X. Cao, et al. (2003). "ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation." Science 299(5607): 716-9. 33 Chapter II Transcriptional control of gene expression by microRNAs 2 Chapter II: Manuscript 1 Transcriptional control of gene expression by microRNAs Own contribution: Carried out all molecular and phenotypic analyes of the ΔPpDCL1b mutants, generated and analyzed the amiR-GNT1 overexpression lines, and performed the complete analysis of the miR1026 and its PpbHLH target. Writing parts of the manuscript and preparing the figures. The work was supervised by W. Frank 34 Transcriptional control of gene expression by microRNAs Basel Khraiwesh1, M. Asif Arif1, Gotelinde I. Seumel1, Stephan Ossowski2, Detlef Weigel2, Ralf Reski1,3,4, Wolfgang Frank1,3* 1 Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D- 79104 Freiburg, Germany 2 Department of Molecular Biology, Max Planck Institute for Developmental Biology, D- 72076 Tübingen, Germany 3 Freiburg Initiative for Systems Biology (FRISYS), Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany 4 Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany * Corresponding author Phone: +49 (0)761-203-2820 Fax: +49 (0)761-203-6945 Email: [email protected] 1 Summary MicroRNAs (miRNAs) control gene expression in animals and plants. They share with another class of small RNAs, siRNAs, the ability to post-transcriptionally affect target mRNAs. In contrast to siRNAs, however, the role of miRNAs in transcriptional regulation has been less clear. Here we reveal dual transcriptional and posttranscriptional activities of miRNAs in Physcomitrella patens. In plants lacking activity of one DICER-LIKE gene (PpDCL1b), miRNA target genes are silenced. The specific function of PpDCL1b in miRNA-mediated target cleavage suggests that changes in the ratio of the miRNA and its targets cause miRNA:target-RNA duplex formation, which in turn triggers DNA methylation. We propose that miRNA-mediated transcriptional silencing, which also occurs in wild type plants, provides a mechanism critical for homeostasis of miRNA-dependent gene expression. Introduction Small RNAs (sRNAs) are important regulators of post-transcriptional and transcriptional gene expression (Meister and Tuschl, 2004). In plants, microRNAs (miRNAs), which are produced from hairpin-like precursor transcripts, are also required for the biogenesis of trans-acting small interfering RNAs (ta-siRNAs). Both miRNAs and tasiRNAs regulate mRNA stability and translation, siRNAs, which originate from perfectly double-stranded RNA (dsRNA) precursors post-transcriptionally silence transposons, viruses and transgenes and are important for the establishment and maintenance of cytosine DNA methylation (Baulcombe, 2004). Even though the role of plant siRNAs in the methylation of cognate genomic loci is well understood (Matzke et al., 2007), evidence for a similar function of miRNAs in directing DNA methylation is limited. The biogenesis of sRNAs from dsRNA is catalyzed by Dicer proteins and the size of the Dicer gene family varies between organisms, reflecting different degrees of specialization of Dicer proteins. For example, in D. melanogaster Dcr1 produces 2 miRNAs from hairpin precursors, whereas Dcr2 generates siRNAs from dsRNA molecules (Tomari and Zamore, 2005). By contrast, in C. elegans the single Dicer protein DCR-1 is directed by accessory proteins such as PIR-1, ER-1 and RRF-3 to produce sRNAs from different dsRNA triggers (Duchaine et al., 2006). Besides their function in dicing dsRNA, animal Dicers are associated with accessory proteins in complexes which act as RISC (RNA-induced silencing complex) or RISC loading complexes (Doi et al., 2003; Pham et al., 2004). Thus, Dicer proteins are also essential components in the executive phase of RNAi, indicating that miRNA/siRNA processing and target RNA cleavage are coupled. Dcr-2 from Drosophila, which produces siRNA, acts together with its partner R2D2 to load one of the two siRNA strands into RISC(Liu et al., 2003; Tomari et al., 2004). Similarly, human Dicer associated with Ago2, TRBP and RHA acts in RISC assembly (MacRae et al., 2008) which is further supported by the observation that siRNAs cannot cause post-transcriptional gene silencing in human cells lacking Dicer (Doi et al., 2003). In the plant A. thaliana, the four DCL proteins (AtDCL1-4) act in specific sRNA pathways, with some functional redundancies of the four isoforms (Gasciolli et al., 2005; Henderson et al., 2006). The maturation of miRNAs from imperfect RNA foldbacks relies on AtDCL1 activity. In consequence, A. thaliana dcl1 mutants have significantly reduced miRNA levels and a corresponding increase in target mRNA levels, which causes a multitude of developmental defects (Golden et al., 2002; Park et al., 2002). AtDCL2 mediates the generation of siRNAs from exogenous RNA sources (Xie et al., 2004), AtDCL3 is required for the formation of heterochromatin-associated endogenous siRNAs (Herr et al., 2005; Xie et al., 2004) and AtDCL4 is needed for the formation of ta-siRNAs involved in systemic cell-to-cell transmission of silencing signals (Dunoyer et al., 2005; Xie et al., 2005). The genome of the moss Physcomitrella patens encodes four DCL proteins (Axtell et al., 2007). PpDCL1a and PpDCL1b are very similar to AtDCL1 (Figure S1). 3 PpDCL3 and PpDCL4 proteins are orthologs of AtDCL3 and AtDCL4, whereas an AtDCL2 ortholog is lacking. The primary PpDCL1a transcript harbors a miRNA precursor within one intron, which is reminiscent of AtDCL1, and suggests a conserved autoregulatory control of mRNA maturation (Axtell et al., 2007). Together with the slightly greater sequence similarity, this led us to hypothesize that PpDCL1a as the functional equivalent of AtDCL1 is required for miRNA biogenesis, while the additional presence of PpDCL1b suggested also potential differences in sRNA pathways between P. patens and A. thaliana. Here, we present an analysis of P. patens ΔPpDCL1a and ΔPpDCL1b knockout mutants, which supports differences in sRNA pathways such as the formation of transitive siRNAs. Moreover, we propose a mechanism for the miRNAmediated transcriptional silencing of miRNA target genes that relies on miRNA abundance, formation of miRNA:target-RNA duplexes and DNA methylation. Results Requirement of PpDCL1a for miRNA biogenesis Taking advantage of the efficient homologous recombination system in P. patens (Strepp et al., 1998) we generated two PpDCL1a knockout mutants (ΔPpDCL1a) (Figure S2). Complete loss of PpDCL1a function resulted in retarded growth and developmental disorders including abnormalities in cell size, and cell shape. The mutants were arrested at the filamentous protonema stage and did not form gametophores (Figure 1A and 1B). To test whether miRNA biogenesis is affected in the ΔPpDCL1a mutants, we analyzed the accumulation of miR156, 160, 166, and 390 (Arazi et al., 2005; Fattash et al., 2007). Due to the limited amount of plant material of the ΔPpDCL1a mutant lines, miRNA expression was investigated by RT-PCR (Varkonyi-Gasic et al., 2007). PCR products were sequenced to rule out unspecific amplification. Compared to wild type, 4 miR156, 160 and 166 had drastically reduced levels, while miR390 was undetectable in ΔPpDCL1a mutants (Figure 1C). In P. patens, all known trans-acting siRNA (ta-siRNA) precursors (PpTAS1-4 RNAs) are initially cleaved at two distinct miR390 target sites. Subsequently, dsRNAs are generated from the cleavage products and processed in a phased manner to generate ta-siRNAs (Axtell et al., 2006; Talmor-Neiman et al., 2006). Two ta-siRNAs (pptA079444 processed from PpTAS1, and pptA013298 processed from PpTAS3) (Axtell et al., 2006) were detected in wild type, but were absent in the ΔPpDCL1a mutants, indicating that the lack of miR390 abolishes ta-siRNA production (Figure 1D). To test whether reduced levels of miRNAs result in elevated transcript levels of miRNA targets, as observed in A. thaliana dcl1 mutants, we analyzed the expression of the miRNA targets PpSPB3 for miR156 (Arazi et al., 2005), PpC3HDZIP1 and PpHB10 for miR166 (Axtell et al., 2007; Floyd and Bowman, 2004), PpARF for miR160 (Fattash et al., 2007), and PpTAS1 for miR390(Axtell et al., 2006). RT-PCR analysis revealed increased transcript levels of all analyzed miRNA targets in the ΔPpDCL1a mutants (Figure 1E). From these results we conclude that PpDCL1a is the major P. patens DCL protein required for the processing of miRNAs and thus the functional equivalent of A. thaliana DCL1. Requirement of PpDCL1b for miRNA guided target cleavage The presence of PpDCL1b as a second P. patens AtDCL1 homolog raised the question whether PpDCL1b acts redundantly with PpDCL1a, given that some miRNAs were not completely abolished in ΔPpDCL1a mutants. We generated four targeted PpDCL1b knockout mutants (ΔPpDCL1b) (Figure S3). The PpDCL1b mutants were strongly affected in cell division, growth polarity, cell size, cell shape and tissue differentiation (Figure 2A and Figure S4A). The developmentally arrested mutants produced only a small number of malformed gametophores (Figure 2B and Figure S4B). Thus, while 5 both ΔPpDCL1a and ΔPpDCL1b mutants suffer from severe developmental defects, the exact mutant phenotypes differed. Analysis of six different miRNAs, miR156, 160, 166, 390, 535, and 538(Arazi et al., 2005; Fattash et al., 2007), revealed that their levels were unchanged in ΔPpDCL1b mutants (Figure 2C-2E). Thus, PpDCL1b is not essential for miRNA maturation from precursor RNAs. The severe developmental defects of the mutants prompted us nevertheless to examine miRNA targets PpSPB3, PpC3HDZIP1, PpHB10, and PpARF. We verified cleavage of these miRNA targets in P. patens wild type based on 5’ RACE, cDNA cloning and sequencing (Figure 3A). An unrelated mRNA (PpGNT1) (Koprivova et al., 2003), which is not miRNA regulated, was examined as control (Figure 3A). Although the ΔPpDCL1b mutants produced apparently normal levels of miRNAs, the miRNA target transcripts were not cleaved (Figure 3A), indicating a surprising requirement of PpDCL1b for miRNA-guided mRNA cleavage. We propose that PpDCL1b may act in loading miRNAs into an RNA-cleavage competent RISC, in analogy to what has been reported for animal Dicer proteins (Doi et al., 2003; Liu et al., 2003; MacRae et al., 2008; Pham et al., 2004; Tomari et al., 2004). Generation of transitive siRNA triggered by miRNA-guided transcript cleavage In P. patens wild type we had not only detected 5’ RACE products resulting from miRNA-guided cleavage of the target mRNA, but also a variety of shorter and longer products (Figure 3A). In analogy with other plant systems, where targeting of a transcript with dsRNA-derived siRNAs or multiple miRNAs (Axtell et al., 2006; Howell et al., 2007; Vaistij et al., 2002) causes the production of secondary siRNAs, the miRNA cleavage products may serve as templates for synthesizing cRNA by RNA-dependent RNA polymerase (RdRP). Subsequently, the resulting dsRNA may be processed into secondary siRNAs resulting in spreading of the initial trigger signal (Figure 3B). In 6 flowering plants, this phenomenon, known as transitivity, is, however, rarely observed after targeting of an mRNA with a single miRNA (Axtell et al., 2006; Howell et al., 2007). To investigate the possibility of transitivity in P. patens, we asked whether one could synthesize cDNA from both the sense and antisense strand of miRNA target mRNAs (PpARF and PpC3HDZIP1). Indeed, this was the case in wild type, indicating the presence of dsRNA. Such dsRNA molecules were lacking in ΔPpDCL1b mutants (Figure 3C). To determine whether transitive siRNAs were generated from these dsRNAs, we performed small RNA blots using probes for both upstream and downstream sequences relative to the miRNA targeting site. Such small RNAs corresponding to sense and antisense strands of PpARF and PpC3HDZIP1 mRNAs were detected in wild type, but not in ΔPpDCL1b mutants (Figure 3D). Thus, in P. patens transitive siRNAs arise from regions upstream as well as downstream of the miRNA targeting motif after miRNA-directed cleavage of mRNAs. These siRNAs most likely cause cleavage of the cognate mRNAs at additional sites, which explains why we observed additional mRNA fragments in the 5’ RACE analyses. We did not detect such siRNAs in the ΔPpDCL1b mutants, nor for the control mRNA (PpGNT1) in wild type (Figure 3C and 3D), indicating that the generation of transitive siRNAs depends on PpDCL1b and is specific for mRNAs subject to miRNA-directed cleavage. DNA methylation of miRNA target loci in ΔPpDCL1b mutants A. thaliana ago1 and dcl1 mutants are defective in miRNA-directed target cleavage or miRNA biogenesis, respectively. Consequently, transcript levels of miRNA targets are elevated in both mutants (Ronemus et al., 2006). Conversely, all miRNA targets analyzed had reduced transcript levels in ΔPpDCL1b mutants (Figure 4A and 4B), even though they were not cleaved. As explanation for these unexpected findings we 7 considered the possibility that miRNA target loci are under epigenetic control in P. patens. Since methylation of cytosine residues is the most prominent mechanism for transcriptional silencing in plants and other eukaryotes (Bender, 2004), we evaluated this scenario by methylation-specific PCR of four miRNA target loci, along with an unrelated locus, PpGNT1 (Figure 4C-4F and Figure S5 and Figure S6). Promoters of all five genes were unmethylated in wild type, but in ΔPpDCL1b mutants the four miRNA target promoters were methylated (Figure 4D). These findings were confirmed by sequencing the PCR products of the PpARF promoter from wild type and ΔPpDCL1b mutants. In the latter, methylation occurred specifically at CpG residues (Figure S7). Taken together, we conclude that disruption of PpDCL1b causes specific epigenetic changes in genes encoding miRNA targets, and that this is accompanied by a loss of miRNA-directed mRNA cleavage. It is well-known that siRNA pathways govern DNA methylation in A. thaliana, e.g. at repeat-associated loci (Herr et al., 2005). However, only one study has suggested a function of miRNAs in the silencing of cognate target genes, at the PHB and PHV loci, which are targeted by miR165/166. Normally methylated DNA sequences downstream of the miRNA complementary motif became hypomethylated in plants with dominant alleles of PHB and PHV, while the promoters remained unmethylated (Bao et al., 2004). The dominant alleles carry mutations in the miRNA targeting motif, such that the encoded mRNAs are no longer susceptible to miRNAguided cleavage. Like PHB and PHV, the P. patens HD-ZIP homologs PpC3HDZIP1 and PpHB10 harbor an intron within their miRNA binding site (Figure S8), whereas the miRNA targeting motif in PpARF is not disrupted by an intron. Similar to the promoters, PpC3HDZIP1 and PpARF sequences flanking the miRNA targeting motif as well as the 8 intron disrupting the miR166 binding site of PpC3HDZIP1 were CpG methylated in ΔPpDCL1b mutants, but not in P. patens wild type (Figure 4E and 4F and Figure S7). One scenario that can account for the findings presented so far is that PpDCL1b normally acts in loading miRNAs into an RNA-cleavage competent RISC. In the absence of PpDCL1b, miRNAs might be loaded instead into an RNA-induced transcriptional silencing complex (RITS) directing DNA methylation of miRNA target loci. As the sequence of the miR166 binding site is disrupted by introns in two genes (PpC3HDZIP1 and PpHB10), it is unlikely that their methylation in ΔPpDCL1b mutants is initiated by the formation of miRNA:DNA hybrids. Instead, the miRNA-loaded RITS complex might interact with the target mRNA, resulting in the formation of a stable miRNA:mRNA duplex. Subsequently, this duplex could guide the RITS complex to the corresponding genomic region, resulting in the initiation and spreading of DNA methylation. If stable miRNA:mRNA duplexes are present in ΔPpDCL1b mutants, it should be possible to synthesize cDNA without added exogenous primers, which can subsequently be detected by conventional PCR. In support of such a scenario we obtained RT-PCR products for all miRNA targets examined, but not for a control locus in ΔPpDCL1b mutants. No such products were obtained with RNA from wild type plants (Figure 4G). In addition, in the ΔPpDCL1b mutants no PCR products were obtained when using PCR primers located downstream of the miRNA targeting site. As a further control, we heated the RNA samples prior to cDNA synthesis. This should lead to denaturation of a miRNA:mRNA complex and hence eliminate priming; indeed, this procedure prevented the amplification of PCR products in the ΔPpDCL1b mutants (Figure 4H). These results are compatible with base-paired miRNA:mRNA duplexes being present specifically in RNA samples from ΔPpDCL1b mutants. 9 To further scrutinize our hypotheses of transitivity and miRNA-dependent DNA methylation, we analyzed the ta-siRNA pathway in ΔPpDCL1b mutants. After miR390mediated cleavage of TAS precursors, the RNA cleavage products are converted into dsRNA and further processed into ta-siRNAs (Axtell et al., 2006; Talmor-Neiman et al., 2006). The mRNA encoding an EREBP/AP2 transcription factor is targeted by one of the ta-siRNAs derived from the TAS4 precursor (Talmor-Neiman et al., 2006). Hence, the production of ta-siRNAs presents an intermediate step in the miRNA-dependent control of mRNAs. TAS4 RNA cleavage products resulting from miRNA390-directed cleavage were detected by 5’ RACE-PCR in P. patens wild type, but not in the ΔPpDCL1b mutants (Figure 5A), even though miR390 was present in equal amounts in ΔPpDCL1b mutants and wild type (Figure 2C). Furthermore, ta-siRNAs of both sense and antisense orientation were present in wild type, but were undetectable in ΔPpDCL1b mutants (Figure 5B), confirming that PpDCL1b is required to initiate the tasiRNA pathway. In agreement with our findings for other miRNA targets, TAS4 transcript levels were reduced in ΔPpDCL1b mutants (Figure 5C). Likewise, the TAS4 genomic locus was methylated only in ΔPpDCL1b mutants (Figure 5D). If, similar to miRNAs, tasiRNA-mediated cleavage of target mRNAs also initiates the generation of transitive secondary siRNAs, the lack of ta-siRNAs in ΔPpDCL1b mutants should abolish both cleavage of EREBP/AP2 mRNA and transitive siRNAs. Consistent with this scenario, the EREBP/AP2 mRNA was cleaved in wild type, but not in ΔPpDCL1b mutants (Figure 5A), and only wild type produced EREBP/AP2 mRNA-derived siRNAs in sense and antisense orientation (Figure 5B). This observation indicates that the siRNA-dependent amplification of target RNA degradation that was initially triggered by ta-siRNA/miRNAguided cleavage is a common mechanism in P. patens. In addition, we expected that, in contrast to direct miRNA targets, EREBP/AP2 mRNA levels should be elevated in 10 ΔPpDCL1b mutants, as stable ta-siRNA:mRNA duplexes that could guide DNA methylation at the corresponding genomic locus should be absent. Indeed, the EREBP/AP2 RNA levels were increased in ΔPpDCL1b mutants (Figure 5C), and the genomic locus was methylated neither in wild type nor in ΔPpDCL1b mutants (Figure 5D). Dependence of DNA methylation at miRNA target loci on miRNA expression levels We propose that the formation of stable miRNA:target RNA duplexes leads to methylation of the corresponding genomic regions in ΔPpDCL1b mutants. Is this mechanism of epigenetic silencing also relevant in wild type P. patens? To investigate this question, we generated wild type and ΔPpDCL1b mutant plants expressing different levels of an artificial miRNA targeting our control gene PpGNT1. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence of endogenous miRNA precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. We engineered an amiRNA against PpGNT1 into the A. thaliana miR319a precursor (Khraiwesh et al., 2008) and expressed the hybrid construct in P. patens wild type and ΔPpDCL1b mutants (Figure 6A). RNA blots confirmed precise maturation of amiR-GNT1 in transformed lines, independent of expression level (Figure 6B). The expected PpGNT1 mRNA cleavage products were present in wild type, but not in ΔPpDCL1b mutants (Figure 6C). Consequently, compared to P. patens wild type the PpGNT1 transcript levels were reduced in amiR-GNT1 plants (Figure 6D). Despite abolished amiRNAdirected cleavage of PpGNT1 mRNA, transcript levels were even lower in the ΔPpDCL1b mutant background (Figure 6D). 11 Consistent with our model of miRNA-dependent epigenetic silencing, the PpGNT1 promoter was methylated in the ΔPpDCL1b mutant background (Figure 6E and Figure S9). Importantly, the PpGNT1 promoter was also methylated in wild type lines, with strong expression of the amiR-GNT1, while it was unmethylated in lines with low levels of amiR-GNT1 (Figure 6E and Figure S9). Thus, specific methylation of miRNA target loci is not limited to ΔPpDCL1b mutants. Based on the observation that methylation in wild type is miRNA-dosage dependent, we hypothesized that the ratio of the miRNA and its target mRNA is crucial for the induction of DNA methylation at the target locus. If the miRNA concentration exceeds a certain threshold, the miRNA may either interact directly with its target and the duplex might then be recruited into a DNA methylation silencing complex, or the excess miRNA might be loaded immediately into an effector complex such as RITS triggering duplex formation that directs DNA methylation. We obtained supporting evidence for the expected amiR-GNT1:PpGNT1mRNA duplexes by cDNA synthesis without exogenous primers and subsequent PCR in ΔPpDCL1b mutants. Importantly, we could amplify such products also in a wild type line with high levels of amiRNA expression, but not in a wild type line expressing only moderate amounts of amiR-GNT1 (Figure 6F). Hormone-dependent DNA methylation of a miR1026 target locus The analysis of amiRNA-GNT1 lines had shown that miRNA-directed epigenetic silencing occurs also wild type, but that it is dependent on miRNA levels. We therefore sought to identify endogenous miRNAs that might be induced to high levels in response to specific stimuli, which in turn should be reflected by downregulation of target mRNAs. In separate experiments we had found that treatment with the hormone abscisic acid (ABA) strongly represses expression of a basic helix-loop-helix (bHLH) transcription factor gene, PpbHLH, which has been predicted to be targeted by 12 miR1026 (Axtell et al., 2007). ABA is a well known signaling molecule in abiotic stress signaling pathways in plants including mosses (Frank et al., 2005b). RNA gel blots confirmed downregulation of PpbHLH in response to ABA (Figure 6G). This effect correlated well with an ABA-induced increase of miR1026 levels (Figure 6H), suggesting direct regulation of PpbHLH by miR1026. We confirmed miR1026-mediated cleavage of PpbHLH transcript by 5’ RACE (Figure 6I). To evaluate transcriptional effects of miR1026, we analyzed DNA methylation of the PpbHLH gene, including the promoter and transcribed sequences. Upon ABA treatment, PpbHLH became methylated at specific CpG sites (Figure 6J and Figure S10), consistent with the methylation patterns we had found before in ΔPpDCL1b mutants. The promoter of an unrelated gene, PpGNT1, was unmethylated regardless of ABA treatment (Figure 6J). Our model posits that DNA methylation will be initiated if the miRNA target ratio exceeds a certain threshold. That DNA methylation of the PpbHLH locus is not quantitative, as deduced from the observation that unmethylation-specific primers allowed albeit inefficient PCR amplification in ABA-treated samples, may reflect cell type-specific differences in miRNA or target expression levels. Finally, we tried to obtain evidence for stable miR1026:PpbHLH-mRNA duplexes by unprimed RT-PCR. Consistent with the DNA methylation status, such duplexes were only found in the ABA-treated samples (Figure 6K). We conclude that in P. patens, epigenetic silencing of miRNA target loci contributes to the control of target gene expression. Although we initially discovered this phenomenon in ΔPpDCL1b mutants, subsequent analyses of the miR1026/PpbHLH regulon confirmed that this type of miRNA-dependent control operates also in wild type. 13 Discussion Our studies suggest that PpDCL1a is the functional ortholog of AtDCL1 required for miRNA and ta-siRNA biogenesis. Even though PpDCL1b shares a similar level of sequence identity with AtDCL1, we propose that it has a distinct function, since its inactivation does not affect miRNA biogenesis, but abolishes miRNA-directed target cleavage. It is unlikely that PpDCL1b directly cleaves target RNAs, as AGO proteins in RISC are the catalytic enzymes in sRNA-dependent target cleavage (MacRae et al., 2008). Biochemical analysis of AGO1 complexes immunoprecipitated from Arabidopsis dcl1-7, dcl2-1 and dcl3-1 mutants provided evidence for distinct functional properties. An AGO1 complex extracted from dcl1-7 mutants was not able to cleave RNA targets due to the lack of ~21 nt small RNA accumulation in this mutant. In contrast, cleavage of RNA targets was not affected in AGO1 complexes from dcl2-1 and dcl3-1 mutants (Qi et al., 2005). Furthermore, purification of Arabidopsis AGO1 revealed a ~160 kDa complex, most likely only consisting of AGO1 and associated sRNA (Baumberger and Baulcombe, 2005). Thus, there is so far no evidence to support a function of plant DCL proteins in sRNA-mediated target cleavage. In contrast, studies in animals have shown that Dicer proteins are part of the RNA loading complex (RLC), which loads sRNAs into RISC. Human RLC comprises the proteins Ago2, Dicer and TRBP and the purified protein components assemble spontaneously in vitro without requirement of any cofactors. The reconstituted RLC is fully functional and once Ago2 is loaded with a miRNA it tends to dissociate from the rest of the complex (MacRae et al., 2008). Similarly, Dcr-2 from D. melanogaster, which produces siRNA, acts in the RISC assembly together with its partner R2D2 by loading one of the two siRNA strands into RISC (Liu et al., 2003; Tomari et al., 2004). The C. elegans homolog of this protein, RDE-4, was also found to interact with Dicer (Tabara et al., 2002). Given this particular function of animal Dicer proteins, we hypothesize that P. patens PpDCL1b may exhibit 14 an equivalent function in loading miRNAs into RISC, making it indispensable for miRNA-directed target cleavage. Arabidopsis dcl1 and ago1 mutants, which are affected in miRNA biogenesis or miRNA-directed target cleavage, respectively, exhibit elevated transcript levels of miRNA targets (Ronemus et al., 2006). Likewise, miRNA target transcripts are increased in ΔPpDCL1a mutants due to the lack of miRNAs. In contrast, levels of miRNA target mRNAs are drastically reduced in ΔPpDCL1b mutants, in spite of abolished target RNA cleavage. We have shown that cytosine residues within the corresponding genomic loci are methylated in ΔPpDCL1b mutants, suggesting epigenetic control at the transcriptional level. Small RNAs initiate transcriptional silencing of homologous sequences by methylation of cytosine residues at CpG, CpNpG, and CpHpH sequence motifs or by histone modifications (Bender, 2004; Cao and Jacobsen, 2002). In all genomic regions analyzed in the ΔPpDCL1b mutants, we only detected methylation at CpG dinucleotides, but cannot exclude that cytosine methylation may also occur at different sequence contexts in other regions. Moreover, we detected CpG methylation in large regions of the genomic loci encoding miRNA targets including introns, exons and promoter regions pointing to methylation that is able to spread over considerably long distances. Although spreading of siRNA-directed DNA methylation into adjacent non repeated sequences is not common in A. thaliana, siRNA-mediated spreading of DNA methylation has been observed for the SUPPRESSOR OF drm1 drm2 cmt3 (SDC) locus, where methylation spreads beyond siRNA generating repeat regions present in the SDC promoter (Henderson and Jacobsen, 2008). In Arabidopsis, cytosine methylation can also spread in the PHV and PHB genes, which are targets of miR165/166 (Bao et al., 2004). In both genes, the miR165/166 complementary motif is disrupted by an intron and the coding sequence was found to be heavily methylated 15 downstream of the miRNA complementary site in differentiated, but not undifferentiated cells of wild type plants. Furthermore, methylation was reduced in phv-1d and phb-1d mutants, which have an altered miRNA recognition motif or a mutation in the intron splice donor sequence, suggesting that miR165/166 needs to bind to nascent PHV and PHB transcripts to trigger gene silencing (Bao et al., 2004). Similarly, the P. patens HD-Zip genes PpC3HDZip1 and PpHB10 are targeted by miR166 and the miR166 binding sites are only reconstituted after splicing of an intron from the primary transcripts. These loci are hypermethylated in ∆PpDCL1b mutants, but not in wild type, suggesting that the initiation of CpG methylation upon defective target cleavage cannot be mediated by miR166, but involves binding of miR166 to the cognate target mRNAs. We have obtained evidence for the presence of stable duplexes of a miRNA and its target RNA in ∆PpDCL1b mutants. We propose that such duplexes guide a DNA modification complex. In Arabidopsis, RNA-directed DNA methylation (RdRM) by siRNAs requires RDR2, DCL3 and RNA PolIVa, which are all involved in siRNA biogenesis (Herr et al., 2005; Kanno et al., 2005; Onodera et al., 2005; Pontier et al., 2005; Xie et al., 2004), whereas AGO4, DRM2, DRD1 and RNA PolIVb are indispensable for DNA methylation (Cao and Jacobsen, 2002; Kanno et al., 2005; Zilberman et al., 2004). In fission yeast, RNA-directed heterochromatic gene silencing at centromeres relies on two different complexes, the RITS complex comprising Ago1, Chp1 and TAS3, and the argonaute siRNA chaperone complex (ARC) comprising Ago1, Arb1 and Arb2. However, these complexes are required to direct histone H3 Lys9 methylation, but do not direct cytosine methylation. Nevertheless, it has been proposed that their action involves the recognition of nascent transcripts by RITS-bound siRNAs to promote recruitment of chromatin-modifying enzymes that implement silencing (Buker et al., 2007). We also detected the specific silencing of miRNA target genes in P. patens wild type, where the expression of amiR-GNT1 caused methylation of the PpGNT1 genomic 16 locus. Moreover, we found that methylation of the locus is dependent on amiR-GNT1 abundance and only obtained evidence for amiR-GNT1:PpGNT1-mRNA duplexes in lines with high amiRNA levels, supporting the hypothesis that miRNA:target-RNA duplexes are required for DNA methylation. Finally, we have been able to show that the genomic region of the miR1026 target PpbHLH becomes methylated in response to ABA, which upregulates miR1026 expression. Also in this case, DNA methylation was miR1026 dosage-dependent and appeared to correlate with the formation of stable miR1026:PpbHLH-mRNA duplexes. As ABA acts as a mediator of abiotic stress signaling, we assume that the miR1026-regulated silencing of PpbHLH is part of stress adaptation in P. patens. In plants, epigenetic changes as a response to stress conditions have been previously shown to include DNA methylation, histone modifications and chromatin remodeling (Boyko and Kovalchuk, 2008; Dyachenko et al., 2006; Henderson and Dean, 2004). Our analysis of the miR1026:PpbHLH regulon suggests that miRNAs may act in the epigenetic control of stress-responsive genes in plants. Taken together, we propose that silencing of genomic loci can be triggered by stable duplexes of a miRNA and its target RNA, which can be either an mRNA or a primary TAS transcript. The epigenetic control of genes encoding miRNA target RNAs discovered in P. patens presents a new mechanism that affects the homeostasis of miRNA-regulated RNAs (Figure 7). The specific equilibrium of a cleavage-competent RISC and a DNA-modifying RITS loaded with the same miRNA may determine the relative contribution of both pathways to miRNA-mediated downregulation of gene expression. In addition, siRNA-mediated transitivity as a major factor in amplifying the original miRNA- and ta-siRNA-directed cleavage signal appears to be more prevalent than in the flowering plant A. thaliana. It seems not unlikely that similar modifications and specializations of RNAi pathways will be common, which indicates that care needs 17 to be exercised when interpolating the results from single model organisms, in either plants or animals. Experimental Procedures Plant material Culture of P. patens, protoplast transformation, and molecular analyses of transgenic plants were performed according to standard procedures (Frank et al., 2005a). Abscisic acid treatment was carried out by application of 10 µM (±)-cis-trans ABA to P. patens liquid cultures. Generation of ΔPpDCL1a and ΔPpDCL1b mutant lines An nptII selection marker cassette was cloned into single restriction sites present in PpDCL1a and PpDCL1b, respectively. The gene disruption constructs were transfected into P. patens protoplasts and G418-resistant lines were analyzed by PCR to confirm precise integration events at the corresponding genomic loci. Loss of PpDCL1a and PpDCL1b transcript, respectively, was confirmed by RT-PCR. P. patens lines expressing amiR-GNT1 The generation of an amiRNA targeting PpGNT1 was described previously (Khraiwesh et al., 2008). The amiRNA expression construct was transfected into P. patens wild type and ΔPpDCL1b mutant lines. RT-PCR of small RNAs RT-PCR analyses of miRNAs and ta-siRNAs was carried out as described (VarkonyiGasic et al., 2007). Oligonucleotides used for the cDNA synthesis and subsequent PCR reactions are listed in Table S1. 18 DNA methylation analysis DNA sequences were analyzed with the MethPrimer program (Li and Dahiya, 2002) to deduce methylation-specific (MSP) and unmethylation-specific primers (USP) (Figure S6) for PCR analysis of bisulfite-treated DNA. Two µg of genomic DNA were used for sodium bisulfite treatment with the EpiTect Bisulfite Kit (Qiagen). Detection of miRNA:mRNA duplexes by RT-PCR cDNA was synthesized from 4 µg total RNA with Superscript III (Invitrogen) without the addition of primers, with the exception of a primer specific for the PpEF1α transcript to monitor the efficiency of cDNA synthesis. RT-PCRs were carried out with gene-specific primers located upstream of miRNA binding sites (Table S1). Control experiments were performed by heating RNA samples to 95°C for 5 min prior to cDNA synthesis. PpEF1α control primers were added after cooling of the samples. Supplemental Data Supplemental Data include Figure S1-S10, Table S1 and Supplemental Experimental Procedures and can be found with this article online Acknowledgements This work was supported by the Landesstiftung Baden-Württemberg (P-LS-RNS/40 to D.W., W.F. and R.R.), the German Federal Ministry of Education and Research (FRISYS: 0313921 to W.F. and R.R.), the Excellence Initiative of the German Federal and State Governments (EXC 294 to R.R.), the European Community FP6 IP SIROCCO (contract LSHG-CT-2006-037900; D.W.), and the German Academic Exchange Service (M.A.A.). We thank G. Gierga for assisting us in the small RNA blot 19 technique and T. Laux, W.R. Hess, R. Baumeister, and P. Beyer for comments on the manuscript. References Arazi, T., Talmor-Neiman, M., Stav, R., Riese, M., Huijser, P., and Baulcombe, D. C. (2005). Cloning and characterization of micro-RNAs from moss. Plant J 43, 837-848. Axtell, M. J., Jan, C., Rajagopalan, R., and Bartel, D. P. (2006). A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565-577. Axtell, M. J., Snyder, J. A., and Bartel, D. P. (2007). Common Functions for Diverse Small RNAs of Land Plants. Plant Cell. Bao, N., Lye, K. W., and Barton, M. K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7, 653-662. Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356-363. Baumberger, N., and Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102, 11928-11933. Bender, J. (2004). Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7, 521-526. Boyko, A., and Kovalchuk, I. (2008). Epigenetic control of plant stress response. Environ Mol Mutagen 49, 61-72. Buker, S. M., Iida, T., Buhler, M., Villen, J., Gygi, S. P., Nakayama, J., and Moazed, D. (2007). Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat Struct Mol Biol 14, 200-207. Cao, X., and Jacobsen, S. E. (2002). Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99 Suppl 4, 16491-16498. 20 Doi, N., Zenno, S., Ueda, R., Ohki-Hamazaki, H., Ui-Tei, K., and Saigo, K. (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13, 41-46. Duchaine, T. F., Wohlschlegel, J. A., Kennedy, S., Bei, Y., Conte, D., Jr., Pang, K., Brownell, D. R., Harding, S., Mitani, S., Ruvkun, G., et al. (2006). Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNAmediated pathways. Cell 124, 343-354. Dunoyer, P., Himber, C., and Voinnet, O. (2005). DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37, 1356-1360. Dyachenko, O. V., Zakharchenko, N. S., Shevchuk, T. V., Bohnert, H. J., Cushman, J. C., and Buryanov, Y. I. (2006). Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71, 461-465. Fattash, I., Voss, B., Reski, R., Hess, W. R., and Frank, W. (2007). Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7, 13. Floyd, S. K., and Bowman, J. L. (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485-486. Frank, W., Decker, E. L., and Reski, R. (2005a). Molecular tools to study Physcomitrella patens. Plant Biol (Stuttg) 7, 220-227. Frank, W., Ratnadewi, D., and Reski, R. (2005b). Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220, 384-394. Gasciolli, V., Mallory, A. C., Bartel, D. P., and Vaucheret, H. (2005). Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing transacting siRNAs. Curr Biol 15, 1494-1500. 21 Golden, T. A., Schauer, S. E., Lang, J. D., Pien, S., Mushegian, A. R., Grossniklaus, U., Meinke, D. W., and Ray, A. (2002). SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol 130, 808822. Henderson, I. R., and Dean, C. (2004). Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829-3838. Henderson, I. R., and Jacobsen, S. E. (2008). Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22, 1597-1606. Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., and Jacobsen, S. E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38, 721-725. Herr, A. J., Jensen, M. B., Dalmay, T., and Baulcombe, D. C. (2005). RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118-120. Howell, M. D., Fahlgren, N., Chapman, E. J., Cumbie, J. S., Sullivan, C. M., Givan, S. A., Kasschau, K. D., and Carrington, J. C. (2007). Genome-wide analysis of the RNADEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19, 926-942. Kanno, T., Huettel, B., Mette, M. F., Aufsatz, W., Jaligot, E., Daxinger, L., Kreil, D. P., Matzke, M., and Matzke, A. J. (2005). Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37, 761-765. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2008). Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiol. 22 Koprivova, A., Altmann, F., Gorr, G., Kopriva, S., Reski, R., and Decker, E. L. (2003). N-glycosylation in the moss Physcomitrella patens is organized similarly to that in higher plants. Plant Biol 5, 582-591. Li, L. C., and Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427-1431. Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P., and Wang, X. (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921-1925. MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V., and Doudna, J. A. (2008). In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105, 512517. Matzke, M., Kanno, T., Huettel, B., Daxinger, L., and Matzke, A. J. (2007). Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10, 512-519. Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343-349. Onodera, Y., Haag, J. R., Ream, T., Nunes, P. C., Pontes, O., and Pikaard, C. S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylationdependent heterochromatin formation. Cell 120, 613-622. Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484-1495. Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W., and Sontheimer, E. J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83-94. Pontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez-Vasquez, J., Hakimi, M. A., Lerbs-Mache, S., Colot, V., and Lagrange, T. (2005). Reinforcement of silencing at 23 transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19, 2030-2040. Qi, Y., Denli, A. M., and Hannon, G. J. (2005). Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19, 421-428. Ronemus, M., Vaughn, M. W., and Martienssen, R. A. (2006). MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18, 1559-1574. Strepp, R., Scholz, S., Kruse, S., Speth, V., and Reski, R. (1998). Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A 95, 4368-4373. Tabara, H., Yigit, E., Siomi, H., and Mello, C. C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861-871. Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., and Arazi, T. (2006). Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48, 511-521. Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P. D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377-1380. Tomari, Y., and Zamore, P. D. (2005). Perspective: machines for RNAi. Genes Dev 19, 517-529. Vaistij, F. E., Jones, L., and Baulcombe, D. C. (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857-867. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., and Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3, 12. 24 Xie, Z., Allen, E., Wilken, A., and Carrington, J. C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102, 12984-12989. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., and Carrington, J. C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2, E104. Zilberman, D., Cao, X., Johansen, L. K., Xie, Z., Carrington, J. C., and Jacobsen, S. E. (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14, 1214-1220. Figure Legends Figure 1. Analysis of ΔPpDCL1a mutants (A) Protonema filaments of identical density from wild type (WT) and two ΔPpDCL1a mutants grown for 28 days on solid medium. (B) Protonema filaments of plants grown in liquid cultures. (C) RT-PCR expression analysis of miR156, 160, 166, and 390. (D) RT-PCR expression analysis of ta-siRNAs pptA013298 (processed from PpTAS3) and pptA079444 (processed from PpTAS1). (E) RT-PCR expression analysis of miRNA target genes in wild type and ΔPpDCL1a mutants. Error bars indicate standard errors with n=3. Figure 2. Analysis of ΔPpDCL1b mutants (1-4) (A) Regeneration of protoplasts from wild type (WT) and ΔPpDCL1b mutant 1 over indicated time points. (B) Scanning electron micrographs of gametophores. See Supplementary Fig. 5 for phenotypes of other ΔPpDCL1b mutants. (C) Small RNA blots with 30 µg total RNA from protonema, probed for miR156, miR390, miR535, and miR538. An antisense probe for U6snRNA served as loading control. (D) Small RNA 25 blot with 80 µg total RNA from protonema treated with 5 µM auxin (NAA) for 8 hours, probed for miR160. (E) Small RNA blot with 80 µg total RNA from gametophores, probed for miR166. Ethidium bromide staining shown as loading control at the bottom for d and e. Size bars correspond to 100 µm in a, except for the 18 d and 8 week old plants, 500 µm. Figure 3. RNA cleavage products, antisense transcripts, and transitive siRNAs of miRNA target genes (A) 5’ RACE products of miRNA targets and a control transcript, PpGNT1, from wild type and ΔPpDCL1b mutants. Arrows indicate PCR fragments of the expected size for cleavage products. Numbers above miRNA:target alignments indicate sequenced RACE products with the corresponding 5’ end. (B) Scheme for the generation of transitive siRNAs. Double stranded RNA is synthesized from cleaved miRNA targets by an RNA-dependent RNA polymerase (RdRP), processed into transitive siRNAs, which subsequently mediate cleavage of the miRNA target mRNA upstream and downstream of the miRNA recognition motif. Black line: mRNA; grey box: miRNA binding site; curved line: miRNA; arrows indicate oligonucleotide primers for RT-PCR, with grey indicating primers for cDNA synthesis from antisense strand, and black for sense strand. (C) RT-PCR products derived from antisense or sense-specific cDNAs from wild type and two ΔPpDCL1b mutants (KO1, KO2). (D) Detection of sense and antisense transitive siRNAs derived from PpARF and PpC3HDZIP1 RNAs, using hybridization probes targeting regions upstream and downstream of the miRNA binding sites. U6snRNA was used as control. Figure 4. Expression of miRNA target genes, DNA methylation, and detection of miRNA:mRNA duplexes 26 (A) RT-PCR expression analysis of miRNA target genes and the control gene PpGNT1 in wild type and ΔPpDCL1b mutants (KO1-KO4). Bars indicate standard error (n=3). (B) RNA blot analysis of miRNA target genes PpARF and PpC3HDZIP1 and two control genes, PpGNT1 and PpEF1α. (C) Specificity analysis of bisulfite PCR, using primers specific for unmodified sequences. PCR was performed with untreated and bisulfitetreated genomic DNA of wild type and two ΔPpDCL1b mutants (KO1, KO2). (D-F) PCR reactions with bisulfite-treated genomic DNA using methylation (MSP) and unmethylation specific primers (USP). (D) Bisulfite PCR for promoters of miRNA target genes and the PpGNT1 control. (E) Bisulfite PCR analysis of PpARF sequences surrounding the miR160 targeting motif. (F) Bisulfite PCR analysis of PpC3HDZIP1 sequences upstream of, the intron disrupting, and sequences downstream of the miR166 targeting motif. Arrows in d-f mark primer bands. (G) PCR products of miRNA target genes using cDNA synthesized from wild type and two ΔPpDCL1b mutants (1 and 2) without addition of exogenous primers. For the PpGNT1 control, no PCR products were detected in either wild type or ΔPpDCL1b mutants (not shown). A PpEF1α primer specific for cDNA synthesis from the sense transcript was added as an internal control to all reactions, to monitor the efficiency of cDNA synthesis. (H) The same experiment performed with RNA samples that had been heated for 5 min to 95°C prior to cDNA synthesis. The control PpEF1α primer was added after cooling of the RNA samples. Figure 5. The ta-siRNA pathway in wild type and ΔPpDCL1b mutants (A) 5’ RACE-PCRs from wild type and ΔPpDCL1b mutants (1-4) for the miR390 target PpTAS4 and the ta-siRNA target PpEREBP/AP2. Arrows indicate products of the size expected for cleavage products. The number of sequenced RACE-PCR products with the corresponding 5’ end is indicated above the alignment. (B) ta-siRNAs derived from 27 PpTAS4 and transitive siRNAs derived from PpEREBP/AP2. U6snRNA served as control. (C) RNA blots for PpTAS4 and PpEREBP/AP2 transcripts. Ethidium bromide staining shown as loading control below. (D) Bisulfite PCR with methylation specific (MSP) and unmethylation specific primers (USP) for PpTAS4 and PpEREBP/AP2. The arrow marks primer dimers. Figure 6. Lines expressing amiR-GNT1 and analysis of miR1026 target PpbHLH (A) PCR-based identification of two transgenic lines each harboring the PpGNT1amiRNA expression construct in wild type (lines #1, #2), ΔPpDCL1b mutant 1 (lines #3, #4), and ΔPpDCL1b mutant 2 (lines #5, #6) backgrounds. PpEF1α served as control. (B) Detection of amiR-GNT1 on a small RNA blot loaded with 50 µg of total RNA. U6snRNA served as control. (C) Cleavage mapping of PpGNT1 in amiR-GNT1 lines by 5’ RACE-PCR. The number of sequenced RACE-PCR products with the corresponding 5’ end is indicated above the alignment. (D) RNA blot of wild type and amiR-GNT1 lines, probed for PpGNT1. Hybridization signals were normalized to rRNA. Levels relative to wild type are indicated (E) Bisulfite PCR on genomic DNA from amiR-GNT1 lines using methylation (MSP) and unmethylation specific primers (USP) derived from the PpGNT1 promoter. (F) RT-PCR to detect amiR-GNT1:PpGNT1-mRNA duplexes, using cDNA synthesized without the addition of exogenous primers. PCR was carried out with a primer pair upstream of the amiR-GNT1 target motif. Amplification controls were as in Figure 4G and 4H. Arrows mark primer dimers. (G) RNA blots with 20 µg total RNA from untreated (Untr.) and ABA-treated wild type plants using probes for PpbHLH, the loading control PpEF1α, and PpCOR47, a known ABA-induced gene. PpbHLH levels were normalized to PpEF1α. Relative PpbHLH mRNA levels compared to wild type are given. (H) Small RNA blot with 50 µg total RNA from untreated (Untr.) and ABA-treated wild type. MiR1026 levels were normalized to the U6snRNA control. 28 Numbers indicate miR1026 levels relative to wild type. (I) 5’ RACE-PCR for PpbHLH using RNA from untreated (Untr.) and wild type treated for 4 h with ABA. Arrows indicate PCR fragments of the expected size for cleavage products. Numbers above miRNA:target alignments indicate sequenced RACE-PCR products with the corresponding 5’ end. (J) Bisulfite PCR reactions on DNA from untreated (Untr.) and ABA-treated wild type using methylation (MSP) and unmethylation specific primers (USP) targeting PpbHLH genomic sequences. PpGNT1 promoter served as control. Arrows mark primer dimers. (K) RT-PCR to detect miR1026:PpbHLH-mRNA duplexes, using cDNA synthesized without the addition of exogenous primers. PCR was carried out with a primer pair upstream of the miR1026 binding site. Amplification controls were as in Figure 4G and 4H. Arrows mark primer dimers. Figure 7. MiRNA expression levels determine post-transcriptional and transcriptional silencing of miRNA target genes in P. patens At low miRNA:target-RNA ratios, miRNA targets are regulated primarily at the posttranscriptional level. The maturation of miRNAs from stem-loop precursors is catalyzed by PpDCL1a. PpDCL1b is required for loading miRNAs into cleavage competent RISC. After loading of miRNAs into RISC, transient miRNA:target-RNA duplexes form based on sequence complementarity resulting in target RNA cleavage. In P. patens, the amplification of the miRNA signal by the generation of transitive siRNAs appears to be widespread. Elevated miRNA expression levels cause an increase in the miRNA:target RNA ratio. In addition to the loading of miRNA into RISC (dotted arrow), miRNAs form stable duplexes with their cognate target RNAs. MiRNAs are either loaded into a RITS complex and subsequently interact with their target to form a duplex, or these duplexes are formed at first and then loaded into RITS. The miRNA:RNA duplexes bound by RITS initiate DNA methylation at complementary genomic loci. The RITS complex is 29 able to act on adjacent regions (e. g., promoters) to complete CpG methylation of the entire genomic locus. 30 Figure 1 A DPpDCL1a mutant 1 WT 0.5 cm B 0.5 cm DPpDCL1a mutant 1 WT 100 µM DPpDCL1a mutant 2 0.5 cm DPpDCL1a mutant 2 100 µM C 100 µM D DPpDCL1a mutants WT 1 2 DPpDCL1a mutants WT 1 2 miR156 miR160 miR166 miR390 ta-siRNA pptA013298 ta-siRNA pptA079444 Relative transcript levels E 7 6 WT 5 DPpDCL1a mutant 1 4 DPpDCL1a mutant 2 3 2 1 0 PpSBP3 PpARF PpC3 PpHB10 PpTAS1 HDZIP1 Figure 2 A DPpDCL1b mutant 1 WT B DPpDCL1b mutant 1 WT 100 µm 4d 200 µm C WT DPpDCL1b mutants 3 1 2 4 miR156 miR390 6d miR535 miR538 8d U6snRNA D miR160 EtBr 18 d E miR166 EtBr 8 weeks Figure 3 A DPpDCL1b mutants WT 1 2 3 4 6/9 5’ UGGCAUGCAGGGGGCCAGGCA 3’ 3’ ACCGUAUGUCCCUCGGUCCGU 5’ PpARF miR160 7/9 U GG AUGAAGCCUGGUCCGG 3’ CC UACUUCGGACCAGGCU 5’ CC U CU PpC3HDZIP1 5’ miR166 3’ 7/9 U GG AUGAAGCCUGGUCCGG 3’ CC UACUUCGGACCAGGCU 5’ CC U CU PpHB10 miR166 5’ 3’ PpSBP3 miR156 U 8/9 5’ GUGCUC CUCUCUUCUGUCA 3’ 3’ CACGAG GAGAGAAGACAGU 5’ U PpGNT1 (control) B 5’ 3’ 5’ 3’ 5’ 5’ 3’ 3’ 5’ RdRP 3’ RdRP transitive siRNAs 5’ 3’ 5’ 3’ 5’ 5’ C PpARF KO KO WT 1 2 antisense cDNA PpC3HDZIP1 KO KO WT 1 2 antisense cDNA PpGNT1 KO KO WT 1 2 antisense cDNA D 3’ 3’ 5’ 3’ 3’ 5’ PpEF1a PpARF PpEF1a KO KO KO KO KO KO WT 1 2 WT 1 2 WT 1 2 control sense cDNA control PpC3HDPpEF1a ZIP1 KO KO KO KO KO KO WT 1 2 WT 1 2 WT 1 2 PpEF1a control sense cDNA control PpEF1a PpGNT1 PpEF1a KO KO KO KO KO KO WT 1 2 WT 1 2 WT 1 2 control sense cDNA control Upstream Downstream Sense Sense Antisense Antisense KO KO KO KO KO KO KO KO WT 1 2 WT 1 2 WT 1 2 WT 1 2 PpARF PpC3HDZIP1 U6 sRNA Figure 4 A Relative transcript levels 14 DPpDCL1b 3 WT 1 2 4 WT KO1 KO2 KO3 KO4 PpARF 12 PpC3HDZIP1 10 DNA Untreated + Bisulfite DNA KO KO KO KO 2 WT 1 2 WT 1 PpARF PpGNT1 8 PpC3HDZIP1 PpEF1a 6 PpHB10 4 PpSBP3 2 PpGNT1 0 D C B 16 PpGNT1 PpC3 HDZIP1 PpHB10 PpSBP3 PpARF E MSP KO KO WT 1 2 USP KO KO WT 1 2 Exon MSP KO KO WT 1 2 PpARF Intron USP KO KO WT 1 2 MSP KO KO WT 1 2 USP KO KO WT 1 2 upstream of miR160 binding site PpC3HDZIP1 PpHB10 downstream of miR160 binding site PpSBP3 PpGNT1 F Intron upstream of miR166 binding site MSP KO KO WT 1 2 Intron located in miR166 binding site USP MSP KO KO KO KO WT 1 2 WT 1 2 Exon downstream of miR166 binding site USP MSP USP KO KO KO KO KO KO WT 1 2 WT 1 2 WT 1 2 G DPpDCL1b mutants WT 1 2 PpARF PpC3HDZIP1 PpHB10 PpSBP3 PpEF1a H PpEF1a KO KO WT 1 2 PpC3HDPpARF ZIP1 KO KO KO KO WT 1 2 WT 1 2 PpHB10 PpSBP3 KO KO KO KO WT 1 2 WT 1 2 Figure 5 A DPpDCL1b mutants WT 1 2 3 4 PpTAS4 miR390-5’ 5/6 5’ GGCGUUAUCCCUCUUGAGCUG 3’ 3’ CCGCGAUAGGGAGGACUCGAA 5’ U A A 8/9 5’ G UGU UAUC CUCCUGAGCUA 3’ 3’ C GCG-AUAG GAGGACUCGAA 5’ C G C G 8/8 PpEREBP/AP2 5’ GAAGCA UCAUCACACCCUA 3’ ta-siRNA6(+)3’ CUUCGU AGUAGUGUGGGAU 5’ A G PpTAS4 miR390-3’ C B Antisense KO KO WT 1 2 DPpDCL1b WT 1 2 3 4 Sense KO KO WT 1 2 PpTAS4 PpTAS4 PpEREBP/AP2 PpEREBP/AP2 rRNA U6 sRNA D PpEREBP/AP2 PpTAS4 MSP KOKO WT 1 2 Coding Sequence USP MSP KOKO KOKO WT 1 2 WT 1 2 USP KOKO WT 1 2 Promoter MSP USP KOKO KOKO WT 1 2 WT 1 2 A C B amiRNA WT lines #1 #2 #3 #4 #5 #6 WT background DPpDCL1b + amiRNA KO1 KO2 WT #3 #5 DPpDCL1b WT + KO1 + KO2 + amiR amiR amiR WT #1 #2 #3 #4 #5 #6 WT +amiRNA#1 Figure 6 amiRGNT1 DPpDCL1b KO1 DPpDCL1b KO2 PpEF1a PpGNT1 amiRNA U6 snRNA E D WT + amiRNA #1 #2 WT DPpDCL1b KO1 + KO2 + amiRNA amiRNA #3 #4 #5 #6 PpGNT1 1.0 F MSP WT + DPpDCL1b amiRNA KO1 KO2 #1 #2 #3 #5 USP WT + DPpDCL1b amiRNA KO1 KO2 #1 #2 #3 #5 6/8 C 5’ AA CGUCCUGAUUAUUUGGAG 3’ 3’ UU GCAGGACUAAUAAACCUU 5’ C DPpDCL1b WT + amiRNA KO1 KO2 #3 #5 #2 #1 DPpDCL1b WT + amiRNA KO1 KO2 #3 #5 #1 #2 PpGNT1 0.22 0.11 0.022 0.017 0.017 0.017 PpEF1a rRNA Duplex RT-PCR G I Untr. Untr. H ABA 1h 2h 4h 6h 8h ABA 4h ABA 1h 2h 4h 6h 8h PpbHLH miR1026 1.0 2.9 2.5 3.3 1.0 0.5 0.3 0.3 0.4 0.4 U6snRNA ABA 4h 6h 8h 4h ABA 6h 8h Untr. Untr. Untr. ABA 4h 6h 8h K USP Untr. PpCOR47 MSP Untr. PpbHLH 5’ CC C 3’ 8/10 UCCUCUCAAGUCUUUCUC AGGAGAGUUCAGAAAGAG 3’ AC U 5’ miR1026 3.0 3.0 PpEF1a J Heating control 4h ABA 6h 8h PpbHLH PpbHLH intragenic PpbHLH Promoter PpGNT1 Promoter PpEF1a Duplex RT-PCR Heating control Figure 7 Cytosol RISC Low miRNA: target-RNA ratio RISC AAAAA PpDCL1b target-RNA cleavage target-RNA (mRNA or TAS-RNA) + AAAAA Nucleus AAAAA mRNA or TAS-RNA cleavage products RdRP pre-miRNA double-stranded mRNA cleavage products double-stranded TAS-RNA cleavage products transitive siRNAs PpDCL1a ta-siRNAs Amplification of the miRNA signal Targeting and cleavage of ta-siRNA targets miRNA transitive siRNAs AAAAA High miRNA: target-RNA ratio RITS target-RNA gene (mRNA or TAS-RNA) CH3 CH3 AAAAA CH3 RITS RITS AAAAA AAAAA elevated miRNA level AAAAA Formation of miRNA:target-RNA duplexes Epigenetic Silencing Formation of miRNA:target-RNA duplexes Supplemental Data Transcriptional control of gene expression by microRNAs Basel Khraiwesh1, M. Asif Arif1, Gotelinde I. Seumel1, Stephan Ossowski2, Detlef Weigel2, Ralf Reski1,3,4, Wolfgang Frank1,3* 1 Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D- 79104 Freiburg, Germany 2 Department of Molecular Biology, Max Planck Institute for Developmental Biology, D- 72076 Tübingen, Germany 3 Freiburg Initiative for Systems Biology (FRISYS), Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany 4 Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany Supplementary Figures Figure S1. Neighbor-joining tree of DICER-LIKE proteins Figure S2. Generation of ΔPpDCL1a mutants Figure S3. Generation of ΔPpDCL1b mutants Figure S4. Phenotypic analysis of ΔPpDCL1b mutants Figure S5. Gene models of PpARF, PpC3HDZIP1, PpHB10, PpSBP3 and PpGNT1 Figure S6. Primer design for bisulfite PCR analyses Figure S7. DNA methylation analysis of promoter and intragenic regions of the PpARF gene in P. patens wild type and two ΔPpDCL1b mutants Figure S8. The miR166 binding sites of PpC3HDZIP1 and PpHB10 are disrupted by introns Figure S9. DNA methylation analysis of the PpGNT1 promoter region in lines expressing the amiR-GNT1 Figure S10. DNA methylation analysis of promoter and intragenic regions of PpbHLH in untreated and ABA-treated P. patens wild type Supplementary Tables Table S1. Primers used in this study Supplemental Experimental Procedures Figure S1 MmDCL1_NP_683750 HsDCL1_NP_803187 DmDCL1_AAF56056 Animals CeDCL1_NP_498761 DmDCL2_NM_079054 SpDCL1_Q09884 NcDCL1_XP_961898 PpDCL1b_DQ675601 PpDCL1a_EF670436 PtDCL1_Pt02g14226280 MtDCL1_AC150443 DCL1 AtDCL1_NP_171612 OsDCL1_NP_912466 PtDCL2a_Pt06g11470720 PtDCL2_Pt08g4686890 AtDCL2_NP_566199 DCL2 OsDCL2_XP_463595 Plants AtDCL3_NP_189978 PtDCL3_Pt10g16358340 OsDCL6_Os09g14610 OsDCL5_Os03g38740 DCL3 OsDCL3_NP_922059 PpDCL3_EF670437 PtDCL4_Pt18g3481550 AtDCL4_NP_197532 OsDCL4_Os04g43050 DCL4 PpDCL4_EF670438 CrDCL* Figure S1. Neighbor-joining tree of DICER-LIKE proteins DICER-LIKE proteins from animals and plants are indicated by vertical lines. The four groups of DICER-LIKE proteins in plants are marked by coloured boxes. Species abbreviations are At (Arabidopsis thaliana), Ce (Caenorhabditis elegans), Cr (Chlamydomonas reinhardtii), Dm (Drosophila melanogaster), Hs (Homo sapiens), Mm (Mus musculus), Mt (Medicago truncatula), Nc (Neurospora crassa), Os (Oryza sativa), Pp (Physcomitrella patens), Pt (Populus trichocarpa), Sp (Schizosaccharomyces pombe). P. patens DCL proteins are highlighted in bold. * The sequence of DCL from Chlamydomonas reinhardtii can be retrieved at: http://genome.jgi-psf.org/chlre2. Phylogenetic tree construction: The multiple sequence alignment was performed using the PROBCONS program. The phylogenetic tree was constructed by a neighbor-joining method using a WAG matrix model for amino acid substitution. Figure S2 A DEAD HEL DUF B PAZ nptII nosP RNAse III dsrm nosT EcoRV PpDCL1a gDNA DCL1 cDNA PpDCL1a nosP F2 PpDCL1a nptII nosT PpDCL1a nptII nosT PpDCL1a PpDCL1a F1 F3 PpDCL1a nosP R2 C * * D WT R1 WT Genomic PCR-Screen E DPpDCL1a mutants 1 2 PpDCL1a PpEF1a R3 DPpDCL1a mutants 1 2 WT 5’ integration 3’ integration Figure S2. Generation of DPpDCL1a mutants (A) Predicted domain structure of the P. patens DCL1a protein. DEAD: DEAD box helicase, HEL: helicase C, DUF: domain of unknown function, PAZ: PAZ domain, RNAseIII: ribonuclease III domain, dsrm: doublestranded RNA binding motif. (B) Scheme illustrating the generation of the DPpDCL1a mutants. The nptII cassette was cloned into a single EcoRV site of a PpDCL1a genomic DNA fragment (gDNA). Middle: Resulting PpDCL1a knockout construct. Bottom: Expected genomic structure of the PpDCL1a locus after integration of the PpDCL1a knockout construct by homologous recombination. Primers used for molecular analyses of the transgenic lines are indicated by arrows. White box: nptII cassette; grey boxes: PpDCL1a gDNA fragment; black boxes: genomic PpDCL1a locus. (C) PCR analysis of transgenic lines using genomic DNA performed with primers F1 and R1. Transgenic lines which failed to give rise to a PCR product are marked by asterisks. WT: wild type control; the remaining samples were derived from transgenic lines. (D) Analysis of PpDCL1a mRNA expression. Top: RT-PCR studies from two DPpDCL1a mutants and wild type (WT) with primers F1 and R1. Bottom: RT-PCR performed with PpEF1a control primers. (E) PCR analysis of DPpDCL1a mutants using genomic DNA to confirm 5’ and 3’ integration of the PpDCL1a knockout construct. PCR products obtained from PCR reactions with primers F2 and R2 (5’ integration), F3 and R3 (3’ integration). Sequences of primers used for the molecular analyses are listed in Experimental Procedures and Table S1. Figure S3 A HEL DUF DEAD B RNAse III PAZ nosP 4550 nptII dsrm nosT Eco72I 5108 PpDCL1b cDNA DCL1 cDNA PpDCL1b nosP F3 nptII nosT PpDCL1b PpDCL1b F4 PpDCL1b nosP R4 R3 D nosT PpDCL1b F2 F1 PpDCL1b C nptII WT * R1 R2 ** * E DPpDCL1b mutants 1 2 3 4 PpDCL1b PpEF1a F DPpDCL1b mutants 1 WT Genomic PCR-Screen 2 3 4 WT PpDCL1b PpEF1a DPpDCL1b mutants 1 2 3 4 5’ integration 3’ integration Control PpEF1a Figure S3. Generation of DPpDCL1b mutants (A) Predicted domain structure of the P. patens DCL1b protein. DEAD: DEAD box helicase, HEL: helicase C, DUF: domain of unknown function, PAZ: PAZ domain, RNAseIII: ribonuclease III domain, dsrm: doublestranded RNA binding motif. (B) Scheme illustrating the generation of the DPpDCL1b mutants. The nptII cassette was cloned into a single Eco72I site of a PpDCL1b cDNA fragment. Numbers indicate nucleotide positions in the PpDCL1b cDNA. Middle: Resulting PpDCL1b knockout construct. Bottom: Expected genomic structure of the PpDCL1b locus after integration of the PpDCL1b knockout construct by homologous recombination. Primers used for molecular analyses of the transgenic lines are indicated by arrows. White box: nptII cassette; grey boxes: PpDCL1b cDNA fragment; black boxes: genomic PpDCL1b locus. (C) PCR analysis of transgenic lines using genomic DNA performed with primers F1 and R1. Transgenic lines which failed to give rise to a PCR product are marked by asterisks. WT: wild type control; the remaining samples were derived from transgenic lines. (D) Analysis of PpDCL1b mRNA expression. Top: RT-PCR studies from four DPpDCL1b mutants and wild type (WT) with primers F2 and R2. Bottom: RT-PCR performed with PpEF1a control primers. (E) Top: RT-PCR analysis of PpDCL1b expression in DPpDCL1b mutants and wild type using primers F3 and R3 located upstream of the knockout construct integration site. Bottom: RT-PCR performed with PpEF1a control primers. (F) PCR analysis of DPpDCL1b mutants using genomic DNA to confirm 5’ and 3’ integration of the PpDCL1b knockout construct. PCR products obtained from PCR reactions with primers F2 and R4 (5’ integration), F4 and R2 (3’ integration) and PpEF1a control primers to confirm integrity of the used genomic DNA. Sequences of primers used for the molecular analyses are listed in Experimental Procedures and Table S1. Figure S4 A DPpDCL1b mutant 1 WT DPpDCL1b mutant 2 DPpDCL1b mutant 3 DPpDCL1b mutant 4 4d 6d 8d 18 d 8 weeks B 200 µm 100 µm 100 µm 90 µm 80 µm Figure S4. Phenotypic analysis of DPpDCL1b mutants (A) Regeneration of protoplasts from wild type plants (WT) and DPpDCL1b mutants was monitored at the indicated time points. Size bars 4 d, 6 d, and 8 d: 100 µm; 18 d, 8 weeks: 500 µm.(B) Electron micrographs of gametophores from wild type and DPpDCL1b mutants. Figure S5 Start codon 1 - 999 PpARF 1 1315-1317 Intron 1 Intron 2 1893-2105 2731-2860 1 - 1000 2000 I2 I4 3041-3247 3673-3984 I6 I8 I 12 I 14 I 16 6208-6446 7039-7300 7807-8039 Stop codon 8181-8183 8183 miRNA BS 3662-3672 3985-3894 I1 I3 2504-2839 3351-3581 Start codon 1393-1395 4000 I5 6000 I7 I9 8000 I 11 4193-4402 4796-4929 5243-5363 5919-6130 I 13 I 15 6588-6726 7407-7658 Stop codon miRNA BS 2072-2092 4033-4035 4590 Promoter Region 1000 2000 Start codon 1 - 1000 3000 3280-3282 Promoter Region 3282 2000 Start codon 1 - 1000 4000 Stop codon miRNA BS 2687-2706 1300-1302 1000 PpGNT1 1 I 10 4489-4641 5007-5135 5553-5735 4000 Promoter Region 1 - 999 PpSBP3 1 3000 2329-2331 2000 PpHB10 1 3959-3961 4194 Start codon 1 Stop codon Intron 3 3749-3907 Promoter Region 1000 PpC3 HDZIP1 miRNA BS 3115-3135 3000 Stop codon 1300-1302 2713-2715 Promoter Region 2715 1000 2000 Figure S5. Gene models of PpARF, PpC3HDZIP1, PpHB10, PpSBP3 and PpGNT1 For PpARF and PpC3HDZIP1, complete gene models including intron sequences were predicted by comparing available cDNA sequences with the P. patens genomic trace files. For PpHB10, PpSBP3 and PpGNT1, promoter regions were analyzed following the same strategy. For PpHB10 the 5’ untranslated region was included based on the available full-length cDNA sequence. In the case of PpSBP3 and PpGNT1, cDNA sequences encompassing the open reading frame were available. Here, regions lying 300 nucleotides upstream of the start codon were used for promoter analysis. I 1 – I 16: Intron 1 to Intron 16; miRNA BS: miRNA binding site. The genomic nucleotide sequences were deposited in Genbank with the following accession numbers: BK006047 (PpHB10), BK006048 (PpC3HDZIP1), BK006049 (PpGNT1), BK006050 (PpSBP3) and BK006051 (PpARF). Figure S6 Promoter region of PpC3HDZIP1 1 CCTGCCTGCGCTGTCCTATCCTCCTCCTCTTCCTACTTCCCCTCACCTCCTCCGCCTCTG ::||::||++:|||::|||::|::|::|:||::||:||::::|:|::|::|:++::|:|| 1 TTTGTTTGCGTTGTTTTATTTTTTTTTTTTTTTTATTTTTTTTTATTTTTTTCGTTTTTG 61 CGCTCTGTGCACTGTCCCTTCCATGTCGTGCCAGGCTCTGCGGAGGGTGCGGCCAGGCAG ++:|:||||:|:|||:::||::||||++||::|||:|:||++|||||||++|::|||:|| 61 CGTTTTGTGTATTGTTTTTTTTATGTCGTGTTAGGTTTTGCGGAGGGTGCGGTTAGGTAG WTfwd >>>>>>>>>>>>>>>>>>>>> 121 GCAGCTGTGATGGCGGTGTTGTACTGCCGCATGATTCTGGACCAACCGGGCCAGGGCGGG |:||:||||||||++||||||||:||:++:||||||:||||::||:++||::||||++|| 121 GTAGTTGTGATGGCGGTGTTGTATTGTCGTATGATTTTGGATTAATCGGGTTAGGGCGGG MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>> 181 CGACTGTTACTGCAGACTGTTACTGACTCCTGAGGGCGCAGCAGGCTGGTGAGAGGGACG ++|:|||||:||:|||:|||||:|||:|::||||||++:||:|||:||||||||||||++ 181 CGATTGTTATTGTAGATTGTTATTGATTTTTGAGGGCGTAGTAGGTTGGTGAGAGGGACG <<<< 241 GCCGCGGGTGGGGCGGGGCGAAGAAGAGAAAAAGGTGTGTAGGCGCGGGAGGCGTGCTTT |:++++|||||||++|||++|||||||||||||||||||||||++++|||||++||:||| 241 GTCGCGGGTGGGGCGGGGCGAAGAAGAGAAAAAGGTGTGTAGGCGCGGGAGGCGTGTTTT <<<<<<<< <<<<<<<<<< <<<<<<<<<<<<<<<<< WTrev 301 GTATGCGCACTACATGCCTTGAGCCTGGTGGTTGTTCATGACACTGTTCATCGCAGTATT |||||++:|:||:|||::|||||::|||||||||||:||||:|:||||:||++:|||||| 301 GTATGCGTATTATATGTTTTGAGTTTGGTGGTTGTTTATGATATTGTTTATCGTAGTATT <<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<< USPrev 361 CTACAACGACATCGTCCCCAGCTGGTAGTAGTATTGCAGTTGTATAAGTTGTCGCTGCAG :||:||++|:||++|::::||:||||||||||||||:|||||||||||||||++:||:|| 361 TTATAACGATATCGTTTTTAGTTGGTAGTAGTATTGTAGTTGTATAAGTTGTCGTTGTAG 421 CCAGGCGCCGCCAGTCAGCATCTTCTCGTTAGTGTTCAGTTAGTAGTTGAAGCGAGGGAG ::|||++:++::|||:||:||:||:|++||||||||:|||||||||||||||++|||||| 421 TTAGGCGTCGTTAGTTAGTATTTTTTCGTTAGTGTTTAGTTAGTAGTTGAAGCGAGGGAG 481 TATATTCCGCCTTCGATTTTTTGTTTCTCAGGGAGTCACAGCGCTGCGAATCAGAAGCCT ||||||:++::||++|||||||||||:|:|||||||:|:||++:||++|||:|||||::| 481 TATATTTCGTTTTCGATTTTTTGTTTTTTAGGGAGTTATAGCGTTGCGAATTAGAAGTTT 541 GTGAGAGCTTTGGGAACTGGTTTTCGTGTTTTAGAAAGCGAGGCCAACGAGAGAGCGAGA |||||||:||||||||:|||||||++||||||||||||++|||::||++||||||++||| 541 GTGAGAGTTTTGGGAATTGGTTTTCGTGTTTTAGAAAGCGAGGTTAACGAGAGAGCGAGA 601 TCGAGAGAGAGAGAGAGCGCGAGCGACAGCATGTCACGCATGAGAGGAGAGAAGAACAGA |++||||||||||||||++++||++|:||:||||:|++:|||||||||||||||||:||| 601 TCGAGAGAGAGAGAGAGCGCGAGCGATAGTATGTTACGTATGAGAGGAGAGAAGAATAGA 661 GGACGGAGCAGGGCTGGCCTATTGGTGTTACAGGAAGGGGGTTGCAGGAATTTGTAGGCG |||++|||:||||:|||::|||||||||||:|||||||||||||:|||||||||||||++ 661 GGACGGAGTAGGGTTGGTTTATTGGTGTTATAGGAAGGGGGTTGTAGGAATTTGTAGGCG 721 TGGCCGTCACTGTTTGGTTTTTGAAAGCTAGTGCTGCGACAAGAGATGCGGGTGGTCCTA |||:++|:|:|||||||||||||||||:|||||:||++|:||||||||++||||||::|| 721 TGGTCGTTATTGTTTGGTTTTTGAAAGTTAGTGTTGCGATAAGAGATGCGGGTGGTTTTA 781 GCTTGAGTACTTGTGCTAGGCGTCTGAGGCGTGAAGTTTCGGCTAGCTGATTGCAAATTC |:|||||||:|||||:||||++|:|||||++||||||||++|:|||:||||||:|||||: 781 GTTTGAGTATTTGTGTTAGGCGTTTGAGGCGTGAAGTTTCGGTTAGTTGATTGTAAATTT 841 AGTAAGATTGGAGAGGGCAATGGCTGACGGTCCGCATCCATTCGTACAAGAATGCCTTCT |||||||||||||||||:|||||:|||++||:++:||::|||++||:|||||||::||:| 841 AGTAAGATTGGAGAGGGTAATGGTTGACGGTTCGTATTTATTCGTATAAGAATGTTTTTT 901 TCTTGAAAAGCTGGTTGATCCTCGTCGTTGTAATCCGACGGTGCGGCTACGGAGCTAAAG |:||||||||:||||||||::|++|++|||||||:++|++|||++|:||++|||:||||| 901 TTTTGAAAAGTTGGTTGATTTTCGTCGTTGTAATTCGACGGTGCGGTTACGGAGTTAAAG 961 TTCAAACGCTTAGTCTCTTCTTTTCTGGTGTGAAGTAGGT ||:|||++:|||||:|:||:||||:||||||||||||||| 961 TTTAAACGTTTAGTTTTTTTTTTTTTGGTGTGAAGTAGGT Used primers: Forward MSP: 5’-ATTGTCGTATGATTTTGGATTAATC-3’ Reverse MSP: 5’-ACATATAATACGCATACAAAACACG-3’ Forward USP: 5’-GTTGTATGATTTTGGATTAATTGG-3’ Reverse USP: 5’-CATATAATACACATACAAAACACACC-3’ Forward WT: 5’-ACTGCCGCATGATTCTGGACC-3’ Reverse WT: 5’-GCATGTAGTGCGCATACAAAG-3’ Promoter region of PpHB10 1 AGGAGGTGGAGGAGGTGGAGGGTTCCAAGGTGAGGGAGCAAGCTGTCATACCGGTAGGAG ||||||||||||||||||||||||::||||||||||||:|||:|||:|||:++||||||| 1 AGGAGGTGGAGGAGGTGGAGGGTTTTAAGGTGAGGGAGTAAGTTGTTATATCGGTAGGAG 61 TCCGTAGAGGGAAATAGAGAGGAAGCAAGTCAGGAAGTGTTGGTGAAGGGGGAGAGAAAG |:++|||||||||||||||||||||:||||:||||||||||||||||||||||||||||| 61 TTCGTAGAGGGAAATAGAGAGGAAGTAAGTTAGGAAGTGTTGGTGAAGGGGGAGAGAAAG 121 AGAGCGAGAGGAGGAGGAGGAGTAGTAGAGGTGGTCGTGTCGATGATGGAAGAGATGATG ||||++|||||||||||||||||||||||||||||++|||++|||||||||||||||||| 121 AGAGCGAGAGGAGGAGGAGGAGTAGTAGAGGTGGTCGTGTCGATGATGGAAGAGATGATG 181 GTGTAGTTTTTGGTTGTATGTAGTAGTAGCCATGAAGGAGGGGTTGTTTTTACGGGTAAT |||||||||||||||||||||||||||||::|||||||||||||||||||||++|||||| 181 GTGTAGTTTTTGGTTGTATGTAGTAGTAGTTATGAAGGAGGGGTTGTTTTTACGGGTAAT 241 GGTTGTTGTTCGGAAGGTATGTACAAATGGAGAGGGCTATGTCGGGGATCAGCTGGAGTG ||||||||||++|||||||||||:||||||||||||:|||||++|||||:||:||||||| 241 GGTTGTTGTTCGGAAGGTATGTATAAATGGAGAGGGTTATGTCGGGGATTAGTTGGAGTG 301 ATGATTGATTGAGTGGAGAGGGAGTGGCGGTAGATATGGGGATGGAGTGGAATGGGGTTC |||||||||||||||||||||||||||++||||||||||||||||||||||||||||||+ 301 ATGATTGATTGAGTGGAGAGGGAGTGGCGGTAGATATGGGGATGGAGTGGAATGGGGTTC 361 GTATGTCATCATTAGAATCCAAGAGTGGAGAGTAGTTTACCTGGAGCAGCAGCGTTGTGC +|||||:||:||||||||::|||||||||||||||||||::|||||:||:||++|||||: 361 GTATGTTATTATTAGAATTTAAGAGTGGAGAGTAGTTTATTTGGAGTAGTAGCGTTGTGT 421 TCTTGCGCATCCTGGCGATGGACATTTGTGTTTGAGTAGTAGAGGTGGAGGCGTTGCTGT |:|||++:||::|||++|||||:||||||||||||||||||||||||||||++|||:||| 421 TTTTGCGTATTTTGGCGATGGATATTTGTGTTTGAGTAGTAGAGGTGGAGGCGTTGTTGT 481 TGTTGTTGTCGTGGTTGTTGTGTGGTAGTGGTAGTAGTGTGACTCTGTAGTGGCTATGGT |||||||||++|||||||||||||||||||||||||||||||:|:||||||||:|||||| 481 TGTTGTTGTCGTGGTTGTTGTGTGGTAGTGGTAGTAGTGTGATTTTGTAGTGGTTATGGT 541 GGGTCTATTGCTGATGGTTTTTGTGTTGCGTCAGGCCGGCGTCACGGTCGTGTAGCATCG ||||:|||||:|||||||||||||||||++|:|||:++|++|:|++||++|||||:||++ 541 GGGTTTATTGTTGATGGTTTTTGTGTTGCGTTAGGTCGGCGTTACGGTCGTGTAGTATCG 601 AGGGCGACGAAAGGTGAATGAACAAAGGGTGTGATTGTGTATAGGCATCCACATATTCTC ||||++|++|||||||||||||:||||||||||||||||||||||:||::|:|||||:|+ 601 AGGGCGACGAAAGGTGAATGAATAAAGGGTGTGATTGTGTATAGGTATTTATATATTTTC WTfwd >>>>>>>>>>>>>>>>>>>>>>>> 661 GGCTGTGGAAGTTGGGAACAGGGATGCCTTGTGTGCGATTCAACTCGTGGTATAGAAGAA +|:|||||||||||||||:|||||||::|||||||++|||:||:|++||||||||||||| 661 GGTTGTGGAAGTTGGGAATAGGGATGTTTTGTGTGCGATTTAATTCGTGGTATAGAAGAA MSPfwd >>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 721 GAAGAAGAGGAGCTTGAAGGTTGTCAAGAAAAGGGTAGGGTGTTGCTGCAGCAGCAGTAG ||||||||||||:|||||||||||:||||||||||||||||||||:||:||:||:||||| 721 GAAGAAGAGGAGTTTGAAGGTTGTTAAGAAAAGGGTAGGGTGTTGTTGTAGTAGTAGTAG <<<<<<<<<<<<<<<<<<<<<<<<< WTrev 781 CAGCAGGAGCATCAGTAGCAGCTTGAGAGGACGAGGACCTAGGAGGAACAGAAGCTCTTG :||:|||||:||:|||||:||:|||||||||++||||::|||||||||:|||||:|:||| 781 TAGTAGGAGTATTAGTAGTAGTTTGAGAGGACGAGGATTTAGGAGGAATAGAAGTTTTTG <<<<<<<<<<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<<<<<<<<<< USPrev 841 CGTGGTCTGTGAGGAGAATTCTTTGTTAGGGGTTGGAAGCTTCTAGGTTGGGCACGTAGT ++||||:|||||||||||||:||||||||||||||||||:||:|||||||||:|++|||| 841 CGTGGTTTGTGAGGAGAATTTTTTGTTAGGGGTTGGAAGTTTTTAGGTTGGGTACGTAGT 901 AGTGCGTTCTTTGTGTCTTGTCAACTGGGGTTTCAGTCGTATGAGTTGAACACGGGCTGT ||||++||:|||||||:||||:||:||||||||:|||++|||||||||||:|++||:||| 901 AGTGCGTTTTTTGTGTTTTGTTAATTGGGGTTTTAGTCGTATGAGTTGAATACGGGTTGT 961 CGTCACCAACCAGCAATTCGCAACCGGGCCTGCTCACGA ++|:|::||::||:||||++:||:++||::||:|:|++| 961 CGTTATTAATTAGTAATTCGTAATCGGGTTTGTTTACGA Used primers: Forward MSP: 5’-GATGTTTTGTGTGCGATTTAATTC-3’ Reverse MSP: 5’-ACTTCTATTCCTCCTAAATCCTCGT-3’ Forward USP: 5’-ATGTTTTGTGTGTGATTTAATTTGT-3’ Reverse USP: 5’-ACTTCTATTCCTCCTAAATCCTCATC-3’ Forward WT: 5’-GATGCCTTGTGTGCGATTCAACTC-3’ Reverse WT: 5’-GCTTCTGTTCCTCCTAGGTCCTCGT-3’ Promoter region of PpARF 1 AGGAGTGGTTTGTGATGCGAAGCTGGGAGGGTGACAGAAAGGACATCAGTGGATCTATGC |||||||||||||||||++|||:|||||||||||:||||||||:||:|||||||:||||: 1 AGGAGTGGTTTGTGATGCGAAGTTGGGAGGGTGATAGAAAGGATATTAGTGGATTTATGT 61 TCTTATTAGTCCTAGTATGGATTAGTATTCATTGATTATAGAGGCTGCGCGGGAGAAAAT |:||||||||::|||||||||||||||||:||||||||||||||:||++++||||||||| 61 TTTTATTAGTTTTAGTATGGATTAGTATTTATTGATTATAGAGGTTGCGCGGGAGAAAAT 121 GGAGAGACTAAGAAGATGAATTCTTCGTAGTTGTGACGAGATGGAAGGTTATTCAATTTA |||||||:||||||||||||||:||++|||||||||++|||||||||||||||:|||||| 121 GGAGAGATTAAGAAGATGAATTTTTCGTAGTTGTGACGAGATGGAAGGTTATTTAATTTA 181 TATTAGGGTACAATGGAAGGAATGCACTTAATTTTTGAAAGTTTTTCGCACGCCAGGATG ||||||||||:|||||||||||||:|:|||||||||||||||||||++:|++::|||||| 181 TATTAGGGTATAATGGAAGGAATGTATTTAATTTTTGAAAGTTTTTCGTACGTTAGGATG 241 GAACTCTTGATAATTGCGTATTATCTACGTATTGTTGAGTTTTCAATTTTCCCATACTGT |||:|:||||||||||++||||||:||++||||||||||||||:||||||:::|||:||| 241 GAATTTTTGATAATTGCGTATTATTTACGTATTGTTGAGTTTTTAATTTTTTTATATTGT 301 CTGTCTGGATTTGCTTCTCATGATACAGGAGTTGTCTGTGAATCTCATTGGATATTTCCG :|||:||||||||:||:|:||||||:|||||||||:|||||||:|:|||||||||||:++ 301 TTGTTTGGATTTGTTTTTTATGATATAGGAGTTGTTTGTGAATTTTATTGGATATTTTCG 361 GATGGTTATTAACCGGGTCCAGTTGATCGTCCAAGCTCCCTTGGCATTTGTGAGGGGTTC ||||||||||||:++|||::|||||||++|::|||:|:::||||:||||||||||||||: 361 GATGGTTATTAATCGGGTTTAGTTGATCGTTTAAGTTTTTTTGGTATTTGTGAGGGGTTT 421 TACTAGTTGTGTGAACTCAGCACACGTAAATTTATAGATTTCCTCTCAAGGCTCAAAGTA ||:||||||||||||:|:||:|:|++|||||||||||||||::|:|:||||:|:|||||| 421 TATTAGTTGTGTGAATTTAGTATACGTAAATTTATAGATTTTTTTTTAAGGTTTAAAGTA WTfwd >>>>>>>>>>>>>>>>>>>>>> 481 CCAGACTTTTTATGCTAGGACAATCTTTGGATATGTGCCAGCGTATCTTGTGATCGTGGT ::|||:||||||||:|||||:|||:||||||||||||::||++|||:|||||||++|||| 481 TTAGATTTTTTATGTTAGGATAATTTTTGGATATGTGTTAGCGTATTTTGTGATCGTGGT MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 541 TCTTAAGGGTCGAGTGCTTAGCTCCTCATCCTCATGCTTAGGTCTGGAAATATGTAAAAG |:||||||||++||||:||||:|::|:||::|:|||:||||||:|||||||||||||||| 541 TTTTAAGGGTCGAGTGTTTAGTTTTTTATTTTTATGTTTAGGTTTGGAAATATGTAAAAG <<<<<<<<<<<<<<<<<<<<< WTrev 601 GGGACGTAATGACAACACGAAGCTTATAAAAACTCAAAGCTATATGATCATAGGGCTTTC ||||++||||||:||:|++|||:|||||||||:|:||||:||||||||:||||||:|||: 601 GGGACGTAATGATAATACGAAGTTTATAAAAATTTAAAGTTATATGATTATAGGGTTTTT <<<<<<<<<<<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<<<<<<<<<< USPrev 661 ACGATGAGCGAGATATTTTCTCTCAAGCCTGTGAAGCATTTTGAACGTCTTTATTCTAGG |++|||||++|||||||||:|:|:|||::|||||||:||||||||++|:||||||:|||| 661 ACGATGAGCGAGATATTTTTTTTTAAGTTTGTGAAGTATTTTGAACGTTTTTATTTTAGG 721 AAGACGAGTTTGATGTTTATTGGTATTGAGTTTCGCTCTTTCAGAAGTATTTTCAGAAGT ||||++|||||||||||||||||||||||||||++:|:|||:|||||||||||:|||||| 721 AAGACGAGTTTGATGTTTATTGGTATTGAGTTTCGTTTTTTTAGAAGTATTTTTAGAAGT 781 TAGCAACGATTTCCTATGTTAGGTTCTGTTATTGGTTTTTTGCGTATGATTCGTGTCCTT |||:||++||||::|||||||||||:||||||||||||||||++|||||||++|||::|| 781 TAGTAACGATTTTTTATGTTAGGTTTTGTTATTGGTTTTTTGCGTATGATTCGTGTTTTT 841 CTGGTTGTAACCAAGCTGTACAAAAAAACGTGCAATTGATATCATTTGGTGGCGATTAGA :|||||||||::|||:||||:|||||||++||:|||||||||:|||||||||++|||||| 841 TTGGTTGTAATTAAGTTGTATAAAAAAACGTGTAATTGATATTATTTGGTGGCGATTAGA 901 CATTTTGGTGTCATTGACAAGTTCCAATGTACACTTCTCTTTAAGGTTTTTATTTAATTC :||||||||||:|||||:|||||::||||||:|:||:|:||||||||||||||||||||: 901 TATTTTGGTGTTATTGATAAGTTTTAATGTATATTTTTTTTTAAGGTTTTTATTTAATTT 961 CTAAGTATTGATATTTTATTTATTTATTTGTTGTGGTCA :||||||||||||||||||||||||||||||||||||:| 961 TTAAGTATTGATATTTTATTTATTTATTTGTTGTGGTTA Used primers: Forward MSP: 5’-GGATAATTTTTGGATATGTGTTAGC-3’ Reverse MSP: 5’-AACTTTAAATTTTTATAAACTTCGTA-3’ Forward USP: 5’-ATAATTTTTGGATATGTGTTAGTGT-3’ Reverse USP: 5’-AACTTTAAATTTTTATAAACTTCATA-3’ Forward WT: 5’-GGACAATCTTTGGATATGTGCC-3’ Reverse WT: 5’-AAGCTTCGTGTTGTCATTACG-3’ Promoter region of PpSBP3 1 ATAAAAGTCGTAAGGATCTCACTGGGTCCCTCTCACATTTCTCCCTGAAAAATGACGACG ||||||||++|||||||:|:|:|||||:::|:|:|:||||:|:::||||||||||++|++ 1 ATAAAAGTCGTAAGGATTTTATTGGGTTTTTTTTATATTTTTTTTTGAAAAATGACGACG 61 TCGTTTTCATGACGGTGATTCTCGGTTGTCCATTTGTGGCCTTGACGGAAATGTGTGGGC |++||||:||||++||||||:|++|||||::||||||||::||||++||||||||||||+ 61 TCGTTTTTATGACGGTGATTTTCGGTTGTTTATTTGTGGTTTTGACGGAAATGTGTGGGC 121 GATCTTTGATGGCCACTCTTTTTGTTTTGTTGCCAATCCTCCTCCTATATTTAGTGACTG +||:||||||||::|:|:||||||||||||||::|||::|::|::||||||||||||:|| 121 GATTTTTGATGGTTATTTTTTTTGTTTTGTTGTTAATTTTTTTTTTATATTTAGTGATTG 181 GAGGATCTTTGCTGTTGCTGATTTCCTGGCTTATCCTGGGCGCTGCTATAAGTTAGGCTT ||||||:||||:|||||:||||||::|||:||||::||||++:||:|||||||||||:|| 181 GAGGATTTTTGTTGTTGTTGATTTTTTGGTTTATTTTGGGCGTTGTTATAAGTTAGGTTT 241 TTCTTCATCCATTTTGAGGTGTCACAATATATTTATGGTCGTCGTAATTGTTTTTAATTT ||:||:||::||||||||||||:|:||||||||||||||++|++|||||||||||||||| 241 TTTTTTATTTATTTTGAGGTGTTATAATATATTTATGGTCGTCGTAATTGTTTTTAATTT 301 TACCTCCGTCGGGGTCTGCGCCACCATATGCTTGATAAATTGCAGATTTCAAAGCAGAAC ||::|:++|++||||:||++::|::|||||:|||||||||||:||||||:||||:||||+ 301 TATTTTCGTCGGGGTTTGCGTTATTATATGTTTGATAAATTGTAGATTTTAAAGTAGAAC 361 GTTTCGGTGATGCATGGTCACTTGTGCAGGTTTCTAGTTACCTGGTTGGTTATTTCTTTT +|||++||||||:|||||:|:|||||:||||||:||||||::|||||||||||||:|||| 361 GTTTCGGTGATGTATGGTTATTTGTGTAGGTTTTTAGTTATTTGGTTGGTTATTTTTTTT 421 TTGTTTATTTCTCGAGTTTGCGGGTAGTGGTGGAGTTATGGATGCTTAGAACGCTGCAAA ||||||||||:|++||||||++||||||||||||||||||||||:||||||++:||:||| 421 TTGTTTATTTTTCGAGTTTGCGGGTAGTGGTGGAGTTATGGATGTTTAGAACGTTGTAAA 481 TAGGCCAGTTTGGTGTTGGTGATGAGGATTGCGCTCCTTCCAGTCACGATTGTGTGCCTG ||||::|||||||||||||||||||||||||++:|::||::|||:|++||||||||::|| 481 TAGGTTAGTTTGGTGTTGGTGATGAGGATTGCGTTTTTTTTAGTTACGATTGTGTGTTTG 541 CATTCTGTGGAGTCTGTAATCCGCAGTTCAGTTTTTGTGTTTTAGCAAATTAGCGCATGC :|||:||||||||:||||||:++:||||:||||||||||||||||:|||||||++:|||: 541 TATTTTGTGGAGTTTGTAATTCGTAGTTTAGTTTTTGTGTTTTAGTAAATTAGCGTATGT 601 TTCGCAGTCTTACGTGCTTATGACGTTCCTATGGACGTCCTTCTATCGTTGCCCGAATTT ||++:|||:|||++||:||||||++||::||||||++|::||:|||++|||::++||||| 601 TTCGTAGTTTTACGTGTTTATGACGTTTTTATGGACGTTTTTTTATCGTTGTTCGAATTT 661 TCTGTGCTTCTTTCAAAGTCGCTGGCAATTGCAGACCTGGAAATTGGGTATTGTTTCCTC |:||||:||:|||:|||||++:|||:|||||:|||::|||||||||||||||||||::|: 661 TTTGTGTTTTTTTTAAAGTCGTTGGTAATTGTAGATTTGGAAATTGGGTATTGTTTTTTT 721 AGTTGCTTACTCTAAGTGCGAATACTACTTAGACGTGCTGTTGAGGGTAAACTTGCTTCT |||||:|||:|:||||||++||||:||:|||||++||:|||||||||||||:|||:||:| 721 AGTTGTTTATTTTAAGTGCGAATATTATTTAGACGTGTTGTTGAGGGTAAATTTGTTTTT WTfwd >>>>>>>> 781 GAGGCTCTCCACAGTTTTAGAAGTTTGATTAATAAGATATAGAGGCTTTTCTCTGATCAC ||||:|:|::|:|||||||||||||||||||||||||||||||||:||||:|:||||:|: 781 GAGGTTTTTTATAGTTTTAGAAGTTTGATTAATAAGATATAGAGGTTTTTTTTTGATTAT MSPfwd >>>>>>>> USPfwd >>>>>>>> >>>>>>>>>>>>>>>>>> 841 TTCAAATGGATGGTGATCGTGTTCTTTGATACTGCTGAAGCTTGGCGAGTTTTTTTGGTT ||:||||||||||||||++||||:|||||||:||:|||||:||||++||||||||||||| 841 TTTAAATGGATGGTGATCGTGTTTTTTGATATTGTTGAAGTTTGGCGAGTTTTTTTGGTT >>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>> <<<<<<<<<<< 901 CAAATCTCCGAAGCCTATGGACCATTCAGCAGCCTGAGCTTCCAATTTGGCCGTCAGTGT :||||:|:++|||::||||||::|||:||:||::||||:||::|||||||:++|:||||| 901 TAAATTTTCGAAGTTTATGGATTATTTAGTAGTTTGAGTTTTTAATTTGGTCGTTAGTGT <<<<<<<<<<< <<<<<<<<<<< <<<<<<<<<<<<<<< WTrev 961 CGTATGTTACTCCTATGTTGAAGCTTGTGGGCTGGATCGC ++|||||||:|::||||||||||:|||||||:|||||++: 961 CGTATGTTATTTTTATGTTGAAGTTTGTGGGTTGGATCGT <<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<< USPrev Used primers: Forward MSP: 5’-TTGATTATTTTAAATGGATGGTGATC-3’ Reverse MSP: 5’-AAAAATAACATACGACACTAACGAC-3’ Forward USP: 5’-TTGATTATTTTAAATGGATGGTGATT-3’ Reverse USP: 5’-AAAAATAACATACAACACTAACAAC-3’ Forward WT: 5’-CTGATCACTTCAAATGGATGGTGATC-3’ Reverse WT: 5’-TAGGAGTAACATACGACACTGACGGC-3’ Promoter region of PpGNT1 1 CTGTTGATGTATCCTAGATATTGTTGCATAGTTCTTGTCTAGTTTATTAAAATAAGAATA :|||||||||||::||||||||||||:||||||:||||:||||||||||||||||||||| 1 TTGTTGATGTATTTTAGATATTGTTGTATAGTTTTTGTTTAGTTTATTAAAATAAGAATA 61 ATAATAATAAATGTTTATATATTTAATATTAAAATAACCAATGTACAAAATATGTTAGAC |||||||||||||||||||||||||||||||||||||::||||||:|||||||||||||: 61 ATAATAATAAATGTTTATATATTTAATATTAAAATAATTAATGTATAAAATATGTTAGAT 121 ATTTTTGTATCAAATTCAAAAATATATTAAAAAAAGTACACAACATAGGTTACAATGGAT ||||||||||:|||||:|||||||||||||||||||||:|:||:||||||||:||||||| 121 ATTTTTGTATTAAATTTAAAAATATATTAAAAAAAGTATATAATATAGGTTATAATGGAT 181 CATAAATCATTAATTATTCTTGATATTATGTTAAAAAAGTTGAGAAACATCTACAATTAG :||||||:||||||||||:||||||||||||||||||||||||||||:||:||:|||||| 181 TATAAATTATTAATTATTTTTGATATTATGTTAAAAAAGTTGAGAAATATTTATAATTAG 241 TTAGAAACTTTCATATTGTTTAAAATCATTTTGTTATAAAAACAATACCATTTAATAAAG |||||||:|||:||||||||||||||:|||||||||||||||:||||::||||||||||| 241 TTAGAAATTTTTATATTGTTTAAAATTATTTTGTTATAAAAATAATATTATTTAATAAAG 301 ATGAATCTTATTAATAGGTAATTCTGTTGATATATTTCCTTGACACAGCAATATGGATAG ||||||:||||||||||||||||:|||||||||||||::||||:|:||:||||||||||| 301 ATGAATTTTATTAATAGGTAATTTTGTTGATATATTTTTTTGATATAGTAATATGGATAG 361 GAATCATAGTCTTAGATATAGTAGTTTTAAGGTGATTAATGTCAAAAGAACATAACTAGC ||||:|||||:|||||||||||||||||||||||||||||||:|||||||:||||:|||: 361 GAATTATAGTTTTAGATATAGTAGTTTTAAGGTGATTAATGTTAAAAGAATATAATTAGT 421 AAAAGAATTAAAGCATAGTCCACCAAACATATATTTTGAATAGCAAGATAATATAAATTA |||||||||||||:|||||::|::|||:|||||||||||||||:|||||||||||||||| 421 AAAAGAATTAAAGTATAGTTTATTAAATATATATTTTGAATAGTAAGATAATATAAATTA 481 CTTTAAAACAGAATATAATATAATATTAAATTTACTTTTATATTATTTTTAGATTAATGA :|||||||:|||||||||||||||||||||||||:||||||||||||||||||||||||| 481 TTTTAAAATAGAATATAATATAATATTAAATTTATTTTTATATTATTTTTAGATTAATGA 541 AACTTCACAATAATACATGAAAGAAATTTTTGTGACTTTGGCACCTTTTATTAGCAATGT ||:||:|:|||||||:|||||||||||||||||||:|||||:|::|||||||||:||||| 541 AATTTTATAATAATATATGAAAGAAATTTTTGTGATTTTGGTATTTTTTATTAGTAATGT 601 ATTACTCTTACTATGTAAAAGTATCAAATTTAACAAAAATTGAAAAAATATACATCCACT ||||:|:|||:|||||||||||||:||||||||:||||||||||||||||||:||::|:| 601 ATTATTTTTATTATGTAAAAGTATTAAATTTAATAAAAATTGAAAAAATATATATTTATT 661 TATACTATCAATTAATTAATTAAAATTTTATTTATTTTTTAATTTTTTGTTGACTTAAAA ||||:|||:||||||||||||||||||||||||||||||||||||||||||||:|||||| 661 TATATTATTAATTAATTAATTAAAATTTTATTTATTTTTTAATTTTTTGTTGATTTAAAA 721 TATATCTATATATATATATATATATATATATATGTATATTCACATTCTTGAACAAGAATT |||||:||||||||||||||||||||||||||||||||||:|:|||:|||||:||||||| 721 TATATTTATATATATATATATATATATATATATGTATATTTATATTTTTGAATAAGAATT WTfwd >>>>>>>>>>>>>>>>>>>>>>> 781 TTGGATTCAAGGAGGTGAATGCTTTGCACAAAAAAAAGTTTTATCTCTAAATTCTTAGAC |||||||:|||||||||||||:||||:|:|||||||||||||||:|:||||||:|||||: 781 TTGGATTTAAGGAGGTGAATGTTTTGTATAAAAAAAAGTTTTATTTTTAAATTTTTAGAT MSPfwd >>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>> 841 AACGTCATTCAAAATAAGTTTTAAAACAGCGACTAGTCATAAAATACGTATTTACACACT ||++|:|||:||||||||||||||||:||++|:||||:||||||||++||||||:|:|:| 841 AACGTTATTTAAAATAAGTTTTAAAATAGCGATTAGTTATAAAATACGTATTTATATATT >>>> >>>>> 901 TGTATATGATGTACCATAGACGGTAATCGTACATATTTGCCGACACCCTGCAATTAATAG |||||||||||||::|||||++|||||++||:|||||||:++|:|:::||:||||||||| 901 TGTATATGATGTATTATAGACGGTAATCGTATATATTTGTCGATATTTTGTAATTAATAG <<<<<<<<<<<<<<<<<<<<<<< WTrev 961 AGTTCGAATATCCCCGCCGCGTTCAAGTCGCCTCGTGCAA ||||++|||||:::++:++++||:||||++::|++||:|| 961 AGTTCGAATATTTTCGTCGCGTTTAAGTCGTTTCGTGTAA <<<<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<<<<< USPrev Used primers: Forward MSP: 5’-TTTATTTTTAAATTTTTAGATAACG-3’ Reverse MSP: 5’-AACGACTTAAACGCGACGA-3’ Forward USP: 5’-TTATTTTTAAATTTTTAGATAATGT-3’ Reverse USP: 5’-AAACAACTTAAACACAACAAA-3’ Forward WT: 5’-GTTTTATCTCTAAATTCTTAGAC-3’ Reverse WT: 5’-GGCGACTTGAACGCGGCGGGGAT-3’ Intron 4 within the miRNA166 binding site of PpC3HDZIP1 1 GGTATGAAGGTATGGATGCCATGCCTTCCTACGGCACGTTCTACAGTGTATTGTGGAGTA ||||||||||||||||||::|||::||::||++|:|++||:||:|||||||||||||||| 1 GGTATGAAGGTATGGATGTTATGTTTTTTTACGGTACGTTTTATAGTGTATTGTGGAGTA MSPfwd >>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>> 61 GCGAGCCTCACCTGTAACTCTTGATCTATAGATTCCATTATCAGAGATATGATCGCACGA |++||::|:|::|||||:|:|||||:||||||||::|||||:|||||||||||++:|++| 61 GCGAGTTTTATTTGTAATTTTTGATTTATAGATTTTATTATTAGAGATATGATCGTACGA <<<<<<< <<<<<<< 121 AATAACTCTTTGTTCCAACCTTTTGTAAAATAAGTATTAGCGGAGTCATGGTACTGGAGC |||||:|:||||||::||::||||||||||||||||||||++||||:||||||:|||||: 121 AATAATTTTTTGTTTTAATTTTTTGTAAAATAAGTATTAGCGGAGTTATGGTATTGGAGT <<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<< USPrev 181 AAAGTCAAACAAATTAATTTGACTCAAAACACGACTTCGAATTAATTTAGGAGCTAACAA |||||:|||:||||||||||||:|:||||:|++|:||++||||||||||||||:|||:|| 181 AAAGTTAAATAAATTAATTTGATTTAAAATACGATTTCGAATTAATTTAGGAGTTAATAA 241 GGTAATGATATTGATTCTTTAATTCAAATTAAAGTGGTTGATTGCAAATGCCATTGCTGA ||||||||||||||||:|||||||:|||||||||||||||||||:|||||::||||:||| 241 GGTAATGATATTGATTTTTTAATTTAAATTAAAGTGGTTGATTGTAAATGTTATTGTTGA 301 TACGTCACTAGT ||++|:|:|||| 301 TACGTTATTAGT Used primers: Forward MSP: 5’-GTTATGTTTTTTTACGGTACGT-3’ Reverse MSP: 5’-AAACAAAAAATTATTTCGTACG-3’ Forward USP: 5’-TGTTATGTTTTTTTATGGTATGT-3’ Reverse USP: 5’-TTAAAACAAAAAATTATTTCATACA-3’ Intron 1 upstream of the miRNA166 binding site of PpC3HDZIP1 1 GGTATGTATCCGTGTCCTTCGCCAGATTCTAGGAGAGGAAAATTGTTTGGGCATAAACCT |||||||||:++|||::||++::|||||:||||||||||||||||||||||:|||||::| 1 GGTATGTATTCGTGTTTTTCGTTAGATTTTAGGAGAGGAAAATTGTTTGGGTATAAATTT 61 CGTATAGAAGTTCGTTCGATCTTGAAATCTTTCTCAAACGGAGATTCTGGATGACATGCA ++||||||||||++||++||:|||||||:|||:|:|||++||||||:|||||||:|||:| 61 CGTATAGAAGTTCGTTCGATTTTGAAATTTTTTTTAAACGGAGATTTTGGATGATATGTA MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 121 CGTGAAGTTGATTCACTATATTATGTCGCCTCGAATTTCACTTCGTATTGAGCCATCTCA ++|||||||||||:|:||||||||||++::|++|||||:|:||++|||||||::||:|:| 121 CGTGAAGTTGATTTATTATATTATGTCGTTTCGAATTTTATTTCGTATTGAGTTATTTTA 181 TGTTTTATTCACTTCTGTCTTGAGATTGTCATACGTGCCGCTCCGTGATGTGCGGATAGG |||||||||:|:||:|||:||||||||||:|||++||:++:|:++|||||||++|||||| 181 TGTTTTATTTATTTTTGTTTTGAGATTGTTATACGTGTCGTTTCGTGATGTGCGGATAGG <<<<<<<< <<<<<<<<<< 241 TGGACAGGTGCACAACATGATAATCCATGTTGTGGTCGAGGGGTAGGGGGGTGGTACACG ||||:|||||:|:||:||||||||::||||||||||++||||||||||||||||||:|++ 241 TGGATAGGTGTATAATATGATAATTTATGTTGTGGTCGAGGGGTAGGGGGGTGGTATACG <<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<< USPrev 301 ACACAATTAATTGAAATGAGTGGAGAGTGTATTGCAG |:|:||||||||||||||||||||||||||||||:|| 301 ATATAATTAATTGAAATGAGTGGAGAGTGTATTGTAG Used primers: Forward MSP: 5’-TTCGATTTTGAAATTTTTTTTAAAC-3’ Reverse MSP: 5’-TATTATACACCTATCCACCTATCCG-3’ Forward USP: 5’-TGATTTTGAAATTTTTTTTAAATGG-3’ Reverse USP: 5’-ATTATACACCTATCCACCTATCCACA-3’ Exon 14 downstream of the miRNA166 binding site of PpC3HDZIP1 1 GGACGGAATCGGGCTGAATCGTACACTTGATCTGGCTTCCACACTTGAAGATCACGAGGC |||++||||++||:|||||++||:|:|||||:|||:||::|:|:||||||||:|++|||: 1 GGACGGAATCGGGTTGAATCGTATATTTGATTTGGTTTTTATATTTGAAGATTACGAGGT MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 61 AGGATTGAATGGAGAGAGCAAGTCTAATGGCAGCTCTAGCCAAGTGCGATCCGTTCTGAC ||||||||||||||||||:||||:||||||:||:|:|||::|||||++||:++||:|||: 61 AGGATTGAATGGAGAGAGTAAGTTTAATGGTAGTTTTAGTTAAGTGCGATTCGTTTTGAT 121 AATAGCTTTTCAGTTTGCGTATGAAGTTCATACACGCGAAACATGCGCAGTGATGGCCCG |||||:||||:||||||++|||||||||:|||:|++++|||:|||++:||||||||::++ 121 AATAGTTTTTTAGTTTGCGTATGAAGTTTATATACGCGAAATATGCGTAGTGATGGTTCG <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<< 181 CCAGTATGTTCGCACAGTGGTTGCATCCGTGCAGCGGGTTGCCATGGCTTTGGCACCGTC ::||||||||++:|:||||||||:||:++||:||++|||||::||||:|||||:|:++|: 181 TTAGTATGTTCGTATAGTGGTTGTATTCGTGTAGCGGGTTGTTATGGTTTTGGTATCGTT <<<<<<<<<< MSPrev <<<<<<<< USPrev 241 CCGTGGTCAGCCCCGTCCAGCACTGGGCAACTCAGATGCCATCAGTTTGGCGCGTCACAT :++||||:||:::++|::||:|:||||:||:|:|||||::||:|||||||++++|:|:|| 241 TCGTGGTTAGTTTCGTTTAGTATTGGGTAATTTAGATGTTATTAGTTTGGCGCGTTATAT 301 CCTGAGCAGCTACAG ::||||:||:||:|| 301 TTTGAGTAGTTATAG Used primers: Forward MSP: 5’-TGGTTTTTATATTTGAAGATTACGA-3’ Reverse MSP: 5’-AACATACTAACGAACCATCACTACG-3’ Forward USP: 5’-TGGTTTTTATATTTGAAGATTATGA-3’ Reverse USP: 5’-CATACTAACAAACCATCACTACACA-3’ Exon 1 upstream of the miRNA160 binding site of PpARF 1 GGTATCGATCTGGAGCCCGTTGCAAACTCAATGGTGTATTTTATAGGGCAAAAGTCTGAT |||||++||:|||||::++|||:|||:|:|||||||||||||||||||:||||||:|||| 1 GGTATCGATTTGGAGTTCGTTGTAAATTTAATGGTGTATTTTATAGGGTAAAAGTTTGAT 61 CTATATGGAATGCATCCTCTCAGAGTTGCAAATCATGGACTGCATGTCACTCTGGGTTAT :|||||||||||:||::|:|:|||||||:||||:|||||:||:||||:|:|:|||||||| 61 TTATATGGAATGTATTTTTTTAGAGTTGTAAATTATGGATTGTATGTTATTTTGGGTTAT 121 TCTCGATCACCTAGCTTTGCTGGAGTTCAAATTGGTGAGTACGAGTATTATGAGTGATCT |:|++||:|::|||:||||:|||||||:|||||||||||||++|||||||||||||||:| 121 TTTCGATTATTTAGTTTTGTTGGAGTTTAAATTGGTGAGTACGAGTATTATGAGTGATTT 181 CGAGTTTATGGTCCCCTTCTTTCATGATCAAGGGTAATTTATATCAAGGGTGTATATGAG ++||||||||||::::||:|||:|||||:|||||||||||||||:||||||||||||||| 181 CGAGTTTATGGTTTTTTTTTTTTATGATTAAGGGTAATTTATATTAAGGGTGTATATGAG 241 AGATACGCACTTATTGAGTGGACCTTTTCTCATACTGCATTTACACCCCTGTCAGTTGCA |||||++:|:||||||||||||::||||:|:|||:||:|||||:|::::|||:|||||:| 241 AGATACGTATTTATTGAGTGGATTTTTTTTTATATTGTATTTATATTTTTGTTAGTTGTA 301 GCATCCTGGTTTGGAATGCCGGGTCCAGTCCCTCTATTATCCATGAGTGTAAAATCGGAG |:||::||||||||||||:++|||::|||:::|:||||||::|||||||||||||++||| 301 GTATTTTGGTTTGGAATGTCGGGTTTAGTTTTTTTATTATTTATGAGTGTAAAATCGGAG 361 AGTCTCGATGACATTGGAGGTCACGAGAAAAAATCTGTAACTGGGTCGGAAGTGGGTGGC |||:|++||||:|||||||||:|++|||||||||:|||||:|||||++|||||||||||: 361 AGTTTCGATGATATTGGAGGTTACGAGAAAAAATTTGTAATTGGGTCGGAAGTGGGTGGT 421 CTCGATGCTCAGCTGTGGCATGCCTGTGCTGGGGGTATGGTTCAACTGCCTCATGTGGGT :|++|||:|:||:|||||:|||::||||:|||||||||||||:||:||::|:|||||||| 421 TTCGATGTTTAGTTGTGGTATGTTTGTGTTGGGGGTATGGTTTAATTGTTTTATGTGGGT 481 GCTAAGGTTGTCTATTTTCCCCAAGGCCATGGCGAACAAGCTGCTTCAACTCCCGAGTTC |:|||||||||:||||||::::||||::||||++||:|||:||:||:||:|::++||||: 481 GTTAAGGTTGTTTATTTTTTTTAAGGTTATGGCGAATAAGTTGTTTTAATTTTCGAGTTT 541 CCCCGCACTTTGGTTCCAAATGGAAGTGTTCCCTGCCGAGTTGTGTCAGTTAACTTTCTG :::++:|:|||||||::|||||||||||||:::||:++||||||||:||||||:|||:|| 541 TTTCGTATTTTGGTTTTAAATGGAAGTGTTTTTTGTCGAGTTGTGTTAGTTAATTTTTTG MSPfwd >>>>> USPfwd >>>>> 601 GCTGATACAGAAACAGACGAGGTATTTGCTCGTATTTGCCTGCAGCCTGAGATTGGCTCC |:|||||:|||||:|||++|||||||||:|++||||||::||:||::|||||||||:|:: 601 GTTGATATAGAAATAGACGAGGTATTTGTTCGTATTTGTTTGTAGTTTGAGATTGGTTTT >>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>> 661 TCCGCTCAGGATTTAACAGATGATTCTCTTGCGTCTCCGCCTCTAGAGAAACCAGCTTCA |:++:|:|||||||||:||||||||:|:|||++|:|:++::|:||||||||::||:||:| 661 TTCGTTTAGGATTTAATAGATGATTTTTTTGCGTTTTCGTTTTTAGAGAAATTAGTTTTA 721 TTTGCCAAAACGCTCACTCAAAGTGATGCAAACAACGGTGGAGGCTTTTCAATACCTCGT ||||::||||++:|:|:|:|||||||||:|||:||++|||||||:||||:||||::|++| 721 TTTGTTAAAACGTTTATTTAAAGTGATGTAAATAACGGTGGAGGTTTTTTAATATTTCGT <<<<<<<<<<<<<<<<<<<<<<<<<MSPrev <<<<<<<<<<<<<<<<<<<<<<<<<USPrev 781 TATTGTGCTGAAACTATTTTCCCACCTCTCGATTACTGTATCGATCCTCCTGTTCAAACT |||||||:|||||:||||||:::|::|:|++||||:|||||++||::|::||||:|||:| 781 TATTGTGTTGAAATTATTTTTTTATTTTTCGATTATTGTATCGATTTTTTTGTTTAAATT 841 GTTCTTGCAAAAGATGTCCATGGAGAGGTGTGGAAATTTCGTCACATTTACAGG |||:|||:|||||||||::||||||||||||||||||||++|:|:|||||:||| 841 GTTTTTGTAAAAGATGTTTATGGAGAGGTGTGGAAATTTCGTTATATTTATAGG Used primers: Forward MSP: 5’-TTTTGGTTGATATAGAAATAGACGA-3’ Reverse MSP: 5’-GAAATATTAAAAAACCTCCACCGTT-3’ Forward USP: 5’-TTTTGGTTGATATAGAAATAGATGA-3’ Reverse USP: 5’-AAAATATTAAAAAACCTCCACCATT-3’ Exon 4 downstream of the miRNA160 binding site of PpARF 1 AGGAATTCCATGGAGACAGTCAGACGCCTCATACTCCTGCATCTGGTAGCCAATGAGGCT |||||||::|||||||:|||:|||++::|:|||:|::||:||:||||||::|||||||:| 1 AGGAATTTTATGGAGATAGTTAGACGTTTTATATTTTTGTATTTGGTAGTTAATGAGGTT 61 AAAGCTTGATCATAGCTCATAACCCTCTCACAGGACGTAATGGGGGTGACAACATGCTAA ||||:|||||:||||:|:||||:::|:|:|:||||++||||||||||||:||:|||:||| 61 AAAGTTTGATTATAGTTTATAATTTTTTTATAGGACGTAATGGGGGTGATAATATGTTAA MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>>> 121 CAGAATTGCACGGTAAAGGAAAACTGTACTAGGCATGTTATATGGGAATTCGGATCGCTT :|||||||:|++|||||||||||:||||:||||:||||||||||||||||++|||++:|| 121 TAGAATTGTACGGTAAAGGAAAATTGTATTAGGTATGTTATATGGGAATTCGGATCGTTT 181 CTTGCAATTAAACACGCTAGCGCCGTTTGGTGCCAATGTTATTCTGGCATTTGTTTTGTT :|||:|||||||:|++:|||++:++|||||||::|||||||||:|||:|||||||||||| 181 TTTGTAATTAAATACGTTAGCGTCGTTTGGTGTTAATGTTATTTTGGTATTTGTTTTGTT <<<<<<<<<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<<<<<<<<<< USPrev 241 TCCTTTGGAAACAAATTGCTATATTTCAAAGTCCTTTGGAGGAGCTCGC |::||||||||:||||||:|||||||:|||||::||||||||||:|++: 241 TTTTTTGGAAATAAATTGTTATATTTTAAAGTTTTTTGGAGGAGTTCGT Used primers: Forward MSP: 5’-AGTTTATAATTTTTTTATAGGACGT-3’ Reverse MSP: 5’-AAAATAACATTAACACCAAACGAC-3’ Forward USP: 5’-TAGTTTATAATTTTTTTATAGGATGT-3’ Reverse USP: 5’-CCAAAATAACATTAACACCAAACAAC-3’ Intron 2 upstream of the miRNA160 binding site of PpARF 1 AGTTCTCCATGGCGGGTTCTGCAGGTTAGCTTTTTGTTTGTCTAATCAAAGCAATCAATG ||||:|::||||++||||:||:|||||||:|||||||||||:||||:||||:|||:|||| 1 AGTTTTTTATGGCGGGTTTTGTAGGTTAGTTTTTTGTTTGTTTAATTAAAGTAATTAATG MSPfwd >>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>> 61 TGCTAATGAACGTGCTGCCTGCATTGTCTGCAATGACTATGTACTGCGTAGTCAGTGGAA ||:|||||||++||:||::||:|||||:||:|||||:||||||:||++||||:||||||| 61 TGTTAATGAACGTGTTGTTTGTATTGTTTGTAATGATTATGTATTGCGTAGTTAGTGGAA >>>>>>>>>>>>> >>>>>>>>>>>>> 121 ATAGGTGGTTGATTATGAGATTTTGGTTGTGCAGGTCACTTGGGATGAGCCGGACCTATT |||||||||||||||||||||||||||||||:||||:|:||||||||||:++||::|||| 121 ATAGGTGGTTGATTATGAGATTTTGGTTGTGTAGGTTATTTGGGATGAGTCGGATTTATT 181 GCAGGGAGTGAATCGTGTAAGCCCATGGCAGTTAGAGCTTGTGGCGACACTTCCTATGCA |:|||||||||||++||||||:::||||:||||||||:||||||++|:|:||::||||:| 181 GTAGGGAGTGAATCGTGTAAGTTTATGGTAGTTAGAGTTTGTGGCGATATTTTTTATGTA <<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<< 241 GCTGCCCCCTGTCTCTCTTCCCAAAAAGAAACTGCG |:||:::::|||:|:|:||:::|||||||||:||++ 241 GTTGTTTTTTGTTTTTTTTTTTAAAAAGAAATTGCG <<<<<<< MSPrev <<<<<<< USPrev Used primers: Forward MSP: 5’-TAAAGTAATTAATGTGTTAATGAACGT-3’ Reverse MSP: 5’-AAACAACTACATAAAAAATATCGCC-3’ Forward USP: 5’-TTAAAGTAATTAATGTGTTAATGAATGT-3’ Reverse USP: 5’-AAACAACTACATAAAAAATATCACC-3’ Intron 3 downstream of the miRNA160 binding site of PpARF 1 AGGATCAGGTTTGTATCAACAAATCTCTAGTTCGTTTTGGCATGGAGTTCACAATGTGCT |||||:||||||||||:||:||||:|:|||||++||||||:||||||||:|:||||||:| 1 AGGATTAGGTTTGTATTAATAAATTTTTAGTTCGTTTTGGTATGGAGTTTATAATGTGTT MSPfwd >>>>>>>>>>>>> USPfwd >>>>>>>>>>>>> 61 CTTCAAGCTTCGTTGTATGCTAAACTCTACTGCAATACTGCTACGGCGTGCCTTTTCTTT :||:|||:||++|||||||:||||:|:||:||:||||:||:||++|++||::||||:||| 61 TTTTAAGTTTCGTTGTATGTTAAATTTTATTGTAATATTGTTACGGCGTGTTTTTTTTTT >>>>>>>>>>>>> >>>>>>>>>>>>> 121 TTTCGAAGTATGATATGATGACCTAATGGTCTTTTTGAATACGACAGGAATTCCATGGAG |||++||||||||||||||||::|||||||:||||||||||++|:|||||||::|||||| 121 TTTCGAAGTATGATATGATGATTTAATGGTTTTTTTGAATACGATAGGAATTTTATGGAG <<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<< 181 ACAGTCAGACGCCTCATACTCCTGCATCTGGTAGCCAATGAGGCTAAAGCTTGATC |:|||:|||++::|:|||:|::||:||:||||||::|||||||:|||||:|||||: 181 ATAGTTAGACGTTTTATATTTTTGTATTTGGTAGTTAATGAGGTTAAAGTTTGATT <<<< MSPrev <<<< USPrev Used primers: Forward MSP: 5’-TTTATAATGTGTTTTTTAAGTTTCGT-3’ Reverse MSP: 5’-CTATCTCCATAAAATTCCTATCGTA-3’ Forward USP: 5’-TTTATAATGTGTTTTTTAAGTTTTGT-3’ Reverse USP: 5’-CTATCTCCATAAAATTCCTATCATA-3’ Sequence of PpTAS4 1 ACCAAAGTAGATTGAATCAATCCGTGCATCGATTCACAGGAGCACTGACCTGATCTATGC |::||||||||||||||:|||:++||:||++|||:|:|||||:|:|||::||||:||||+ 1 ATTAAAGTAGATTGAATTAATTCGTGTATCGATTTATAGGAGTATTGATTTGATTTATGC 61 GACGGTGCGAGAAAAATCATCCCAGCGTGGTGCTACGCTAGTCACCTAGTCATCAGCATC +|++|||++||||||||:||:::||++|||||:||++:||||:|::||||:||:||:||+ 61 GACGGTGCGAGAAAAATTATTTTAGCGTGGTGTTACGTTAGTTATTTAGTTATTAGTATC MSPfwd >>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>> 121 GGTGCTACGTAAACTTATGGCAATGGTGCGTTCCTATCAGTGCGTCACTTCAAGGAAGCC +|||:||++||||:||||||:|||||||++||::|||:||||++|:|:||:|||||||:: 121 GGTGTTACGTAAATTTATGGTAATGGTGCGTTTTTATTAGTGCGTTATTTTAAGGAAGTT <<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<< 181 CTTCCCAAGTCTTCATCCGGCCCGCTACCTTTGCGTAGCTGCTTCACTGGAGGCCTGGGT :||:::||||:||:||:++|::++:||::||||++|||:||:||:|:||||||::||||| 181 TTTTTTAAGTTTTTATTCGGTTCGTTATTTTTGCGTAGTTGTTTTATTGGAGGTTTGGGT <<<<< MSPrev <<<<< USPrev 241 GGAGACTGGCGGACAGCTTTGCGATGTTACGGTTGTAGCCAATTCTTGTTGCACTTAGAT |||||:|||++||:||:||||++||||||++|||||||::||||:||||||:|:|||||| 241 GGAGATTGGCGGATAGTTTTGCGATGTTACGGTTGTAGTTAATTTTTGTTGTATTTAGAT 301 TTCCACTGGGCGTTATCCCTCTTGAGCTGAGAAGACAAGGGCTCCCTCCTAGGGGGCGAA ||::|:||||++||||:::|:|||||:||||||||:|||||:|:::|::|||||||++|| 301 TTTTATTGGGCGTTATTTTTTTTGAGTTGAGAAGATAAGGGTTTTTTTTTAGGGGGCGAA 361 AATAGGTGAGCTGGGGTCACCTTGTTAGCGGGGTGTTAAGCATTTGAATGCAACACTCCT ||||||||||:||||||:|::|||||||++||||||||||:|||||||||:||:|:|::| 361 AATAGGTGAGTTGGGGTTATTTTGTTAGCGGGGTGTTAAGTATTTGAATGTAATATTTTT 421 ACGCAAGACCCTAGCTATGGCTCCATAGGGTGTGATGAGTGCTTCATCCGGTGCTCTTCT |++:||||:::|||:|||||:|::|||||||||||||||||:||:||:++|||:|:||:| 421 ACGTAAGATTTTAGTTATGGTTTTATAGGGTGTGATGAGTGTTTTATTCGGTGTTTTTTT 481 ACTGCCTTGCCCACCTACCCTTGTGATATGGGCCGCGCGTGTCTGCGTGTCTCCTGTATC |:||::|||:::|::||:::||||||||||||:++++++|||:||++|||:|::|||||+ 481 ATTGTTTTGTTTATTTATTTTTGTGATATGGGTCGCGCGTGTTTGCGTGTTTTTTGTATC 541 GGTTGTATATCACTCCTGAGCTACGGGTGTGCAATTCCCATGTCTTTTGGGAATAGGCGT +|||||||||:|:|::||||:||++||||||:||||:::||||:|||||||||||||++| 541 GGTTGTATATTATTTTTGAGTTACGGGTGTGTAATTTTTATGTTTTTTGGGAATAGGCGT 601 CAAGACTAGAGGTAGTTTTGTTGTCTTAGCCGGCCACAGGCGGCGGTGATAAAACCTGCA :||||:||||||||||||||||||:||||:++|::|:|||++|++|||||||||::||:| 601 TAAGATTAGAGGTAGTTTTGTTGTTTTAGTCGGTTATAGGCGGCGGTGATAAAATTTGTA 661 GTTGATGTAATGGAGTCACATACTGAATCCACTTGACTGGCTGTGGCTGAAATAAAAACA ||||||||||||||||:|:|||:|||||::|:||||:|||:|||||:|||||||||||:| 661 GTTGATGTAATGGAGTTATATATTGAATTTATTTGATTGGTTGTGGTTGAAATAAAAATA 721 TTTTCCAC ||||::|: 721 TTTTTTAT Used primers: Forward MSP: 5’-GGTGCGAGAAAAATTATTTTAGC-3’ Reverse MSP: 5’-AAAAAAACTTCCTTAAAATAACGCA-3’ Forward USP: 5’-GTGTGAGAAAAATTATTTTAGTGT-3’ Reverse USP: 5’-AAAAAAACTTCCTTAAAATAACACA-3’ Coding Sequence of PpEREBP/AP2 1 NATGTCTGGTAGCGGAAGCATAGGCACTTCCGGAGTGGACTCATGGGTTGAGCAGAGCTA |||||:||||||++||||:|||||:|:||:++|||||||:|:||||||||||:||||:|| 1 NATGTTTGGTAGCGGAAGTATAGGTATTTTCGGAGTGGATTTATGGGTTGAGTAGAGTTA MSPfwd >>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 61 ACTGACATGCTTTGCGGGGGAATTACTCACTGATTCAGCAGCACTGGCAGATCTGTGTGA |:|||:|||:||||++|||||||||:|:|:|||||:||:||:|:|||:||||:||||||| 61 ATTGATATGTTTTGCGGGGGAATTATTTATTGATTTAGTAGTATTGGTAGATTTGTGTGA 121 GGCGTTGAAGGTTTTCTACGAGTCGCTGCTTCCCCAGCTAATCCAAAGAGATGCGGATAG ||++|||||||||||:||++|||++:||:||::::||:||||::|||||||||++||||| 121 GGCGTTGAAGGTTTTTTACGAGTCGTTGTTTTTTTAGTTAATTTAAAGAGATGCGGATAG <<<<<<<<<<<<<<<<<<<<<<<<< MSPrev <<<<<<<<<<<<<<<<<<<<<<<<< USPrev 181 AGATTCCGCAACATCATGCTGAAGTGGAAGAAAGTGTTGCGAGTGTGGGTTTATAGATTC |||||:++:||:||:|||:||||||||||||||||||||++||||||||||||||||||+ 181 AGATTTCGTAATATTATGTTGAAGTGGAAGAAAGTGTTGCGAGTGTGGGTTTATAGATTC 241 GCGCTTTATTGACGATTGAGGTGAAGCAGAGGGTGGGGTTTTCGGAAAGCTGCAGCGTCA +++:||||||||++||||||||||||:|||||||||||||||++|||||:||:||++|:| 241 GCGTTTTATTGACGATTGAGGTGAAGTAGAGGGTGGGGTTTTCGGAAAGTTGTAGCGTTA 301 CTCGAGTGCAGAGGGTGTGCCAGGTTGTAGTGGTTTTCGAATTTCAGCGGACGAGGTAAG :|++||||:||||||||||::||||||||||||||||++|||||:||++||++||||||| 301 TTCGAGTGTAGAGGGTGTGTTAGGTTGTAGTGGTTTTCGAATTTTAGCGGACGAGGTAAG 361 GAAGCCTAGCAGACGAGAACGTGAGTAAGTCAGCGCAAGATGGTAGGCAAAGTGCAGGCG ||||::|||:|||++||||++|||||||||:||++:|||||||||||:||||||:|||++ 361 GAAGTTTAGTAGACGAGAACGTGAGTAAGTTAGCGTAAGATGGTAGGTAAAGTGTAGGCG 421 TCCCTAGCTGGTGCCCATGGCAAGCAGTCTACTCATCATGCCATGGTTCGAAGCAGTCAT |:::|||:|||||:::||||:|||:|||:||:|:||:|||::||||||++|||:|||:|| 421 TTTTTAGTTGGTGTTTATGGTAAGTAGTTTATTTATTATGTTATGGTTCGAAGTAGTTAT 481 CACACCCTAGTTCCGGAGATCATGGGTCGCTCGCGACCTGTTTCACAAAAGCTGAAAGCC :|:|:::|||||:++|||||:||||||++:|++++|::|||||:|:|||||:||||||:+ 481 TATATTTTAGTTTCGGAGATTATGGGTCGTTCGCGATTTGTTTTATAAAAGTTGAAAGTC 541 GCCAGCATCAAGAGGGCCAAAAAGGTTCAAGAGGGGAGGTACAGAGGGGTGCGGCAGCGG +::||:||:|||||||::|||||||||:|||||||||||||:|||||||||++|:||++| 541 GTTAGTATTAAGAGGGTTAAAAAGGTTTAAGAGGGGAGGTATAGAGGGGTGCGGTAGCGG 601 CCGTGGGGGCGATTTGCGGCGGAGATTAGAGACCCCAATACTAAGGAACGGAAGTGGCTA :++||||||++|||||++|++|||||||||||::::||||:|||||||++|||||||:|| 601 TCGTGGGGGCGATTTGCGGCGGAGATTAGAGATTTTAATATTAAGGAACGGAAGTGGTTA 661 GGCACTTTTGACACTGCTGAGGATGCAGCTCTCGCTTACGACACTGGTAAGAATATCAAC ||:|:||||||:|:||:||||||||:||:|:|++:|||++|:|:||||||||||||:||: 661 GGTATTTTTGATATTGTTGAGGATGTAGTTTTCGTTTACGATATTGGTAAGAATATTAAT 721 TTCTCCATTGCGCATTTGGTTACAAGGTGGCGATGACGATCACGTATCTCTATCCCTGAT ||:|::||||++:|||||||||:|||||||++||||++||:|++|||:|:|||:::|||| 721 TTTTTTATTGCGTATTTGGTTATAAGGTGGCGATGACGATTACGTATTTTTATTTTTGAT 781 AGAGCTAACTCTATCCGCCTTCCGTTTCTTGTAGCGGCAAGATCTATGAGAGGACCTAAG ||||:|||:|:|||:++::||:++|||:||||||++|:|||||:||||||||||::|||| 781 AGAGTTAATTTTATTCGTTTTTCGTTTTTTGTAGCGGTAAGATTTATGAGAGGATTTAAG 841 GCACGTACCAACTTTGTGTACCCTACGCATGAGACCTGTCTTCTTTCCGCTGCAGCGGCA |:|++||::||:||||||||:::||++:||||||::|||:||:|||:++:||:||++|:| 841 GTACGTATTAATTTTGTGTATTTTACGTATGAGATTTGTTTTTTTTTCGTTGTAGCGGTA 901 CTGGCGGCGCCAAATGGTAATTCGCAGCATCACCAGGTGGGTCTAATCGCTCAGAAGACC :|||++|++::|||||||||||++:||:||:|::||||||||:||||++:|:||||||:: 901 TTGGCGGCGTTAAATGGTAATTCGTAGTATTATTAGGTGGGTTTAATCGTTTAGAAGATT 961 TTGGGAAGTGCTGCTGCTCTCAGCAGCAGTACCGGCTTATTGCACNNAACCCTNNNNNNN ||||||||||:||:||:|:|:||:||:||||:++|:||||||:|:||||:::|||||||| 961 TTGGGAAGTGTTGTTGTTTTTAGTAGTAGTATCGGTTTATTGTATNNAATTTTNNNNNNN 1021 GGGGA ||||| 1021 GGGGA Used primers: Forward MSP: 5’-GGTAGCGGAAGTATAGGTATTTTC-3’ Reverse MSP: 5’-TTAACTAAAAAAACAACGACTCGTA-3’ Forward USP: 5’-GTAGTGGAAGTATAGGTATTTTTGG-3’ Reverse USP: 5’-TTAACTAAAAAAACAACAACTCATA-3’ Promoter region of PpEREBP/AP2 1 GCGTGACATCGTAGATATTGAGGATGAAGATTCGTCTGAGAATGGAACTTGCGTGGATAG |++|||:||++|||||||||||||||||||||++|:|||||||||||:|||++||||||| 1 GCGTGATATCGTAGATATTGAGGATGAAGATTCGTTTGAGAATGGAATTTGCGTGGATAG 61 CAGACATTTTCTGGGCTCGATGACTCCAAGCTCTGAACCTGTGTCTTCGAAATTTACGAT :|||:|||||:||||:|++||||:|::|||:|:||||::|||||:||++|||||||++|| 61 TAGATATTTTTTGGGTTCGATGATTTTAAGTTTTGAATTTGTGTTTTCGAAATTTACGAT 121 CACGCTGGAGTCCACGTACTTCGACACTACTTGGTCCAGTGTGCCACTTATAATTTTAGA :|++:||||||::|++||:||++|:|:||:|||||::||||||::|:||||||||||||| 121 TACGTTGGAGTTTACGTATTTCGATATTATTTGGTTTAGTGTGTTATTTATAATTTTAGA 181 CTCAAACTGCCACTGCATTAGTGCTTGCGAAGGAGAAGTTACTGTAGAAGCTTTTTTGTA :|:|||:||::|:||:|||||||:|||++||||||||||||:||||||||:||||||||| 181 TTTAAATTGTTATTGTATTAGTGTTTGCGAAGGAGAAGTTATTGTAGAAGTTTTTTTGTA 241 AAGCATAATCGAATCGCTTGGTGGTGAATCGTTTTCGGAGGAAACTGAGATATCATCGCT |||:|||||++|||++:||||||||||||++||||++|||||||:||||||||:||++:| 241 AAGTATAATCGAATCGTTTGGTGGTGAATCGTTTTCGGAGGAAATTGAGATATTATCGTT 301 GTCAAAGACCTGCCACAAGGATTTGAAAAAGTGGTGAACTCCAGTAAGGTGGGATATCTC ||:|||||::||::|:||||||||||||||||||||||:|::|||||||||||||||:|: 301 GTTAAAGATTTGTTATAAGGATTTGAAAAAGTGGTGAATTTTAGTAAGGTGGGATATTTT 361 CAAGGATGAAATGCATTTAGCAGAGCTTATTCCAATAACAACTGCACCATCACTACGTAA :||||||||||||:||||||:||||:|||||::|||||:||:||:|::||:|:||++||| 361 TAAGGATGAAATGTATTTAGTAGAGTTTATTTTAATAATAATTGTATTATTATTACGTAA 421 TGACCAAATAAACTAGTTATAAACAAAATGCTACGAGCATCTTCATAATGCGAAACATAA |||::|||||||:||||||||||:||||||:||++||:||:||:||||||++|||:|||| 421 TGATTAAATAAATTAGTTATAAATAAAATGTTACGAGTATTTTTATAATGCGAAATATAA 481 AGCCTGCTTCAAACACACCTTGAAACAGGTGTGAGTATTCACGTTGCTGGTTCACAAGAC ||::||:||:|||:|:|::||||||:|||||||||||||:|++|||:|||||:|:||||: 481 AGTTTGTTTTAAATATATTTTGAAATAGGTGTGAGTATTTACGTTGTTGGTTTATAAGAT 541 TCCGGAAAAAGTAATAAGTTTCTGGATCGAGTAGTGAAAGAGAATTACCTGAAATGGTTG |:++|||||||||||||||||:|||||++||||||||||||||||||::||||||||||| 541 TTCGGAAAAAGTAATAAGTTTTTGGATCGAGTAGTGAAAGAGAATTATTTGAAATGGTTG 601 GGATCCTGCTCCGCAATAGCGTGACACAAACAGCTCGGAACTGACAGTTGGACTCCGTTT ||||::||:|:++:|||||++|||:|:|||:||:|++|||:|||:|||||||:|:++||| 601 GGATTTTGTTTCGTAATAGCGTGATATAAATAGTTCGGAATTGATAGTTGGATTTCGTTT MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>>> 661 GAATTGGGTCAGACGAAATTGTTGGTCTTCGTCAGAGACGCAATGCCATTGCTCTTGCTT |||||||||:|||++|||||||||||:||++|:|||||++:||||::||||:|:|||:|| 661 GAATTGGGTTAGACGAAATTGTTGGTTTTCGTTAGAGACGTAATGTTATTGTTTTTGTTT 721 CCCCGGACTTACTTTAAAACCTTCTACCTCAACCTTGTTGATCGAGGGACTTTTCGGCAT :::++||:|||:|||||||::||:||::|:||::||||||||++|||||:||||++|:|| 721 TTTCGGATTTATTTTAAAATTTTTTATTTTAATTTTGTTGATCGAGGGATTTTTCGGTAT <<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<< 781 CACCAATCTTTCATCCTGCGAAGGGCTGTGGAGAGCGTTGGGAGGAGGCATCTGTTGAGA :|::|||:|||:||::||++|||||:|||||||||++|||||||||||:||:|||||||| 781 TATTAATTTTTTATTTTGCGAAGGGTTGTGGAGAGCGTTGGGAGGAGGTATTTGTTGAGA <<<<<<< MSPrev <<<<< USPrev 841 AGCTGGTTGGATCTTTCTGTCTACGTACCTACACCCATACCCAGGCAACCTGTATCCTTC ||:|||||||||:|||:|||:||++||::||:|:::|||:::|||:||::|||||::||: 841 AGTTGGTTGGATTTTTTTGTTTACGTATTTATATTTATATTTAGGTAATTTGTATTTTTT 901 TACCAGTTGCTCCTGTACTGCTGGTGCATTGAACATATTGTTGGAATGTTCATCATAATT ||::|||||:|::||||:||:|||||:||||||:||||||||||||||||:||:|||||| 901 TATTAGTTGTTTTTGTATTGTTGGTGTATTGAATATATTGTTGGAATGTTTATTATAATT 961 CAGCTGAGTATTTTTCCAGTTGCAGTTGCGAGCATTGTTT :||:|||||||||||::|||||:|||||++||:||||||| 961 TAGTTGAGTATTTTTTTAGTTGTAGTTGCGAGTATTGTTT Used primers: Forward MSP: 5’-TAATAGCGTGATATAAATAGTTCGG-3’ Reverse MSP: 5’-ATTAATAATACCGAAAAATCCCTCG-3’ Forward USP: 5’-GTAATAGTGTGATATAAATAGTTTGG-3’ Reverse USP: 5’-TAATAATACCAAAAAATCCCTCAAT-3’ Promoter region of PpbHLH 1 GAACAAGGGTTTAAAGCATTGCAGGCAGGTGATTGCATTTGTATTAACCGAGTAGTACAA |||:||||||||||||:||||:|||:|||||||||:|||||||||||:++|||||||:|| 1 GAATAAGGGTTTAAAGTATTGTAGGTAGGTGATTGTATTTGTATTAATCGAGTAGTATAA 61 TTCGAGTTTGTGTGTCATTTCGCAGAATATTGGTGGTTGGGGTTCCATGATATTGTTCAC ||++|||||||||||:||||++:|||||||||||||||||||||::|||||||||||:|: 61 TTCGAGTTTGTGTGTTATTTCGTAGAATATTGGTGGTTGGGGTTTTATGATATTGTTTAT 121 TGCTTTGATGTTTTTATTTGTGTGATTGTGATTTTATCATGATCAAACGCAAACAAAAGT ||:||||||||||||||||||||||||||||||||||:|||||:|||++:|||:|||||| 121 TGTTTTGATGTTTTTATTTGTGTGATTGTGATTTTATTATGATTAAACGTAAATAAAAGT 181 ATTCTTCTGTTGCTGCTGTATCACGTTTTACTGTGGGTTGAAGAATGTTGCAGTCTAACA |||:||:|||||:||:|||||:|++|||||:|||||||||||||||||||:|||:|||:| 181 ATTTTTTTGTTGTTGTTGTATTACGTTTTATTGTGGGTTGAAGAATGTTGTAGTTTAATA 241 ATGTGGTTCTCTAGAAGGACTGTCTAAGGCGACGGAATATTTCAGGCCTCTGTTGGGCTG ||||||||:|:||||||||:|||:|||||++|++||||||||:|||::|:|||||||:|| 241 ATGTGGTTTTTTAGAAGGATTGTTTAAGGCGACGGAATATTTTAGGTTTTTGTTGGGTTG 301 TGTTTATTATTTCTTTTTTGTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTTTACCTCATT ||||||||||||:||||||||||:||:||:||:||:||:||:||:||:|||||::|:||| 301 TGTTTATTATTTTTTTTTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTATTTTATT 361 CATATATATATATATATATATATATATATATATGTGTATGGATTTGTGAATGATATGAAT :||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 361 TATATATATATATATATATATATATATATATATGTGTATGGATTTGTGAATGATATGAAT 421 TCACAGTTTTAATCATAACCTTGGATGCTGGGGGATACTCTGAATGAAATAGTTTTCCCC |:|:|||||||||:||||::|||||||:|||||||||:|:||||||||||||||||:::: 421 TTATAGTTTTAATTATAATTTTGGATGTTGGGGGATATTTTGAATGAAATAGTTTTTTTT 481 TACAGCAGTTATTCACGAAGTTGCTTTGAGCAATACCCGATATTACCATGGCTCAAGCTT ||:||:|||||||:|++||||||:||||||:||||::++||||||::||||:|:|||:|| 481 TATAGTAGTTATTTACGAAGTTGTTTTGAGTAATATTCGATATTATTATGGTTTAAGTTT 541 ATTGAATCTTTCAAATTCCGCTTCCCTCGCACATGACTAAATCTAACATAATTTCTAAAC |||||||:|||:|||||:++:||:::|++:|:||||:|||||:|||:|||||||:||||: 541 ATTGAATTTTTTAAATTTCGTTTTTTTCGTATATGATTAAATTTAATATAATTTTTAAAT MSPfwd >>>>>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 601 TGCTGATTTTGTCCCATCGGTGTGTCAGGAAAGACTTCGACTCGTCAGCTGTAACTTCAG ||:|||||||||:::||++||||||:||||||||:||++|:|++|:||:|||||:||:|| 601 TGTTGATTTTGTTTTATCGGTGTGTTAGGAAAGATTTCGATTCGTTAGTTGTAATTTTAG 661 TTTCGAAATCCCAGCTTGGACAGAACTTCGTTTTATCTAGACGGAGGTCACCAGGACTGG |||++||||:::||:|||||:||||:||++||||||:||||++|||||:|::||||:||| 661 TTTCGAAATTTTAGTTTGGATAGAATTTCGTTTTATTTAGACGGAGGTTATTAGGATTGG <<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<< 721 TAACACGTCAAGAATTGGCATCGGCTCTTCAATTAGTACTATTGAACTTTCCGAGGACGT |||:|++|:|||||||||:||++|:|:||:||||||||:|||||||:|||:++||||++| 721 TAATACGTTAAGAATTGGTATCGGTTTTTTAATTAGTATTATTGAATTTTTCGAGGACGT <<<< MSPrev <<<< USPrev 781 GCTATGGCGTCGCAATCCAATTCCGACATGTGGATGGGCGCTGCATCATCAGAAATCAGG |:|||||++|++:|||::||||:++|:|||||||||||++:||:||:||:||||||:||| 781 GTTATGGCGTCGTAATTTAATTTCGATATGTGGATGGGCGTTGTATTATTAGAAATTAGG 841 TTCAGTTCATGATCACCCCTGCATTTCCTTCCAACAACCATTCTCATTACGAACAGGAGT ||:||||:|||||:|::::||:||||::||::||:||::|||:|:||||++||:|||||| 841 TTTAGTTTATGATTATTTTTGTATTTTTTTTTAATAATTATTTTTATTACGAATAGGAGT 901 TCTGCTGGTTTCTGTGATTGATAAAGACTCGGTTCGGAGTTAAATCACTTGGAATAAATC |:||:||||||:|||||||||||||||:|++|||++|||||||||:|:|||||||||||: 901 TTTGTTGGTTTTTGTGATTGATAAAGATTCGGTTCGGAGTTAAATTATTTGGAATAAATT 961 CATGAATGTGTTTTTTTTATTTTTTATTTTATTTTCCCATAGTTTGCCT :||||||||||||||||||||||||||||||||||:::||||||||::| 961 TATGAATGTGTTTTTTTTATTTTTTATTTTATTTTTTTATAGTTTGTTT Used primers: Forward MSP: 5’- ATTTTTTAAATTTCGTTTTTTTCGT-3’ Reverse MSP: 5’- ATTACCAATCCTAATAACCTCCGTC-3’ Forward USP: 5’- ATTTTTTAAATTTTGTTTTTTTTGT-3’ Reverse USP: 5’- ATTACCAATCCTAATAACCTCCATC-3’ Gene model of PpbHLH (Phypa1_209063) 1 ATTACCAAATCAAGTTGATCCATCGATTGCTAATTTGCAGACTGGAGTGCAGGAAAATGT ||||::||||:||||||||::||++||||:|||||||:|||:|||||||:|||||||||| 1 ATTATTAAATTAAGTTGATTTATCGATTGTTAATTTGTAGATTGGAGTGTAGGAAAATGT 61 AGGAACACCAAGTTTCAGCAAGGGCGTGCTGGACGAGGAGTGGTACACGCCCGAGACCTC |||||:|::||||||:||:|||||++||:||||++||||||||||:|++::++|||::|: 61 AGGAATATTAAGTTTTAGTAAGGGCGTGTTGGACGAGGAGTGGTATACGTTCGAGATTTT 121 CTTAATGGAGCTCTCTTACTCATTACCATATGGGATATCCGATACTCGCACAGGCTTTGG :|||||||||:|:|:|||:|:||||::|||||||||||:++|||:|++:|:|||:||||| 121 TTTAATGGAGTTTTTTTATTTATTATTATATGGGATATTCGATATTCGTATAGGTTTTGG 181 AATGCTCGAGTCGTCGCTGAATTTTGACAGCAGCAGCAACCTCATGTCTAGCTTCCGCCC ||||:|++|||++|++:||||||||||:||:||:||:||::|:||||:|||:||:++::: 181 AATGTTCGAGTCGTCGTTGAATTTTGATAGTAGTAGTAATTTTATGTTTAGTTTTCGTTT 241 TGCTCCCTCAGCCTTGAGCATGGGCCTTGAGAGCAACCGCAGTCTGGAGGATCTCGTTTG ||:|:::|:||::|||||:|||||::|||||||:||:++:|||:||||||||:|++|||| 241 TGTTTTTTTAGTTTTGAGTATGGGTTTTGAGAGTAATCGTAGTTTGGAGGATTTCGTTTG 301 CACTGGTCAGGGCTCGAGCAACGTTGGCCTCCTCTCAAGTCTTTCTCCAGGTCTTGTGGT :|:||||:||||:|++||:||++||||::|::|:|:||||:|||:|::||||:||||||| 301 TATTGGTTAGGGTTCGAGTAACGTTGGTTTTTTTTTAAGTTTTTTTTTAGGTTTTGTGGT 361 CTTGTCCCATTTTTCAGCAATTGTACACTTGTGATATCCGTTTCTCAACACATACACCGC :||||:::||||||:||:|||||||:|:|||||||||:++|||:|:||:|:|||:|:++: 361 TTTGTTTTATTTTTTAGTAATTGTATATTTGTGATATTCGTTTTTTAATATATATATCGT 421 AGCATTTTATAAAATTCATCTCAACAATGGATGAGAACCATGGTACCTGCTCAACTTACA ||:|||||||||||||:||:|:||:||||||||||||::||||||::||:|:||:|||:| 421 AGTATTTTATAAAATTTATTTTAATAATGGATGAGAATTATGGTATTTGTTTAATTTATA 481 AGGTCCTCAAGTAGGGAATTGAAGGATATCCTGTTGGTTGTGATTGCAGGCGGTCAACTC ||||::|:|||||||||||||||||||||::|||||||||||||||:|||++||:||:|+ 481 AGGTTTTTAAGTAGGGAATTGAAGGATATTTTGTTGGTTGTGATTGTAGGCGGTTAATTC 541 GGCCGGAGCACCGTAATGGAAAGCTTCAGCTCAGGTCTGCCAACAAGCTTCAACCAAGGA +|:++|||:|:++||||||||||:||:||:|:||||:||::||:|||:||:||::||||| 541 GGTCGGAGTATCGTAATGGAAAGTTTTAGTTTAGGTTTGTTAATAAGTTTTAATTAAGGA 601 ATCATCAACGCTGGTGGAAGCATAACCAACATCACCAGTAGCAACATAAATAACGTCCGC ||:||:||++:|||||||||:||||::||:||:|::|||||:||:||||||||++|:++: 601 ATTATTAACGTTGGTGGAAGTATAATTAATATTATTAGTAGTAATATAAATAACGTTCGT 661 TCTAACTTCCCCCTCATGGCCTCACCTTCGAACTTTTCCGATGCGTACCGCGCTCGATCA |:|||:||:::::|:||||::|:|::||++||:||||:++|||++||:++++:|++||:| 661 TTTAATTTTTTTTTTATGGTTTTATTTTCGAATTTTTTCGATGCGTATCGCGTTCGATTA 721 GTGAGCGAAGACAAGTCTGGGAAAGTTGTTGGCTCTGGCGGCCCACGGAATGAACTTGTG |||||++||||:||||:|||||||||||||||:|:|||++|:::|++|||||||:||||| 721 GTGAGCGAAGATAAGTTTGGGAAAGTTGTTGGTTTTGGCGGTTTACGGAATGAATTTGTG 781 CCATATCACAGAAACAAGGGGGCGGAAACTCGGAGCCATGGTCAGGGTCAGCAAACTCTA ::||||:|:|||||:|||||||++||||:|++|||::|||||:|||||:||:|||:|:|| 781 TTATATTATAGAAATAAGGGGGCGGAAATTCGGAGTTATGGTTAGGGTTAGTAAATTTTA 841 TTCTTGAAGCGCGCAGCTTCTCGCCGTTGTGCGGGGTCTAGTGGGACTGTCTCTCCAGTG ||:||||||++++:||:||:|++:++|||||++||||:||||||||:|||:|:|::|||| 841 TTTTTGAAGCGCGTAGTTTTTCGTCGTTGTGCGGGGTTTAGTGGGATTGTTTTTTTAGTG 901 AGCAAGTCACCCCCACGCGTGGTCACTAGTGCCTCCAACGATTCTTCTGTGGACACGCCG ||:||||:|:::::|++++||||:|:|||||::|::||++|||:||:||||||:|++:++ 901 AGTAAGTTATTTTTACGCGTGGTTATTAGTGTTTTTAACGATTTTTTTGTGGATACGTCG 961 GATAAAGACAGCCCTCATCCGCGTAATGCTCACTTGCAGAGCGCATCTGGAAGATTAAAT ||||||||:||:::|:||:++++|||||:|:|:|||:||||++:||:||||||||||||| 961 GATAAAGATAGTTTTTATTCGCGTAATGTTTATTTGTAGAGCGTATTTGGAAGATTAAAT 1021 ATCAACTCCGGATCGGATGATCCCAACGACATGGGATTAGATGGTGACGACTACGATGCC ||:||:|:++|||++||||||:::||++|:|||||||||||||||||++|:||++|||:: 1021 ATTAATTTCGGATCGGATGATTTTAACGATATGGGATTAGATGGTGACGATTACGATGTT 1081 AAAGACGACGATGATTTGGATGAGAGTGGTGACGGCTCAGGGGGGCCCTACGAGGTGGAA |||||++|++||||||||||||||||||||||++|:|:|||||||:::||++|||||||| 1081 AAAGACGACGATGATTTGGATGAGAGTGGTGACGGTTTAGGGGGGTTTTACGAGGTGGAA 1141 GAAGGCGCAGGCAATGGAGCAGATCAAAGCATTGGAAAGGGAAACGGCAAAGGGAAACGA |||||++:|||:|||||||:||||:||||:||||||||||||||++|:|||||||||++| 1141 GAAGGCGTAGGTAATGGAGTAGATTAAAGTATTGGAAAGGGAAACGGTAAAGGGAAACGA 1201 GGACTTCCTGCGAAAAACCTCATGGCTGAGCGCAGGCGCCGCAAAAAACTCAACGATCGC |||:||::||++|||||::|:||||:||||++:|||++:++:||||||:|:||++||++: 1201 GGATTTTTTGCGAAAAATTTTATGGTTGAGCGTAGGCGTCGTAAAAAATTTAACGATCGT MSPfwd >>>>>>>>>>>>>>>>>>>>>> USPfwd >>>>>>>>>>>>>>>>>>>>>>>>> 1261 CTGTACACGCTACGGTCTGTAGTTCCTAAGATTACAAAGGTGCTTCCAAACTCTATCTTT :||||:|++:||++||:|||||||::||||||||:|||||||:||::|||:|:|||:||| 1261 TTGTATACGTTACGGTTTGTAGTTTTTAAGATTATAAAGGTGTTTTTAAATTTTATTTTT 1321 GAACATGTTGCCCGCCTCGATTGCTGAATTGCACATCATGTATGTTGAGATGTCCACTTA |||:||||||::++::|++||||:|||||||:|:||:||||||||||||||||::|:||| 1321 GAATATGTTGTTCGTTTCGATTGTTGAATTGTATATTATGTATGTTGAGATGTTTATTTA 1381 CGAATCAGTGGGGTGTGGAGTACAGATGGATAGAGCCTCCATATTGGGGGATGCGATTGA ++|||:||||||||||||||||:||||||||||||::|::|||||||||||||++||||| 1381 CGAATTAGTGGGGTGTGGAGTATAGATGGATAGAGTTTTTATATTGGGGGATGCGATTGA 1441 GTACCTAAAGGAGCTCCTGCAACGCATCAATGAAATCCATAACGAACTGGAAGCAGCAAA |||::||||||||:|::||:||++:||:||||||||::||||++||:||||||:||:||| 1441 GTATTTAAAGGAGTTTTTGTAACGTATTAATGAAATTTATAACGAATTGGAAGTAGTAAA <<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<< 1501 GCTGGAGCAGTCGCGGTCGATGCCGTCTAGCCCCACTCCACGATCCACCCAAGGTTATCC |:|||||:|||++++||++|||:++|:|||::::|:|::|++||::|:::||||||||:: 1501 GTTGGAGTAGTCGCGGTCGATGTCGTTTAGTTTTATTTTACGATTTATTTAAGGTTATTT <<<<<< MSPrev <<<<< USPrev 1561 AGCTACAGTTAAAGAAGAATGCCCCGTCTTGCCGAATCCTGAATCCCAGCCTCCTCGAGT ||:||:|||||||||||||||:::++|:|||:++|||::|||||:::||::|::|++||| 1561 AGTTATAGTTAAAGAAGAATGTTTCGTTTTGTCGAATTTTGAATTTTAGTTTTTTCGAGT 1621 ATGTTGTTTATAATTTCTCACCTTCTTGGAATTGCATCTCAGTACTTATTTCGCAATGCC ||||||||||||||||:|:|::||:|||||||||:||:|:||||:||||||++:||||:: 1621 ATGTTGTTTATAATTTTTTATTTTTTTGGAATTGTATTTTAGTATTTATTTCGTAATGTT 1681 AACGACGTTCTGAAATGTCTACACTTTGCACTGTTCTGAAGTTCTGGAATGCTGAACATA ||++|++||:||||||||:||:|:||||:|:||||:|||||||:|||||||:||||:||| 1681 AACGACGTTTTGAAATGTTTATATTTTGTATTGTTTTGAAGTTTTGGAATGTTGAATATA 1741 GTTTACTTTGCACATTGTTTCATAGGTGGAAGTGAGGAAAAGAGAAGGTCAGGCCCTCAA |||||:||||:|:|||||||:||||||||||||||||||||||||||||:|||:::|:|| 1741 GTTTATTTTGTATATTGTTTTATAGGTGGAAGTGAGGAAAAGAGAAGGTTAGGTTTTTAA 1801 CATTCATATGTTCTGTGCCCGCCGGCCTGGACTCCTCCTCTCTACTGTGAAGGCGCTGGA :|||:|||||||:||||::++:++|::||||:|::|::|:|:||:||||||||++:|||| 1801 TATTTATATGTTTTGTGTTCGTCGGTTTGGATTTTTTTTTTTTATTGTGAAGGCGTTGGA 1861 CGCCCTTGGCTTGGATGTACAACAGGCTGTCATCAGCTGCTTCAATGGTTTCGCCCTTGA ++:::||||:|||||||||:||:|||:|||:||:||:||:||:||||||||++:::|||| 1861 CGTTTTTGGTTTGGATGTATAATAGGTTGTTATTAGTTGTTTTAATGGTTTCGTTTTTGA 1921 CCTCTTCCGTGCAGAGGTAAGAGTCTTTCGCCTCAAGAATTCGATGTGATTGCAACTAAT ::|:||:++||:||||||||||||:|||++::|:|||||||++|||||||||:||:|||| 1921 TTTTTTTCGTGTAGAGGTAAGAGTTTTTCGTTTTAAGAATTCGATGTGATTGTAATTAAT 1981 AGAGTTTGTGCGTTGACATGGGCGGGAAATGTACATCGGTTGTCTTATTTAGCTGTGTTA ||||||||||++||||:|||||++|||||||||:||++|||||:||||||||:||||||| 1981 AGAGTTTGTGCGTTGATATGGGCGGGAAATGTATATCGGTTGTTTTATTTAGTTGTGTTA 2041 GGCCTCAAGCTGAAGATCACCTTGGGTGTGGGTTATTGCTGTGGGCAGGCCAAAGATGTG ||::|:|||:|||||||:|::|||||||||||||||||:||||||:|||::||||||||| 2041 GGTTTTAAGTTGAAGATTATTTTGGGTGTGGGTTATTGTTGTGGGTAGGTTAAAGATGTG 2101 GACGTTGGACCAGAAGAAATAAAGGCCGTTCTGCTGCTCACTGCGGGATGTGATTTGCAC ||++|||||::||||||||||||||:++||:||:||:|:|:||++||||||||||||:|: 2101 GACGTTGGATTAGAAGAAATAAAGGTCGTTTTGTTGTTTATTGCGGGATGTGATTTGTAT 2161 TCTTTGCAGTAGATCCCACAATGCAGACGGACAAGTTGAATGAATTCTCTTCTTTTCTGC |:||||:|||||||:::|:||||:|||++||:||||||||||||||:|:||:||||:||: 2161 TTTTTGTAGTAGATTTTATAATGTAGACGGATAAGTTGAATGAATTTTTTTTTTTTTTGT 2221 ATGGGAAACAAAACACAAATTGATACGAGTGTGGTTTCAAAGTCTCTCCTCACCAGGCAG ||||||||:||||:|:|||||||||++||||||||||:|||||:|:|::|:|::|||:|| 2221 ATGGGAAATAAAATATAAATTGATACGAGTGTGGTTTTAAAGTTTTTTTTTATTAGGTAG 2281 TGTTCTTCAATTTTCACCATACAAGCTAAAAAATTTGACGCTACCTAAATTCAGTGGTTT ||||:||:||||||:|::|||:|||:||||||||||||++:||::||||||:|||||||| 2281 TGTTTTTTAATTTTTATTATATAAGTTAAAAAATTTGACGTTATTTAAATTTAGTGGTTT 2341 GAACCTGACATTGTTGTAGGCTGTACTCAGCTTTTTCTGTTTTTGTATAACTTAGTATAC |||::|||:|||||||||||:||||:|:||:|||||:|||||||||||||:||||||||+ 2341 GAATTTGATATTGTTGTAGGTTGTATTTAGTTTTTTTTGTTTTTGTATAATTTAGTATAC 2401 GGTAAAGGCCCACAGAGCAGAGAACGGTGGGACCTTCACGGTACTGCCACTAGACCAAGC +|||||||:::|:||||:||||||++||||||::||:|++|||:||::|:||||::|||: 2401 GGTAAAGGTTTATAGAGTAGAGAACGGTGGGATTTTTACGGTATTGTTATTAGATTAAGT 2461 CTTGAAAACGTTATGCAGGTGAAATGTTTCTGTACATCATCTTCAAGACTTGTGTGCTGT :|||||||++|||||:|||||||||||||:||||:||:||:||:||||:|||||||:||| 2461 TTTGAAAACGTTATGTAGGTGAAATGTTTTTGTATATTATTTTTAAGATTTGTGTGTTGT 2521 GTGTGCCTCTATGTGTTTGCCTATGTAACCAAGTTGTCCGTTGCTATCCAACACCTGCCA |||||::|:||||||||||::|||||||::|||||||:++|||:|||::||:|::||::| 2521 GTGTGTTTTTATGTGTTTGTTTATGTAATTAAGTTGTTCGTTGTTATTTAATATTTGTTA Used primers: Forward MSP: 5’-GCGAAAAATTTTATGGTTGAGC-3’ Reverse MSP: 5’-TCCAACTTTACTACTTCCAATTCGT-3’ Forward USP: 5’-TGTGAAAAATTTTATGGTTGAGTGT-3’ Reverse USP: 5’-CCAACTTTACTACTTCCAATTCATT-3’ Figure S6. Primer design for bisulfite PCR analyses Primer design for promoter, exon and intron regions of miRNA target genes (PpC3HDZIP1, PpHB10, PpSBP3, PpARF, PpbHLH, PpTAS4), the ta-siRNA target gene PpEREBP/AP2, and the PpGNT1 control gene as described in the manuscript. In the gene model sequence of PpbHLH start and stop codons are highlighted in grey and intron sequences are marked in blue. The upper strand of each sequence depicts the wild type sequence, the lower strand indicates the expected cytosine to thymine conversions after the bisulfite treatment. Upright lines mark unaltered nucleotides, double points mark cytosine to thymine conversions. CpG dinucleotides are marked by plus signs (+). Figure S7 A WT WT BT KO1 BT KO2 BT GGACAATCTTTGGATATGTGCCAGCGTATCTTGTGATCGTGGTTCTTAAGGGTCGAGTGCTTAGCT GGATAATTTTTGGATATGTGTTAGTGTATTTTGTGATTGTGGTTTTTAAGGGTTGAGTGTTTAGTT GGATAATTTTTGGATATGTGTTAGCGTATTTTGTGATTGTGGTTTTTAAGGGTCGAGTGTTTAGTT GGATAATTTTTGGATATGTGTTAGCGTATTTTGTGATTGTGGTTTTTAAGGGTCGAGTGTTTAGTT WT WT BT KO1 BT KO2 BT CCTCATCCTCATGCTTAGGTCTGGAAATATGTAAAAGGGGACGTAATGACAACACGAAGCTTATAA TTTTATTTTTATGTTTAGGTTTGGAAATATGTAAAAGGGGATGTAATGATAATATGAAGTTTATAA TTTTATTTTTATGTTTAGGTTTGGAAATATGTAAAAGGGGACGTAATGATAATACGAAGTTTATAA TTTTATTTTTATGTTTAGGTTTGGAAATATGTAAAAGGGGACGTAATGATAATACGAAGTTTATAA WT WT BT KO1 BT KO2 BT AAACTCAAAGCT AAATTTAAAGTT AAATTTAAAGTT AAATTTAAAGTT B WT WT BT KO1 BT KO2 BT TTTCTGGCTGATACAGAAACAGACGAGGTATTTGCTCGTATTTGCCTGCAGCCTGAGATTGGCTCC TTTTTGGTTGATATAGAAATAGATGAGGTATTTGTTTGTATTTGTTTGTAGTTTGAGATTGGTTTT TTTTTGGTTGATATAGAAATAGACGAGGTATTTGTTTGTATTTGTTTGTAGTTTGAGATTGGTTTT TTTTTGGTTGATATAGAAATAGACGAGGTATTTGTTTGTATTTGTTTGTAGTTTGAGATTGGTTTT WT WT BT KO1 BT KO2 BT TCCGCTCAGGATTTAACAGATGATTCTCTTGCGTCTCCGCCTCTAGAGAAACCAGCTTCATTTGCC TTTGTTTAGGATTTAATAGATGATTTTTTTGTGTTTTTGTTTTTAGAGAAATTAGTTTTATTTGTT TTCGTTTAGGATTTAATAGATGATTTTTTTGCGTTTTTGTTTTTAGAGAAATTAGTTTTATTTGTT TTCGTTTAGGATTTAATAGATGATTTTTTTGCGTTTTTGTTTTTAGAGAAATTAGTTTTATTTGTT WT WT BT KO1 BT KO2 BT AAAACGCTCACTCAAAGTGATGCAAACAACGGTGGAGGCTTTTCAATACCTC AAAATGTTTATTTAAAGTGATGTAAATAATGGTGGAGGTTTTTTAATATTTT AAAATGTTTATTTAAAGTGATGTAAATAACGGTGGAGGTTTTTTAATATTTC AAAATGTTTATTTAAAGTGATGTAAATAACGGTGGAGGTTTTTTAATATTTC C WT WT BT KO1 BT KO2 BT TAGCTCATAACCCTCTCACAGGACGTAATGGGGGTGACAACATGCTAACAGAATTGCACGGTAAAG TAGTTTATAATTTTTTTATAGGATGTAATGGGGGTGATAATATGTTAATAGAATTGTATGGTAAAG TAGTTTATAATTTTTTTATAGGACGTAATGGGGGTGATAATATGTTAATAGAATTGTACGGTAAAG TAGTTTATAATTTTTTTATAGGACGTAATGGGGGTGATAATATGTTAATAGAATTGTACGGTAAAG WT WT BT KO1 BT KO2 BT GAAAACTGTACTAGGCATGTTATATGGGAATTCGGATCGCTTCTTGCAATTAAACACGCTAGCGCC GAAAATTGTATTAGGTATGTTATATGGGAATTTGGATTGTTTTTTGTAATTAAATATGTTAGTGTT GAAAATTGTATTAGGTATGTTATATGGGAATTTGGATCGTTTTTTGTAATTAAATACGTTAGTGTC GAAAATTGTATTAGGTATGTTATATGGGAATTTGGATCGTTTTTTGTAATTAAATACGTTAGTGTC WT WT BT KO1 BT KO2 BT GTTTGGTGCCAATGTTATTCTGG GTTTGGTGTTAATGTTATTTTGG GTTTGGTGTTAATGTTATTTTGG GTTTGGTGTTAATGTTATTTTGG D WT WT BT KO1 BT KO2 BT TCAAAGCAATCAATGTGCTAATGAACGTGCTGCCTGCATTGTCTGCAATGACTATGTACTGCGTAG TTAAAGTAATTAATGTGTTAATGAATGTGTTGTTTGTATTGTTTGTAATGATTATGTATTGTGTAG TTAAAGTAATTAATGTGTTAATGAACGTGTTGTTTGTATTGTTTGTAATGATTATGTATTGCGTAG TTAAAGTAATTAATGTGTTAATGAACGTGTTGTTTGTATTGTTTGTAATGATTATGTATTGCGTAG WT WT BT KO1 BT KO2 BT TCAGTGGAAATAGGTGGTTGATTATGAGATTTTGGTTGTGCAGGTCACTTGGGATGAGCCGGACCT TTAGTGGAAATAGGTGGTTGATTATGAGATTTTGGTTGTGTAGGTTATTTGGGATGAGTTGGATTT TTAGTGGAAATAGGTGGTTGATTATGAGATTTTGGTTGTGTAGGTTATTTGGGATGAGTCGGATTT TTAGTGGAAATAGGTGGTTGATTATGAGATTTTGGTTGTGTAGGTTATTTGGGATGAGTCGGATTT WT WT BT KO1 BT KO2 BT ATTGCAGGGAGTGAATCGTGTAAGCCCATGGCAGTTAGAGCTTGTGGCGACACTTCCTATGCAGCT ATTGTAGGGAGTGAATTGTGTAAGTTTATGGTAGTTAGAGTTTGTGGTGATATTTTTTATGTAGTT ATTGTAGGGAGTGAATTGTGTAAGTTTATGGTAGTTAGAGTTTGTGGCGATATTTTTTATGTAGTT ATTGTAGGGAGTGAATTGTGTAAGTTTATGGTAGTTAGAGTTTGTGGCGATATTTTTTATGTAGTT WT WT BT KO1 BT KO2 BT GCCC GTTT GTTT GTTT E WT WT BT KO1 BT KO2 BT TTCACAATGTGCTCTTCAAGCTTCGTTGTATGCTAAACTCTACTGCAATACTGCTACGGCGTGCC TTTATAATGTGTTTTTTAAGTTTTGTTGTATGTTAAATTTTATTGTAATATTGTTATGGTGTGTT TTTATAATGTGTTTTTTAAGTTTCGTTGTATGTTAAATTTTATTGTAATATTGTTACGGCGTGTT TTTATAATGTGTTTTTTAAGTTTCGTTGTATGTTAAATTTTATTGTAATATTGTTACGGCGTGTT WT WT BT KO1 BT KO2 BT TTTTCTTTTTTCGAAGTATGATATGATGACCTAATGGTCTTTTTGAATACGACAGGAATTCCATG TTTTTTTTTTTTGAAGTATGATATGATGATTTAATGGTTTTTTTGAATATGATAGGAATTTTATG TTTTTTTTTTTTGAAGTATGATATGATGATTTAATGGTTTTTTTGAATACGATAGGAATTTTATG TTTTTTTTTTTTGAAGTATGATATGATGATTTAATGGTTTTTTTGAATACGATAGGAATTTTATG WT WT BT KO1 BT KO2 BT GAGACAG GAGATAG GAGATAG GAGATAG Figure S7. DNA methylation analysis of promoter and intragenic regions of the PpARF gene in P. patens wild type and two ΔPpDCL1b mutants Nucleotide sequences of PCR products obtained from methylation-specific PCRs are aligned. (A) Promoter region. (B) Exon 1 upstream of the miR160 binding site. (C) Exon 4 downstream of the miR160 binding site. (D) Intron 2 upstream of the miR160 binding site. (E) Intron 3 downstream of the miR160 binding site. WT: Wild type nucleotide sequence of the analyzed region; CpG residues are highlighted in green. WT BT: Sequences of PCR products obtained with USP primers from bisulfite-treated DNA from wild type. KO1+2 BT: Sequences of PCR products obtained with MSP primers from bisulfite-treated DNA from two ΔPpDCL1b mutants. Cytosine residues of CpG dinucleotides which are methlyated in the ΔPpDCL1b mutants are indicated in red. Cytosine residues of CpG dinucleotides which are not methylated are highlighted in yellow. Cytosine to thymine conversions are highlighted in bold and are underlined. Five independent clones from each PCR product were sequenced. Figure S8 A PpC3HDZIP1 mRNA PpC3HDZIP1 genomic PpC3HDZIP1 mRNA GACGGATTTCCTGGCGAAGGCAACGGGAACCGCAGTGGATTGGATACAGT |||||||||||||||||||||||||||||||||||||||||||||||||| gacggatttcctggcgaaggcaacgggaaccgcagtggattggatacagt PpC3HDZIP1 genomic TACCTGGTATGAAG-----------------------------------|||||||||||||| tacctggtatgaagGTatggatgccatgccttcctacggcacgttctaca PpC3HDZIP1 mRNA -------------------------------------------------- PpC3HDZIP1 genomic gtgtattgtggagtagcgagcctcacctgtaactcttgatctatagattc PpC3HDZIP1 mRNA -------------------------------------------------- PpC3HDZIP1 genomic cattatcagagatatgatcgcacgaaataactctttgttccaaccttttg PpC3HDZIP1 mRNA -------------------------------------------------- PpC3HDZIP1 genomic taaaataagtattagcggagtcatggtactggagcaaagtcaaacaaatt PpC3HDZIP1 mRNA -------------------------------------------------- PpC3HDZIP1 genomic aatttgactcaaaacacgacttcgaattaatttaggagctaacaaggtaa PpC3HDZIP1 mRNA -------------------------------------------------- PpC3HDZIP1 genomic tgatattgattctttaattcaaattaaagtggttgattgcaaatgccatt PpC3HDZIP1 mRNA --------------------------CCTGGTCCGGATGCCATTGGCATC |||||||||||||||||||||||| gctgatacgtcactagtgcaatgcAGcctggtccggatgccattggcatc PpC3HDZIP1 genomic PpC3HDZIP1 mRNA PpC3HDZIP1 genomic ATTGCTATATCCCATGGTTGCGTGGGCATAGCAGCTCGAGCGTGCGGCCT |||||||||||||||||||||||||||||||||||||||||||||||||| attgctatatcccatggttgcgtgggcatagcagctcgagcgtgcggcct B PpHB10 mRNA PpHB10 genomic PpHB10 mRNA AGCTACCGCTGAGGAGACGCTGACAGAATTCCTGGCTAAAGCCACAGGAA |||||||||||||||||||||||||||||||||||||||||||||||||| agctaccgctgaggagacgctgacagaattcctggctaaagccacaggaa PpHB10 genomic CGGCGGTGGATTGGATTCAGTTACCTGGTATGAAG--------------||||||||||||||||||||||||||||||||||| cggcggtggattggattcagttacctggtatgaagGTatgtcatctctcc PpHB10 mRNA -------------------------------------------------- PpHB10 genomic gcgatggtgatgagtgattcaccgcatcacctcttaccgtaatctgagtg PpHB10 mRNA -------------------------------------------------- PpHB10 genomic atttgaagtaattgcaatgctctgaaattgaaatctgaagttctgaaagg PpHB10 mRNA -------------------------------------------------- PpHB10 genomic gcggtttggctgaatttgttaactggtgagactattgctgttgcactaat PpHB10 mRNA --------------------CCTGGTCCGGATGCCATTGGCATTATTGCT |||||||||||||||||||||||||||||| agtaagatgtttatttgcAGcctggtccggatgccattggcattattgct PpHB10 genomic Figure S8. The miR166 binding sites of PpC3HDZIP1 and PpHB10 are disrupted by introns (A) PpC3HDZIP1; (B) PpHB10. The miR166 binding sites are indicated in red and are underlined. Intron borders (GT and AG) are marked in bold. Figure S9 WT WT1+amiRNA WT2+amiRNA KO1+amiRNA KO2+amiRNA BT BT BT BT TTTATCTCTAAATTCTTAGACAACGTCATTCAAAATAAGTTTTAAAACAGCGACTAGTCATAAAATA TTTATTTTTAAATTTTTAGATAATGTTATTTAAAATAAGTTTTAAAATAGTGATTAGTTATAAAATA TTTATTTTTAAATTTTTAGATAACGTTATTTAAAATAAGTTTTAAAATAGCGATTAGTTATAAAATA TTTATTTTTAAATTTTTAGATAACGTTATTTAAAATAAGTTTTAAAATAGCGATTAGTTATAAAATA TTTATTTTTAAATTTTTAGATAACGTTATTTAAAATAAGTTTTAAAATAGCGATTAGTTATAAAATA WT WT1+amiRNA WT2+amiRNA KO1+amiRNA KO2+amiRNA BT BT BT BT CGTATTTACACACTTGTATATGATGTACCATAGACGGTAACCGTACATATTTGCCGACACCCTGCAA TGTATTTATATATTTGTATATGATGTATTATAGATGGTAATTGTATATATTTGTTGACATTTTGTAA CGTATTTATATATTTGTATATGATGTATTATAGACGGTAATTGTATATATTTGTTGACATTTTGTAA CGTATTTATATATTTGTATATGATGTATTATAGACGGTAATTGTATATATTTGTTGACATTTTGTAA CGTATTTATATATTTGTATATGATGTATTATAGACGGTAATTGTATATATTTGTCGACATTTTGTAA WT WT1+amiRNA WT2+amiRNA KO1+amiRNA KO2+amiRNA BT BT BT BT TTAATAGAGTTCGAATATCCCCGCCGCGTTCAAGTCGCCT TTAATAGAGTTTGAATATTTTTGTTGTGTTTAAGTTGTTT TTAATAGAGTTCGAATATTTTCGTCGCGTTTAAGTCGTTT TTAATAGAGTTTGAATATTTTCGTCGCGTTTAAGTCGTTT TTAATAGAGTTTGAATATTTTCGTCGCGTTTAAGTCGTTT Figure S9. DNA methylation analysis of the PpGNT1 promoter region in lines expressing the amiR-GNT1 Nucleotide sequences of PCR products obtained from methylation-specific PCRs are aligned. WT: Wild type nucleotide sequence of the analyzed region; CpG residues are highlighted in green. WT1 + amiRNA BT: Sequences of PCR products obtained with USP primers from bisulfite-treated DNA from wild type line 1 expressing the amiRGNT1 at low levels. WT2 + amiRNA BT: Sequences of PCR products obtained with MSP primers from bisulfite-treated DNA from wild type line 2 expressing the amiRGNT1 at high levels. KO1 + amiRNA BT and KO2 + amiRNA BT: Sequences of PCR products obtained with MSP primers from bisulfite-treated DNA from ΔPpDCL1b mutants expressing the amiR-GNT1. Cytosine residues of CpG dinucleotides which are methlyated are indicated in red. Cytosine residues of CpG dinucleotides which are not methylated are highlighted in yellow. Cytosine to thymine conversions are highlighted in bold and are underlined. Five independent clones from each PCR product were sequenced. Figure S10 A WT WT/Con. BT WT/ABA BT ATCTTTCAAATTCCGCTTCCCTCGCACATGACTAAATCTAACATAATTTCTAAACTGCTGATTTTG ATTTTTTAAATTTTGTTTTTTTTGTATATGATTAAATTTAATATAATTTTTAAATTGTTGATTTTG ATTTTTTAAATTTCGTTTTTTTCGTATATGATTAAATTTAATATAATTTTTAAATTGTTGATTTTG WT WT/Con. BT WT/ABA BT TCCCATCGGTGTGTCAGGAAAGACTTCGACTCGTCAGCTGTAACTTCAGTTTCGAAATCCCAGCTT TTTTATTGGTGTGTTAGGAAAGATTTTGATTTGTTAGTTGTAATTTTAGTTTTGAAATTTTAGTTT TTTTATTGGTGTGTTAGGAAAGATTTCGATTCGTTAGTTGTAATTTTAGTTTTGAAATTTTAGTTT WT WT/Con. BT WT/ABA BT GGACAGAACTTCGTTTTATCTAGACGGAGGTCACCAGGACTGGTAAC GGATAGAATTTTGTTTTATTTAGATGGAGGTTATTAGGATTGGTAAT GGATAGAATTTCGTTTTATTTAGACGGAGGTTATTAGGATTGGTAAT B WT WT/Con. BT WT/ABA BT GCGAAAAACCTCATGGCTGAGCGCAGGCGCCGCAAAAAACTCAACGATCGCCTGTACACGCTACGG GTGAAAAATTTTATGGTTGAGTGTAGGTGTTGTAAAAAATTTAATGATTGTTTGTATATGTTATGG GCGAAAAATTTTATGGTTGAGCGTAGGTGTCGTAAAAAATTTAATGATCGTTTGTATACGTTACGG WT WT/Con. BT WT/ABA BT TCTGTAGTTCCTAAGATTACAAAGGTGCTTCCAAACTCTATCTTTGAACATGTTGCCCGCCTCGAT TTTGTAGTTTTTAAGATTATAAAGGTGTTTTTAAATTTTATTTTTGAATATGTTGTTTGTTTTGAT TTTGTAGTTTTTAAGATTATAAAGGTGTTTTTAAATTTTATTTTTGAATATGTTGTTTGTTTCGAT WT WT/Con. BT WT/ABA BT TGCTGAATTGCACATCATGTATGTTGAGATGTCCACTTACGAATCAGTGGGGTGTGGAGTACAGAT TGTTGAATTGTATATTATGTATGTTGAGATGTTTATTTATGAATTAGTGGGGTGTGGAGTATAGAT TGTTGAATTGTATATTATGTATGTTGAGATGTTTATTTACGAATTAGTGGGGTGTGGAGTATAGAT WT WT/Con. BT WT/ABA BT GGATAGAGCCTCCATATTGGGGGATGCGATTGAGTACCTAAAGGAGCTCCTGCAACGCATCAATGA GGATAGAGTTTTTATATTGGGGGATGTGATTGAGTATTTAAAGGAGTTTTTGTAATGTATTAATGA GGATAGAGTTTTTATATTGGGGGATGTGATTGAGTATTTAAAGGAGTTTTTGTAACGTATTAATGA WT WT/Con. BT WT/ABA BT AATCCATAACGAACTGGAAGCAGCAAAGCTGGA AATTTATAATGAATTGGAAGTAGTAAAGTTGGA AATTTATAACGAATTGGAAGTAGTAAAGTTGGA Figure S10. DNA methylation analysis of promoter and intragenic regions of PpbHLH in untreated and ABA-treated P. patens wild type Nucleotide sequences of PCR products obtained from methylation-specific PCRs are aligned. (A) Promoter region of PpbHLH. (B) Coding Sequence of PpbHLH (intron sequences are marked in blue). WT: Wild type nucleotide sequence of the analyzed region; CpG residues are highlighted in green. WT/Con. BT: Sequences of PCR products obtained with USP primers from bisulfite-treated DNA from untreated wild type. WT/ABA BT: Sequences of PCR products obtained with MSP primers from bisulfite-treated DNA from ABA-treated wild type. Cytosine residues of CpG dinucleotides which are methlyated in the ABA-treated plants are indicated in red. Cytosine residues of CpG dinucleotides which are not methylated are highlighted in yellow. Cytosine to thymine conversions are highlighted in bold and are underlined. Five independent clones from each PCR product were sequenced. Table S1. Primers used in this study Primer sequence (5’ Ö 3’) Description of experiment TGGCATACAGGGAGCCAGGCA Antisense oligonucleotide of miR160. GGGGAATGAAGCCTGGTCCGA Antisense oligonucleotide of miR166. GGCGCTATCCCTCCTGAGCTT Antisense oligonucleotide of miR390. GTGCTCACTCTCTTCTGTCA Antisense oligonucleotide of miR156. GCGTGCTCTCTCTCGTTGTCA Antisense oligonucleotide of miR535. TCCAGACATAGACTCCATGCAA Antisense oligonucleotide of miR538. TGTCCTCTCAAGTCTTTCTCA Antisense oligonucleotide of miR1026. AAGCGTCCTGATTATTTGGAA Antisense oligonucleotide of amiR-GNT1. GGGGCCATGCTAATCTTCTCTG Antisense oligonucleotide of U6snRNA. GGGTGTACAAGAGCTCTATAGTGCCACCG 5’ RACE primer to detect the cleavage product of PpC3HDZIP1. GCCACCGTTTCCTGTCGGGAGAGTTCC 5’ RACE nested primer to detect the cleavage product of PpC3HDZIP1. AACCGCCGCCATCACACGGCCGGATC 5’ RACE primer to detect the cleavage product of PpHB10. CACACGGCCGGATCAGGTAACCACTTG 5’ RACE nested primer to detect the cleavage product of PpHB10. CGCAGATCGGTGAACCCGCGGTGCTCAC 5’ RACE primer to detect the cleavage product of PpSBP3. CCCGCGGTGCTCACCAACTGAGACCGGA 5’ RACE nested primer to detect the cleavage product of PpSBP3. ATGAGGGCTGTCTTTATCCGGCGTGT 5’ RACE primer to detect the cleavage product of PpbHLH. ACTTTGGAGCAAGTTCTTCCCAGGTGGA 5’ RACE primer to detect the cleavage product of PpGNT1 in PpGNT1-amiRNA expressing lines. CGGTGAGAAATACACGCTTTTGACCCT 5’ RACE primer of the control gene PpGNT1. Primer sequence (5’ Ö 3’) Description of experiment GATGCTTACCATCCCCAGCAACGGA 5’ RACE primer to detect the cleavage product of PpARF. PpARF reverse primer to detect sense and antisense transcript downstream of the miR160 binding site by RT-PCR. Primer used for the synthesis of the PpARF sense transcript derived cDNA. CAAGATCATCAAGTCTTCCATCCT PpARF forward primer to detect sense and antisense transcript downstream of the miR160 binding site by RT-PCR. Primer used for the synthesis of the PpARF antisense transcript derived cDNA. CAAAGAGTGTCCAATCCTGGC PpC3HDZIP1 forward primer to detect sense and antisense transcript upstream of the miR166 binding site by RT-PCR. Primer used for the synthesis of the PpC3HDZIP1 antisense transcript derived cDNA. PpC3HDZIP1 forward primer to detect the miRNA: mRNA duplexes by RT-PCR. TTGAAGCCACACCAGCCTGAC PpC3HDZIP1 reverse primer to detect sense and antisense transcript upstream of the miR166 binding site by RT-PCR. Primer used for the synthesis of the PpC3HDZIP1 sense transcript derived cDNA. PpC3HDZIP1 reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. CAAAGATGTGGCGGAGAAAT PpGNT1 forward primer to detect sense and antisense transcript by RT-PCR. Primer used for the synthesis of the PpGNT1 antisense transcript derived cDNA. PpGNT1 forward primer for expression analysis by RT-PCR. PpGNT1 forward primer to detect the miRNA: mRNA duplexes by RT-PCR. Forward primer used for the amplification of the PpGNT1 hybridisation probe from cDNA. Primer sequence (5’ Ö 3’) Description of experiment ATAACCTGGCGACCTTTCCT PpGNT1 reverse primer to detect sense and antisense transcript by RT-PCR. Primer used for the synthesis of the PpGNT1 sense transcript derived cDNA. PpGNT1 reverse primer for expression analysis by RT-PCR. PpGNT1 reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. Reverse primer used for the amplification of the PpGNT1 hybridisation probe from cDNA. CCCCTGTCAGTTGCAGCATCC PpARF forward primer to detect the miRNA: mRNA duplexes by RT-PCR. CTAGAGGCGGCGACGCAAGAG PpARF reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. GGAAAGAAGCAACAAGGTTGG PpHB10 forward primer to detect the miRNA: mRNA duplexes by RT-PCR. ATCCCGCAGGACTGGAATCGC PpHB10 reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. GTGCAGGGTTGTGATGCCGAC PpSBP3 forward primer to detect the miRNA: mRNA duplexes by RT-PCR. ATGCAAGAAACTGGACTGCTTC PpSBP3 reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. TTGATCCATCGATTGCTAATTT PpbHLH forward primer to detect the miRNA: mRNA duplexes by RT-PCR. AGCCCTGACCAGTGCAAAC PpbHLH reverse primer to detect the miRNA: mRNA duplexes by RT-PCR. AGCGTGGTATCACAATTGAC PpEF1α forward primer for expression analysis by RT-PCR and PCRs from genomic DNA. Forward primer used for the amplification of the PpEF1α hybridisation probe from cDNA. Primer sequence (5’ Ö 3’) Description of experiment GATCGCTCGATCATGTTATC PpEF1α reverse primer for for expression analysis by RT-PCR and PCRs from genomic DNA. Primer used for the synthesis of PpEF1α sense transcript derived cDNA. Reverse primer used for the amplification of the PpEF1α hybridisation probe from cDNA. CAGGCTTTCGCGTAATTCCCGTTG Forward primer used for the amplification of the PpC3HDZIP1 hybridisation probe from cDNA. AGTGCCTCCAACTTCGGGCCTAAC Reverse primer used for the amplification of the PpC3HDZIP1 hybridisation probe from cDNA. TTCTGCTGTCACTGGTGGACTT PpC3HDZIP1 forward primer for expression primer for expression analysis by RT-PCR. AGAGTTCCAAGAACCTCCATGC PpC3HDZIP1 reverse analysis by RT-PCR. GATTCTGCTGTCACTGGTGGTC PpHB10 forward primer for expression analysis by RT-PCR. GTCTTGTAACCAACGTGGACGA PpHB10 reverse primer for expression analysis by RT-PCR. GGCTATCACTTCCTGGATGGAC PpSBP3 forward primer for expression analysis by RT-PCR. ACAAGGAAGTTGCAGATGGTGA PpSBP3 reverse primer for expression analysis by RT-PCR. TGGTTCTCGGTTCAAGATGAAA PpARF forward primer for expression analysis by RT-PCR. CAACTTGTTGGACTGCTGAGGA PpARF reverse primer for expression analysis by RT-PCR. GGTGAACGTTTTGAGGTTGTG PpARF forward primer for the amplification of the PpARF hybridisation probe. CAAAGGAAACAAAACAAATGCC PpARF reverse primer for the amplification of the PpARF hybridisation probe. GGACGTTGGACCAGAAGAAA PpbHLH forward primer for the amplification of the PpbHLH hybridisation probe. Primer sequence (5’ Ö 3’) Description of experiment CGCTTTATTCAGCCTCCTCA PpbHLH reverse primer for the amplification of the PpbHLH hybridisation probe. GGTTGGTCATGGGTTGCG PpCOR47 forward primer for the amplification of the PpCOR47 hybridisation probe. GAGGTCAACTGTCTCGCC PpCOR47 reverse primer for the amplification of the PpCOR47 hybridisation probe. CAGCCACAGCCAGTCAAGTGGATTCAGT 5’ RACE primer to detect the cleavage product of PpTAS4. ATGTGACTCCATTACATCAACTGCAGGT 5’ RACE nested primer to detect the cleavage product of PpTAS4. GACCCACCTGGTGATGCTGCGAATTACC 5’ RACE primer to detect the cleavage product of PpEREBP/AP2. ATTTGGCGCCGCCAGTGCCGCTGCAGCG 5’ RACE nested primer to detect the cleavage product of PpTAP2. GCACTTAGATTTCCACTGGGCG PpTAS4 forward primer for expression analysis by RT-PCR. Forward primer used for the amplification of the PpTAS4 hybridisation probe from cDNA. AAGACATGGGAATTGCACACCC PpTAS4 reverse primer for expression analysis by RT-PCR. Reverse primer used for the amplification of the PpTAS4 hybridisation probe from cDNA. TTTGCGATGTTACGGTTGTAGC PpTAS1 forward primer for expression analysis by RT-PCR. ACAGCCAGTCAAGTGGATTCAG PpTAS1 reverse primer for expression analysis by RT-PCR. CCGCAACATCATGCTGAAGTGG PpEREBP/AP2 forward primer for expression analysis by RT-PCR. Forward primer used for the amplification of the PpEREBP/AP2 hybridisation probe from cDNA. GATGCTGGCGGCTTTCAGCTTT PpEREBP/AP2 reverse primer for expression analysis by RT-PCR. Reverse primer used for the amplification of the PpEREBP/AP2 hybridisation probe from cDNA. Primer sequence (5’ Ö 3’) Description of experiment GAAGGAAGCAACGAGGCTGGTGGCGTGAAT Oligonucleotide to detect PpC3HDZIP1 sense GCTAAGCTGACAGCC siRNA upstream of the miR166 binding site. GTTCTTGGAACTCTCCCGACAGGAAACGGTG Oligonucleotide to detect PpC3HDZIP1 sense GCACTATAGAGCTCTT siRNA downstream of the miR166 binding site. GGCTGTCAGCTTAGCATTCACGCTCACCAGC Oligonucleotide to detect PpC3HDZIP1 antisense CTCGTTGCTTCCTTC siRNA upstream of the miR166 binding site. AAGAGCTCTATAGTGCCACCGTTTCCTGTCG Oligonucleotide to detect PpC3HDZIP1 antisense GGAGAGTTCCAAGAAC siRNA downstream of the miR166 binding site. TACACGATTCACTCCCTGCAATAGGTCCGGC Oligonucleotide to detect PpARF sense siRNA TCACTCCAAGTGAC upstream of the miR160 binding site. CTCCAGCTGTGAGCTTCCAGAAGCAGACATG Oligonucleotide to detect PpARF sense siRNA AAGGCTAAGGGCTG downstream of the miR160 binding site. GTCACTTGGGATGAGCCGGACCTATTGCAGG Oligonucleotide to detect PpARF antisense siRNA GAGTGAATCGTGTA upstream of the miR160 binding site. CAGCCCTTAGCCTTCATGTCTGCTTCTGGAA Oligonucleotide to detect PpARF antisense siRNA GCTCACAGCTGGAG downstream of the miR160 binding site. TGAAGCACTCATCACACCCTATGGAGCCATA Oligonucleotide to detect PpTAS4 sense ta- GCTAGGGTCTTGCG siRNA. TGGCTCCATAGGGTGTGATGATGTCTTCATC Oligonucleotide to detect PpTAS4 antisense ta- CGGTGCTCTTCTACTGCCTT siRNA. GGCAAAGTGCAGGCGTCCCTAGCTGGTGCC Oligonucleotide to detect PpEREBP/AP2 sense CATGGCAAGCAGTCT siRNA. AGACTGCTTGCCATGGGCACCAGCTAGGGA Oligonucleotide CGCCTGCACTTTGCC antisense siRNA. GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACGTGCTC synthesis. GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACTGGCAT synthesis. GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACGGGGAA synthesis. GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACGGCGCT synthesis. to detect PpEREBP/AP2 for miR156-specific cDNA for miR160-specific cDNA for miR166-specific cDNA for miR390-specific cDNA Primer sequence (5’ Ö 3’) Description of experiment GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACGCAGAG specific cDNA synthesis. GTCGTATCCAGTGCAGGGTCCGAGGTATTCG Oligonucleotide CACTGGATACGACTTGCCC specific cDNA synthesis. GCGGCGGTGACAGAAGAGAGT Forward primer for miR156 RT-PCR. CCTCCCGTGCCTGGCTCCCTGT Forward primer for miR160 RT-PCR. GCGGCGGTCGGACCAGGCTTCA Forward primer for miR166 RT-PCR. GCGGCGGAAGCTCAGGAGGGAT Forward primer for miR390 RT-PCR. GCGGCGGGTGATTGCACTGCAG Forward primer for ta-siRNA (pptA013298) RT- for for ta-siRNA ta-siRNA (pptA013298)- (pptA079444)- PCR. GCGGCGGATCACAAGGGTAGGT Forward primer for ta-siRNA (pptA079444) RTPCR. GTGCAGGGTCCGAGGTAT Universal reverse primer for miRNA and ta-siRNA RT-PCR. Supplemental Experimental Procedures Isolation of PpDCL full-length cDNAs Partial cDNA sequences of P. patens DCL genes were initially identified by tblastn searches in P. patens EST sequences (Rensing et al., 2002) using A. thaliana DCL1-4 protein sequences (accession numbers P84634, Q9SP32, NP_189978, NP_566199) as queries. Corresponding cDNA clones were sequenced and used to obtain the full-length sequences. The cloning of full-length cDNA sequences was performed by 5’RACEPCRs and RT-PCRs using primers derived from available P. patens genomic sequence data. To confirm that the amplicons were derived from the same cDNA all PCR and 5’ RACE primers were selected to produce overlapping PCR fragments of already known sequence stretches. Generation and molecular analysis of PpDCL1a and PpDCL1b knockout lines For the generation of PpDCL1a and PpDCL1b knockout constructs we amplified a PpDCL1a genomic region with the primers 5’-CCAGTTGCGCATAAAGTTGA-3’ and 5’TCCAAGGCATCCAGAGAGTC-3’ and a PpDCL1b cDNA region using the primers 5’GCATTCCTGTGGAGTTTGATG-3’ and 5’-ACCTTCCACACTTGGTGTGTG-3’. An nptII selection marker cassette was cloned into a single Eco72I restriction site present in the PpDCL1b cDNA fragment and into a single EcoRV restriction site of the PpDCL1a genomic fragment. The complete knockout cassettes were released from the vector prior to transformation. Primers used to identify ΔPpDCL1a transgenic lines were: 5’TTATGTGGATTCAGTGCGCTTC-3’ and 5’-CCATCGACTTAGCCAAACCAGT-3’. To confirm a precise 5’ and 3’ integration of the PpDCL1a knockout construct we used the primers 5’-TTTGCAGTTGACTGACCTCAAGA-3’ GCGGCTGAGTGGCTCCTTCA-3’ CCAAGGATCCCGGAAGAGGA-3’ (5’ and integration) and and 5’-AAATTATCGCGCGCGGTGTC-3’ 5’5’(3’ integration). To confirm the loss of PpDCL1a transcript by RT-PCR the primers 5’TTGGTCCGTTGGAATACACA-3’ and 5’- AATCTTTGTGCGCCTCTCAC-3’ were used. Primers used for the screening GCATTCCTGTGGAGTTTGATG-3’ of and transgenic ΔPpDCL1b lines were: 5’-ACCTTCCACACTTGGTGTGTG-3’. 5’The same primers were used to confirm the loss of PpDCL1b transcript by RT-PCR. A second primer pair upstream of the integration site was used for RT-PCR: 5’AGGATTGTTACTGCGGTGCA-3’ and 5’-AAGCTCTGCACGCTCATAGC-3’. To confirm a precise 5’ and 3’ integration of the PpDCL1b knockout construct we used the primers 5'-TGCTACTCACTTCATGAACTG-'3 integration) and and 5'-ACGTGACTCCCTTAATTCTCC-'3 5'-CCCGCAATTATACATTTAATACG-'3 and (5’ 5'- GCACCATGGCTGCAACAAAG-'3 (3’ integration). RT-PCR control primers for the PpEF1α control gene are listed in Table S1. P. patens lines expressing an artificial miRNA (amiRNA) targeting PpGNT1 The amiR-GNT1 sequence was introduced into the A. thaliana miRNA319a precursor by overlapping PCR as described (Khraiwesh et al., 2008). The resulting construct was used for transfections of P. patens wild type and ΔPpDCL1b mutant lines. To identify transgenic lines harboring the amiR-GNT1 expression construct PCR was performed using the primers 5’-TGATATCTCCACTGACGAAAGGG-3’ and 5’- GGATCCCCCCATGGCGATGCCTTAAAT-3’. Detection of RNA cleavage products Synthesis of 5’ RACE-ready cDNAs was carried out according to Zhu et al. (Zhu et al., 2001) with the BD Smart RACE cDNA Amplification Kit (Clontech). PCR reactions were performed using the UPM Primer-Mix in combination with gene-specific primers derived from target RNAs (Table S1). Cleavage products were excised from the gel, cloned and sequenced. Small RNA Blots Total RNA was separated in a 12% denaturing polyacrylamide gel containing 8.3 M urea in TBE buffer. The RNA was electroblotted onto nylon membranes for 1 h at 400 mA. Radiolabeled probes were generated by end-labeling of DNA oligonucleotides complementary to miRNA, siRNA and ta-siRNA sequences and the U6snRNA control (Table S1) with γ32P-ATP using T4 polynucleotide kinase. Blot hybridization was carried out in 0.05 M sodium phosphate (pH 7.2), 1 mM EDTA, 6 x SSC, 1 x Denhardt’s, 5% SDS. Blots were washed 2-3 times with 2 x SSC, 0.2% SDS and one time with 1 x SSC, 0.1% SDS. Blots were hybridized and washed at temperatures 5°C below the Tm of the oligonucleotide. The sequences of the oligonucleotides used for the detection of small RNAs are listed in Table S1. Detection of small RNAs by RT-PCR The RT-PCR analyses of the miR156, 160, 166, 390, and the ta-siRNAs pptA079444 (processed from the PpTAS1 gene) and pptA013298 (processed from the PpTAS3 gene) were carried out as described (Varkonyi-Gasic et al., 2007). The sequences of oligonucleotides used for the cDNA synthesis and subsequent PCR reactions are listed in Table S1. Expression analysis by RT-PCR and RNA gel blots RT-PCRs were performed for PpEF1α, PpGNT1, PpC3HDZIP1, PpHB10, PpSBP3, PpARF, and PpTAS1 from three independent biological replicates with gene-specific primers (Table S1). PCR products were quantified with the Quantity One Software (BioRad). The relative amounts of the transcripts were normalized to the constitutive control PpEF1α. 20 µg of total RNA isolated from wild type, ΔPpDCL1b mutants and transgenic lines expressing the amiR-GNT1, respectively, were separated in denaturing agarose gels and blotted onto nylon membranes. Hybridization probes for PpARF, PpC3HDZIP1, PpGNT1, PpEF1α, PpTAS4 PpEREBP/AP2, PpbHLH, and PpCOR47 were amplified from wild type cDNA (primers listed in Table S1). The ABA-responsive gene PpCOR47 (Frank et al., 2005) was used to control the efficiency of the ABA treatments. DNA methylation analysis The cDNA sequences of PpC3HDZIP1 (DQ385516), PpHB10 (AB032182), PpARF (AR452951), PpSBP3 (AJ968318) and PpGNT1 (AJ429143) were used for BLASTN searches to identify corresponding genomic sequences from the P. patens wholegenome-shotgun (WGS) traces (accessible via www.ncbi.nlm.nih.gov/Traces/trace.cgi). The identified genomic sequences were clustered and assembled using the Paracel Transcript Assembler to determine the genomic exon/intron structure (Figure S5). The parameters for clustering threshold, overlap length and overlap identity were 100 nt, 80 nt and 90%, respectively. Primers to analyse the PpTAS4 genomic locus were derived from the reported PpTAS4 sequence (Talmor-Neiman et al., 2006). Primers for the analysis of the PpEREBP/AP2 and PpbHLH gene were derived from the corresponding gene model of the available P. patens genomic sequence (http://genome.jgipsf.org/Phypa1_1/Phypa1_1.home.html; gene model accession numbers Phypa1_129196 [PpEREBP/AP2] and Phypa1_209063 [PpbHLH]). The derived promoter, exon and intron regions were analyzed with the MethPrimer program (Li and Dahiya, 2002) to deduce methylation-specific (MSP) and unmethylation-specific primers (USP) (Figure S6) for PCR analysis of bisulfite-treated DNA. Detection of sense and antisense transcripts cDNA from wild type plants and ΔPpDCL1b mutants was synthesized from 4 µg total RNA with Superscript III (Invitrogen) using primers specific for sense and antisense transcripts, respectively (Table S1). To monitor the efficiency of cDNA synthesis, primers specific for the PpEF1α sense transcript were added to each cDNA synthesis reaction. RT-PCRs were carried out with gene-specific primers (Table S1). Supplemental Experimental Procedures References Frank, W., Ratnadewi, D., and Reski, R. (2005). Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220, 384-394. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2008). Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiol. Li, L. C., and Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427-1431. Rensing, S. A., Rombauts, S., Van de Peer, Y., and Reski, R. (2002). Moss transcriptome and beyond. Trends Plant Sci 7, 535-538. Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., and Arazi, T. (2006). Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48, 511-521. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., and Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3, 12. Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R., and Siebert, P. D. (2001). Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892-897. Chapter III 3 Artificial microRNAs in Physcomitrella patens Chapter III: Publication 1 Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockout Plant Physiology, October 2008, Vol. 148, pp. 684–693 Received August 13, 2008 Accepted August 22, 2008 Own contribution: Carried out all experimental work reported in the publication and contributed to prepare the manuscript (drafting the manuscript and preparing the figures). The work was supervised by W. Frank. 121 Breakthrough Technologies Specific Gene Silencing by Artificial MicroRNAs in Physcomitrella patens: An Alternative to Targeted Gene Knockouts1[C][W][OA] Basel Khraiwesh, Stephan Ossowski, Detlef Weigel, Ralf Reski, and Wolfgang Frank* Plant Biotechnology, Faculty of Biology (B.K., R.R., W.F.), Freiburg Initiative for Systems Biology (R.R., W.F.), and Centre for Biological Signaling Studies (R.R.), University of Freiburg, 79104 Freiburg, Germany; and Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (S.O., D.W.) MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella, we designed two amiRNAs, targeting the gene PpFtsZ2-1, which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N-acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis (Arabidopsis thaliana) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1-amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach. During the last decade, small nonprotein-coding RNAs (20–24 nucleotides [nt] in size) have been demonstrated to be involved in RNA-mediated phenomena such as RNA interference (RNAi), cosuppression, gene silencing, and quelling (Matzke et al., 1989; Napoli et al., 1990; de Carvalho et al., 1992; Romano and Macino, 1992; Lee et al., 1993; Hamilton and Baulcombe, 1999). Major 1 This work was supported by the Landesstiftung BadenWürttemberg (grant no. P–LS–RNS/40 to W.F., R.R., and D.W.), the Federal Ministry of Education and Research (Freiburg Initiative for Systems Biology grant no. 0313921 to R.R. and W.F.), the Excellence Initiative of the German Federal State Governments (Biological Signaling Studies grant no. EXC294 to R.R.), and European Community FP6 IP SIROCCO (contract no. LSHG–CT–2006–037900 to D.W.). * Corresponding author; e-mail wolfgang.frank@biologie. uni-freiburg.de. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Wolfgang Frank ([email protected]). [C] Some figures in this article are displayed in color online but in black and white in the print edition. [W] The online version of this article contains Web-only data. [OA] Open Access articles can be viewed online without a subscription. www.plantphysiol.org/cgi/doi/10.1104/pp.108.128025 684 classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ with respect to their biogenesis (Bartel, 2004; Chapman and Carrington, 2007). MiRNAs are approximately 21-nt RNAs that are encoded by endogenous MIR genes. Their primary transcripts form precursor RNAs exhibiting a partially double-stranded stem-loop structure that is processed by DICER-LIKE proteins to release mature miRNAs (Bartel, 2004). MiRNAs are recruited to the RNA-induced silencing complex (RISC), where they become activated by unwinding of the double strand and subsequently bind to complementary mRNA sequences resulting in either direct cleavage of the mRNA or repression of their translation by RISC (Bartel, 2004; Kurihara and Watanabe, 2004; Brodersen et al., 2008). Recently, miRNAs have been identified as important regulators of gene expression in both plants and animals (Jones-Rhoades et al., 2006), and particular miRNA families were shown to be highly conserved in evolution (Jones-Rhoades et al., 2006; Axtell et al., 2007; Fahlgren et al., 2007; Fattash et al., 2007; Axtell and Bowman, 2008). In contrast, precursors of siRNAs form perfectly complementary double-stranded RNA (dsRNA) molecules (Myers et al., 2003). They originate from transgenes, viruses, and transposons and may require RNA-dependent RNA polymerases for dsRNA formation (Waterhouse et al., 2001; Aravin et al., 2003). Plant Physiology, October 2008, Vol. 148, pp. 684–693, www.plantphysiol.org Ó 2008 American Society of Plant Biologists Artificial MicroRNAs in Physcomitrella patens Unlike miRNAs, the diced siRNA products derived from the long complementary precursors are not uniform in sequence, but correspond to different regions of their precursor. Whereas miRNAs mainly mediate posttranscriptional control of endogenous transcripts, siRNAs have been implicated in transcriptional silencing of transposable elements as well as posttranscriptional control of endogenous and exogenous RNAs, for example, viral transcripts (Waterhouse et al., 2001; Aravin et al., 2003; Myers et al., 2003; Ossowski et al., 2008). Previous reports demonstrated that the alteration of several nucleotides within the miRNA sequence does not affect its biogenesis as long as the positions of matches and mismatches within the precursor stem loop remain unaffected (Vaucheret et al., 2004). This raises the possibility of modifying miRNA sequences and creating artificial miRNAs (amiRNA) directed against any gene of interest resulting in posttranscriptional silencing of the corresponding transcript (Zeng et al., 2002; Parizotto et al., 2004; Alvarez et al., 2006; Niu et al., 2006; Schwab et al., 2006; Warthmann et al., 2008). In addition, genome-wide expression analyses in Arabidopsis (Arabidopsis thaliana) have shown that plant amiRNAs exhibit high specificity similar to natural miRNAs (Schwab et al., 2005, 2006), such that their sequences can easily be optimized to knock down the expression of a single gene or several highly conserved genes without affecting the expression of other genes. The moss Physcomitrella patens has become a recognized model system to study diverse processes in plant biology, which was mainly based on the unique ability to efficiently integrate DNA into its nuclear genome by means of homologous recombination enabling the generation of targeted gene knockout lines (Schaefer, 2002). Furthermore, based on the predominant haploid phase of Physcomitrella’s life cycle, the frequency of phenotypic deviations caused by the disruption of a single gene is higher compared to seed plants (Egener et al., 2002). Nevertheless, the generation of targeted knockout mutants in Physcomitrella has limitations. For example, despite the haploid genome, homologs might still compensate for each other and one cannot recover knockouts of genes with essential functions. Furthermore, the targeted knockout of a single gene requires several cloning steps, repetitive selection of transgenic lines, and detailed molecular analysis of putative knockout candidates. The recently published Physcomitrella genome (Rensing et al., 2008) now opens the way for medium- to largescale analysis of gene functions in a postgenomic era (Quatrano et al., 2007) requiring the development of new techniques. The posttranscriptional silencing of genes by amiRNAs may serve as an appropriate tool to speed up such analyses because they can be designed to target several genes (as long they contain at least one conserved sequence stretch), amiRNAs can be expressed from inducible promoters, and amiRNA constructs can easily be generated using a standardized cloning procedure (Schwab et al., 2006). Plant Physiol. Vol. 148, 2008 Alternative approaches to analyze gene functions in Physcomitrella were recently reported, which were based on the expression of classical inverted repeat sequences resulting in the formation of dsRNA molecules, which give rise to siRNAs and consequently silence the target transcript (Bezanilla et al., 2003, 2005; Vidali et al., 2007). One drawback to applying classical RNAi constructs is the production of a diverse set of siRNAs from the complete dsRNA, which may affect off-target transcripts. Furthermore, in some cases, gene silencing triggered by the expression of inverted repeat sequences was found to be unstable in Physcomitrella (Bezanilla et al., 2005). Additional differences in the action of siRNAs and amiRNAs may result from their varying mobility within the plant. Recent studies have shown that transgene-derived or viral-induced siRNAs are able to move from cell to cell, whereas miRNAs are not mobile and act cell autonomously (Tretter et al., 2008). Independent studies on small RNAs in Physcomitrella revealed the existence of a diverse miRNA repertoire, including highly conserved miRNA families (Arazi et al., 2005; Axtell et al., 2006, 2007; Talmor-Neiman et al., 2006; Fattash et al., 2007). Furthermore, their corresponding precursor transcripts share the characteristic hairpin-like structure known from seed plants. Thus, the design and expression of amiRNAs for the specific knock down of genes in Physcomitrella should be feasible. To test amiRNA function in Physcomitrella, we targeted the gene PpFtsZ2-1, which is required for chloroplast division (Strepp et al., 1998), and the PpGNT1 gene encoding an N-acetylglucosaminyltransferase (Koprivova et al., 2003). PpFtsZ2-1 null mutants form macrochloroplasts, presenting an obvious phenotype, which enables direct evaluation of the efficiency of the intended amiRNA approach. RESULTS Expression and Detection of PpFtsZ2-1-amiRNA and PpGNT1-amiRNA in Physcomitrella The use of amiRNAs for efficient gene silencing has been reported in various seed plants (Alvarez et al., 2006; Niu et al., 2006; Schwab et al., 2006; Warthmann et al., 2008), but it has not been tested in nonseed plants such as the bryophyte P. patens. This is an issue because functional studies of essential members of the RNAi machinery in Physcomitrella, such as Dicer and Argonaute proteins, are still missing (Axtell et al., 2007). Furthermore, the complement of essential RNAirelated proteins in Physcomitrella differs from that in seed plants (Axtell et al., 2007; Rensing et al., 2008). We designed two amiRNAs that were predicted to target the genes PpFtsZ2-1 and PpGNT1, respectively, using the amiRNA designer interface WMD (Schwab et al., 2006; Ossowski et al., 2008). The designed amiRNAs contain a uridine residue at position 1 and an adenine residue at position 10, both of which are 685 Khraiwesh et al. overrepresented among natural plant miRNAs and increase the efficiency of miRNA-mediated target cleavage (Schwab et al., 2005). Furthermore, we also preferred that the amiRNAs exhibit 5# instability relative to the miRNA*, which positively affects separation of both strands during RISC loading (Fig. 1A; Mallory et al., 2004; Schwab et al., 2005). In previous studies, the Arabidopsis miR319a precursor was used to introduce specific nucleotide changes within the miRNA/miRNA* stem-loop region. Based on the conservation of the miR319 family among land plants (Jones-Rhoades et al., 2006; Fattash et al., 2007; Axtell and Bowman, 2008; Warthmann et al., 2008) and similar secondary structures of miR319 precursor transcripts from Arabidopsis and Physcomitrella (Fig. 1B; Supplemental Fig. S1), we hypothesized that the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA will be correctly processed from the Arabidopsis miR319a precursor. The PpFtsZ2-1-amiRNA and PpGNT1-amiRNA and the corresponding miRNA* sequences were introduced into the miR319a precursor by overlapping PCR using primers harboring the respective amiRNA and miRNA* sequences, cloned into the plant expression vector pPCV downstream of a double cauliflower mosaic virus 35S promoter (Fig. 1A) and used for transfection of Physcomitrella protoplasts. After selection of regenerating plants, genomic DNA of individual lines was analyzed by PCR with primers flanking the amiRNA sequence present in the expression constructs to identify transgenic lines that had integrated the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA constructs, respectively. Eight of 12 regenerated lines derived from the transformation with the PpFtsZ2-1-amiRNA construct and seven of 12 regenerated lines derived from the transformation with the PpGNT1-amiRNA construct produced the expected PCR amplicon. Thus, we cannot exclude that some lines survived the antibiotic selection without the integration of the DNA constructs. From the lines harboring an overexpression construct, three PpFtsZ2-1-amiRNA lines and two PpGNT1-amiRNA lines were selected for further analysis (Fig. 1C). As the generated amiRNA overexpression constructs do not contain homologous sequences of the Physcomitrella genome, the constructs are expected to integrate into the Physcomitrella genome by an illegitimate recombination event. To prove the correct maturation of the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA from the Arabidopsis miR319a precursor and its accumulation in the transgenic lines, we performed small RNA gelblot analyses with antisense probes for both amiRNAs. Accumulation of the mature PpFtsZ2-1-amiRNA and PpGNT1-amiRNA was detected in all lines analyzed, demonstrating that the amiRNAs are efficiently processed from the Arabidopsis miR319a precursor in Physcomitrella (Fig. 1D). However, normalization of the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA hybridization signals to the U6snRNA controls revealed amiRNA expression levels that differed up to 8-fold for the PpFtsZ2-1-amiRNA and up to 5-fold for the PpGNT1-amiRNA between the individual lines (Fig. 1D). 686 AmiRNA-Directed Cleavage of PpFtsZ2-1 and PpGNT1 mRNAs The expression of the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA should cause cleavage of the cognate mRNAs within the region complementary to the amiRNA sequences. To prove this, we performed 5# RACE-PCRs to detect specific PpFtsZ2-1 and PpGNT1 mRNA cleavage products. Using 5# RACE-ready cDNA prepared from one PpFtsZ2-1-amiRNA, one PpGNT1-amiRNA overexpression line, and wild type, cleavage products of the expected size were only amplified from the amiRNA lines. Conversely, in wild type, the 5# RACE-PCRs yielded exclusively fragments derived from the full-length transcripts (Fig. 1E). The PCR products corresponding to the expected size of the PpFtsZ2-1 and PpGNT1 mRNA cleavage products in the amiRNA lines were cloned and sequenced to determine the precise mRNA cleavage sites. In 12 of 18 clones analyzed, PpFtsZ2-1 mRNA cleavage occurred between nucleotide positions 11 and 12 with respect to the PpFtsZ2-1-amiRNA sequence, whereas the remaining six clones resulted from cleavage of the PpFtsZ2-1 mRNA between nucleotides 12 and 13 (Fig. 1E). Normally, in plants, cleavage within a target transcript that is mediated by a 21-nt miRNA occurs between positions 10 and 11 with respect to the miRNA sequence (Llave et al., 2002), suggesting that the actual amiRNAs produced from the PpFtsZ2-1-amiRNA construct were shifted by 1 or 2 nt. However, the sequencing of six independent clones of PpGNT1 mRNA cleavage products revealed that cleavage occurred between positions 10 and 11 with respect to the PpGNT1-amiRNA sequence (Fig. 1E), indicating precise processing of the PpGNT1amiRNA from the precursor construct. Target sites in plant mRNAs normally share high sequence complementarity to the respective miRNA (Schwab et al., 2005). To prove the specificity of the expressed PpFtsZ2-1-amiRNA, we analyzed whether the mRNA of PpFtsZ2-2, the closest homolog of PpFtsZ2-1, is targeted by the PpFtsZ2-1-amiRNA. Compared to the PpFtsZ2-1-amiRNA recognition site in PpFtsZ2-1, the corresponding region within the PpFtsZ2-2 sequence contains two mismatches at positions 12 and 16. 5# RACE-PCRs were performed using a PpFtsZ2-2 gene-specific primer. PCR products indicating amiRNA-guided cleavage products were not obtained. Instead, the 5# RACE-PCR yielded exclusively fragments corresponding to the PpFtsZ2-2 full-length transcript (Fig. 1E). Thus, the PpFtsZ2-1-amiRNA exhibits high specificity, comparable to natural miRNAs. AmiRNAs Efficiently Down-Regulate PpFtsZ2-1 and PpGNT1 mRNA Levels As we detected amiRNA-directed cleavage of the PpFtsZ2-1 and PpGNT1 target mRNAs, we next analyzed the target transcript levels by RNA gel blots. Compared to wild type, we detected strongly reduced Plant Physiol. Vol. 148, 2008 Artificial MicroRNAs in Physcomitrella patens Figure 1. Analysis of Physcomitrella lines expressing PpFtsZ2-1-amiRNA and PpGNT1-amiRNA. A, Scheme illustrating the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA overexpression constructs. The modified ath-miRNA319a precursor DNA fragments were cloned into the SmaI and BamHI sites of the pPCV plant expression vector containing a double 35S promoter, nos terminator, and hpt selection marker cassette. Primers that were used for molecular analyses of the transgenic lines are indicated Plant Physiol. Vol. 148, 2008 687 Khraiwesh et al. steady-state levels of PpFtsZ2-1 and PpGNT1 mRNAs in the respective amiRNA overexpression lines (Fig. 2A). However, PpFtsZ2-1 transcript levels were reduced to 1% to 2% in PpFtsZ2-1-amiRNA lines, whereas PpGNT1 mRNA levels dropped to 10% to 20% in PpGNT1-amiRNA lines when compared to wild-type plants. Furthermore, the efficiency of posttranscriptional silencing of PpFtsZ2-1 was similar in all three amiRNA overexpression lines, even though they differed with respect to the PpFtsZ2-1-amiRNA accumulation (Fig. 1D), whereas the reduction of PpGNT1 transcript levels correlated with the PpGNT1-amiRNA expression levels. From these results, we conclude that amiRNAs confer efficient down-regulation of their target mRNAs in Physcomitrella. As a control, we also analyzed the steady-state levels of the sequencerelated PpFtsZ2-2 mRNA in PpFtsZ2-1-amiRNA overexpression lines. In agreement with the absence of amiRNA-induced mRNA cleavage products, PpFtsZ2-2 transcript levels were similar in wild-type and the three PpFtsZ2-1-amiRNA lines (Fig. 2A). The 5# RACE-PCR experiments performed with one of the PpFtsZ2-1-amiRNA lines yielded additional fragments that differed substantially in size from the expected cleavage products (Fig. 1E). After amiRNAmediated cleavage of the mRNA, the cleavage products may serve as templates for synthesizing cRNA by RNA-dependent RNA polymerase (Vaistij et al., 2002) leading to the formation of dsRNA. Subsequently, the dsRNA may be processed into secondary siRNAs, resulting in spreading of the initial amiRNA signal (Fig. 2B). This mechanism, known as transitivity, usually is initiated by dsRNA triggers. In plants, the transitivity occurs in both directions of the initial dsRNA trigger (Moissiard et al., 2007), whereas in animals, spreading of the initial signal occurs only upstream of the trigger (Pak and Fire, 2007). However, the onset of transitivity is a rare event after miRNAmediated target cleavage (Howell et al., 2007; Moissiard et al., 2007) and is normally not observed after amiRNA-mediated target cleavage (Schwab et al., 2006). To investigate the possibility of transitivity, we used sense and antisense oligonucleotides derived from PpFtsZ2-1 and PpGNT1 mRNA regions downstream of the amiRNA recognition site for RNA gelblot analysis. Sense and antisense siRNAs were only detected in PpFtsZ2-1-amiRNA and PpGNT1-amiRNA lines, respectively, but not in wild type (Fig. 2C). We conclude that amiRNAs allow for efficient downregulation of mRNAs in Physcomitrella and the generation of transitive siRNAs from mRNA cleavage products may amplify the initial amiRNA trigger. However, the transitive effects are apparently not sufficient to have a major impact on sequence-related genes, as the PpFtsZ2-2 steady-state RNA levels were unaffected in PpFtsZ2-1-amiRNA overexpression lines (Fig. 2A). PpFtsZ2-1-amiRNA Overexpressors Phenocopy PpFtsZ2-1 Null Mutants In this study, we have chosen two genes to evaluate the use of an amiRNA expression system in Physcomitrella. The targeted deletion of PpGNT1 that is involved in the N-glycosylation of proteins did not cause any phenotypic deviations (Koprivova et al., 2003). In agreement with this previous study, the two characterized PpGNT1-amiRNA lines were indistinguishable from Physcomitrella wild-type plants. In contrast, PpFtsZ2-1 null mutants, which were generated by targeted gene disruption and lack expression of PpFtsZ2-1 mRNA, are impeded in chloroplast division leading to the formation of macrochloroplasts (Strepp et al., 1998). In our study, the expression of PpFtsZ2-1amiRNA led to strongly reduced PpFtsZ2-1 mRNA levels. To compare knockout and amiRNA lines, we investigated the phenotypes of the three PpFtsZ2-1amiRNA lines. In all lines, the accumulation of the amiRNA targeting PpFtsZ2-1 resulted in impaired chloroplast division and the formation of macrochloroplasts that phenocopied the PpFtsZ2-1 null mutants (Fig. 3; Supplemental Fig. S2). The formation of macrochloroplasts in the PpFtsZ2-1-amiRNA lines was observed in all tissues and cells analyzed indicating an efficient production of mature amiRNAs from constitutively expressed precursor transcripts. Furthermore, we did not observe any particular phenotypic Figure 1. (Continued .) by arrows. B, Secondary structures of foldbacks of the P. patens miR319d precursor (ppt-MIR319d) and Arabidopsis miR319a precursor (ath-MIR319a). The mature miRNA is highlighted in green with uppercase letters. C, PCR screen to identify transgenic lines harboring the PpFtsZ2-1-amiRNA and PpGNT1-amiRNA expression constructs. WT, Wild type; amiRNA lines, 1, 2, and 3 for PpFtsZ2-1-amiRNA; 1 and 2 for PpGNT1-amiRNA; PpEF1a, control PCRs. D, Expression analysis of PpFtsZ2-1-amiRNA and PpGNT1-amiRNA in Physcomitrella wild type (WT), and lines harboring the PpFtsZ2-1-amiRNA or PpGNT1-amiRNA expression constructs. Fifty micrograms of each RNA was blotted and hybridized with a PpFtsZ2-1-amiRNA and PpGNT1amiRNA antisense probe, respectively. Hybridization with an antisense probe for U6snRNA served as control. PpFtsZ2-1amiRNA and PpGNT1-amiRNA expression levels were normalized to the U6snRNA control hybridization. Numbers indicate the relative PpFtsZ2-1-amiRNA and PpGNT1-amiRNA expression levels. E, Top, 5# RACE-PCRs for the genes PpFtsZ2-1 and PpFtsZ2-2 from wild type (WT) and line 1 expressing the PpFtsZ2-1-amiRNA; bottom, 5# RACE-PCR for the gene PpGNT from wild type (WT) and line 1 expressing the PpGNT1-amiRNA. The arrows mark PCR fragments corresponding to the expected size of the cleavage products that were isolated, cloned, and sequenced. The right images show the sequence complementarity of PpFtsZ2-1, PpFtsZ2-2, and PpGNT1 to the amiRNA sequences. The determined cleavage sites within the PpFtsZ2-1 and PpGNT1 mRNAs are marked by vertical arrows and numbers above indicate the number of sequenced products cleaved at this site. [See online article for color version of this figure.] 688 Plant Physiol. Vol. 148, 2008 Artificial MicroRNAs in Physcomitrella patens Figure 2. Expression analysis of PpFtsZ2-1, PpFtsZ2-2, and PpGNT1, and detection of transitive siRNAs. A, Left, RNA gel blots (20 mg each) from wild type (WT) and PpFtsZ2-1-amiRNA overexpression lines (1–3) hybridized with PpFtsZ2-1 and PpFtsZ2-2 probes; right, RNA gel blots (20 mg each) from wild type (WT) and PpGNT1-amiRNA overexpression lines (1 and 2) hybridized with a PpGNT1 probe. The ethidium bromide-stained gels below indicate equal loading. The hybridization signals were normalized to the rRNA bands, and the PpFtsZ2-1, PpFtsZ2-2, and PpGNT1 expression levels in wild type were set to 1. Numbers indicate the relative PpFtsZ2-1, PpFtsZ2-2, and PpGNT1 mRNA levels. B, Scheme illustrating the generation of transitive siRNAs from amiRNA target cleavage products requiring an RNA-dependent RNA polymerase (RdRP) to generate dsRNA, which is subsequently processed into siRNAs. Black line, mRNA; gray box, amiRNA binding site; curved line, amiRNA. C, Detection of sense and antisense transitive siRNAs produced from PpFtsZ2-1 (left) and PpGNT1 (right) mRNA cleavage products by RNA gel blots hybridized with oligonucleotides derived from regions downstream of the amiRNA binding sites. Hybridization with an antisense probe for U6snRNA served as control. differences among the transgenic lines expressing the PpFtsZ2-1-amiRNA, which is consistent with the similar degree of PpFtsZ2-1 mRNA reduction. Our results demonstrate that the expression of amiRNAs in Physcomitrella leads to efficient silencing of their target mRNAs comparable to the effects of targeted gene knockouts. DISCUSSION The successful use of amiRNAs for the specific down-regulation of genes was shown for the dicotyledonous plants Arabidopsis, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), and for the monocot rice (Oryza sativa; Parizotto et al., 2004; Alvarez et al., 2006; Niu et al., 2006; Schwab et al., 2006; Qu et al., 2007; Ossowski et al., 2008; Warthmann et al., 2008). In most cases, the amiRNA was expressed from endogenous miRNA precursors. However, high expression rates of amiRNAs were achieved in tobacco and tomato using the Arabidopsis miR164b precursor sequence indicating correct processing of conserved Plant Physiol. Vol. 148, 2008 pre-miRNAs within seed plants (Alvarez et al., 2006). In our study, we tested the application of amiRNAs for the specific silencing of genes in the bryophyte Physcomitrella making use of an amiRNA expression system, where the Arabidopsis miR319a precursor serves as the backbone for amiRNA expression and subsequent maturation and was developed to control gene expression in Arabidopsis (Schwab et al., 2006). The miR319 family belongs to the highly conserved amiRNA families, even over large evolutionary distances, and was also found in Physcomitrella (Arazi et al., 2005; Jones-Rhoades et al., 2006; Fattash et al., 2007). Notably, miR319 stands out in that there is also considerable sequence conservation in the foldback, not only in the miRNA itself. Our comparison of the Arabidopsis miR319a precursor and the Physcomitrella miR319 precursor sequences confirmed nucleotide sequence conservation outside the miRNA/miRNA* region, implying similar foldback structures of the Arabidopsis and Physcomitrella miR319 pre-miRNAs. Indeed, we detected the correct processing of a mature 21-nt PpFtsZ2-1-amiRNA and PpGNT1-amiRNA, respectively, from the Arabidopsis miR319a precursor in 689 Khraiwesh et al. Figure 3. Impeded plastid division and formation of macrochloroplasts in PpFtsZ2-1-amiRNA overexpressors. A, Light microscopy from protonema and leaves of wild type (WT) and one PpFtsZ2-1-amiRNA overexpression line (size bars, 100 mm). B, Confocal laserscanning microscopy from protonema and leaves of wild type (WT) and one PpFtsZ2-1-amiRNA overexpression line (size bars, 50 mm). Red, Chlorophyll autofluorescence in plastids. See Supplemental Figure S2 for phenotypes of the other two PpFtsZ2-1-amiRNA lines. transgenic Physcomitrella lines, indicating that the reconstructed miR319a pre-miRNA contains the essential recognition and processing information to enter the Physcomitrella miRNA biogenesis pathway. The PpFtsZ2-1 mRNA cleavage products were, however, offset by 1 and 2 nt relative to the expected products (Llave et al., 2002), suggesting that the PpFtsZ2-1amiRNA was shifted by 1 or 2 nt, respectively, relative to the intended amiRNA. A similar effect has been observed for some Arabidopsis amiRNAs (Schwab et al., 2006). Because the originally designed amiRNAs were perfectly complementary, the shifted amiRNAs should still adhere to the targeting rules for miRNAs. The observation of shifted cleavage products suggested that release of the PpFtsZ2-1-amiRNA/miRNA* duplex from the precursor was not always precise, consistent with observations on endogenous miRNAs (Rajagopalan et al., 2006). Nevertheless, the Arabidopsis miR319a precursor can be used routinely for the expression of amiRNAs in Physcomitrella as the apparent shift by 1 nt during the maturation of the amiRNA may result in a mismatch at the 3# end of the miRNA, which is not affecting target mRNA cleavage (Schwab 690 et al., 2005). Furthermore, cleavage of the PpFtsZ2-1 mRNA within the amiRNA recognition site indicates correct amiRNA/amiRNA* duplex recognition and amiRNA loading into the RISC complex. Previous studies have shown that the transcript levels of amiRNA targets are in most cases anticorrelated with corresponding amiRNA levels (Schwab et al., 2006). Among PpFtsZ2-1-amiRNA and PpGNT1amiRNA lines analyzed, the amiRNA expression levels varied 8-fold and 5-fold, respectively. Nevertheless, the amiRNA expression caused a similar reduction of PpFtsZ2-1 and PpGNT1 mRNA levels to 1% to 2% and 10% to 20%, respectively, compared to transcript levels in wild type. This suggests that the amount of amiRNAs is not limiting in any of the lines. Instead, it is likely that the competition of natural miRNAs and amiRNAs in RISC loading determines the efficiency of posttranscriptional silencing of the PpFtsZ2-1 and PpGNT1 transcripts. The formation of macrochloroplasts in the PpFtsZ2-1amiRNA lines indicated impeded plastid division and resembled the phenotype of PpFtsZ2-1 knockout lines, which completely lack a functional transcript Plant Physiol. Vol. 148, 2008 Artificial MicroRNAs in Physcomitrella patens (Strepp et al., 1998). We therefore conclude that the remaining PpFtsZ2-1 transcripts in the amiRNA lines are not able to generate sufficient PpFtsZ2-1 protein to support proper plastid division. In addition, amiRNA expression in the transgenic lines seems to be stable over long time periods as we did not observe any phenotypic reversion to wild-type plastids in the PpFtsZ2-1-amiRNA overexpression lines after 1 year of subculture. We anticipate that the described amiRNA expression system will result in similar silencing efficiencies of any target gene and thus can be routinely used as an alternative to the generation of knockout mutants in Physcomitrella. The efficient silencing of PpFtsZ2-1 and PpGNT1 by amiRNAs might be enhanced by the generation of transitive siRNAs, as we detected such siRNAs from the 3# cleavage products of the PpFtsZ2-1 and PpGNT1 mRNAs. Usually, transitive siRNAs are produced from exogenous RNA sequences such as viruses or sense transgene transcripts (Baulcombe, 2004), but the formation of transitive siRNAs from miRNA-guided cleavage products appears to be the exception (Howell et al., 2007; Moissiard et al., 2007). Furthermore, transitivity was suggested not to be a major factor contributing to amiRNA efficacy in previous studies, although this was inferred only indirectly from the lack of effects on sequence-related transcripts (Schwab et al., 2006; Warthmann et al., 2008). Although we cannot exclude that siRNAs, which are produced from amiRNA-mediated mRNA cleavage products, can affect other genes not targeted by the original amiRNA, the PpFtsZ2-1 homolog PpFtsZ2-2, which shares high identity in sequence stretches of the coding region (Supplemental Fig. S3), seemed unaffected in PpFtsZ2-1amiRNA lines. We detected neither cleavage products by 5# RACE-PCR, indicating siRNA-mediated cleavage of PpFtsZ2-2 transcripts, nor reduced PpFtsZ2-2 steady-state mRNA levels, pointing to a posttranscriptional silencing of this gene. Thus, even though transitivity might be more common in Physcomitrella, the specificity of posttranscriptional silencing is apparently sufficient to silence single members of highly conserved gene families. Moreover, it might be preferable to design amiRNAs lacking perfect sequence complementarity at the 3# end, as this reduces transitivity (Moissiard et al., 2007). CONCLUSION Compared to the conventional targeted gene knockout approach in Physcomitrella, the expression of amiRNA provides several advantages. (1) The generation and molecular analysis of amiRNA overexpression lines is sped up as each regenerated transgenic line harboring an amiRNA expression construct and should produce the desired mature amiRNA. (2) Instead of the generation of multigene knockout lines, which is experimentally difficult, but feasible (Hohe et al., 2004), amiRNAs are likely to be particularly Plant Physiol. Vol. 148, 2008 useful for targeting groups of closely related genes (Alvarez et al., 2006; Schwab et al., 2006). (3) AmiRNAs can be expressed from inducible or tissue-specific promoters (Schwab et al., 2006) enabling the analysis of genes with essential functions that cannot be analyzed by targeted gene disruption. Provided that other amiRNAs have a similar effect on the knock down of their cognate target genes in Physcomitrella as observed in this study, they can be considered as an efficient alternative tool to the targeted gene knockout approach for reverse genetics studies in Physcomitrella. MATERIALS AND METHODS Plant Material and Growth Conditions Physcomitrella patens plants were cultured in modified liquid Knop medium containing 250 mg L21 KH2PO4, 250 mg L21 KCl, 250 mg L21 MgSO4·7H2O, 1,000 mg L21 Ca(NO3)2, and 12.5 mg L21 FeSO4·7H2O (pH 5.8) or on solid Knop plates. Erlenmeyer flasks containing 400 mL of suspension culture were agitated on a rotary shaker at 120 rpm at 25°C under a 16-h-light/ 8-h-dark regime (Philips TLD 25; 50 mM m22 s21). Liquid cultures were mechanically disrupted every week to maintain the plants in the protonema stage. Gametophore development was induced by transferring protonema tissue to solidified Knop medium. Transformation of Physcomitrella Protoplasts Polyethylene glycol-mediated transformation of Physcomitrella protoplasts was performed according to standard procedures (Frank et al., 2005). Briefly, transformation was carried out using 25 mg of linearized plasmid DNA. Transformed protoplasts were cultivated for 24 h under standard conditions in the dark and were then transferred to light. After 10 d, the protoplasts were transferred to solid Knop medium. Three days later, regenerating plants were transferred to Knop medium supplemented with hygromycin (Promega). The selection lasted 2 weeks and was followed by a 2-week release period on Knop medium without antibiotic followed by another round of selection and release. Plants surviving the second round of selection were screened by PCR to confirm integration of the DNA construct. Generation of Physcomitrella Lines Expressing AmiRNAs Targeting PpFtsZ2-1 and PpGNT1 AmiRNAs targeting PpFtsZ2-1 (accession no. AJ001586; amiRNA, 5#-TTCGTAATTAACGTGTCCGCG-3#) and PpGNT1 (accession no. AJ429143; amiRNA, 5#-TTCCAAATAATCAGGACGCTT-3#) were designed using the amiRNA designer interface WMD (Schwab et al., 2006; Ossowski et al., 2008). The PpFtsZ2-1-amiRNA and PpGNT1-amiRNA sequences were introduced into the Arabidopsis (Arabidopsis thaliana) miR319a precursor by overlapping PCR using the following primers. PpFtsZ2-1-amiRNA, miRNA-sense, 5#-GATTCGTAATTAACGTGTCCGCGTCTCTCTTTTGTATTCC-3#; miRNA-antisense, 5#-GACGCGGACACGTTAATTACGAATCAAAGAGAATCAATGA-3#; miRNA*sense, 5#-GACGAGGACACGTTATTTACGATTCACAGGTCGTGATATG-3#; miRNA*-antisense, 5#-GAATCGTAAATAACGTGTCCTCGTCTACATATATATTCCT-3#; primer A, 5#-CCCGGGTGCAGCCCCAAACACACGCTC-3#; primer B, 5#-GGATCCCCCCATGGCGATGCCTTAAAT-3#. PpGNT1-amiRNA, miRNAsense, 5#-GATTCCAAATAATCAGGACGCTTTCTCTCTTTTGTATTCC-3#; miRNA-antisense, 5#-GAAAGCGTCCTGATTATTTGGAATCAAAGAGAATCAATGA-3#; miRNA*-sense, 5#-GAAAACGTCCTGATTTTTTGGATTCACAGGTCGTGATATG-3#; miRNA*-antisense, 5#-GAATCCAAAAAATCAGGACGTTTTCTACATATATATTCCT-3#; same primers A and B as described above. The plasmid pRS300 harboring the Arabidopsis miR319a precursor was used as PCR template (Schwab et al., 2006). The resulting precursor fragments were cloned into the pJET1.2 cloning vector (Fermentas) and sequenced. The modified ath-miRNA319a precursor DNA fragments were cloned into SmaI and BamHI sites of the plant expression vector pPCV (Koncz et al., 1989) containing the cauliflower mosaic virus 35S promoter, nos terminator, and hpt selection marker cassette. Transgenic lines were analyzed by PCR to identify lines that had 691 Khraiwesh et al. integrated the amiRNA overexpression constructs using the primers 5#-TGATATCTCCACTGACGAAAGGG-3# and 5#-GGATCCCCCCATGGCGATGCCTTAAAT-3#. PCR primers for the amplification of the Physcomitrella control gene EF1a were 5#-AGCGTGGTATCACAATTGAC-3# and 5#-GATCGCTCGATCATGTTATC-3#. The one-step isolation of genomic DNA was performed according to the method of Schween et al. (2002). Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers AJ001586 (PpFtsZ2-1), XM_001766723 (PpFtsZ2-2), and AJ429143 (PpGNT1). Supplemental Data The following materials are available in the online version of this article. Small RNA Blots Total RNA was isolated from protonema using TRIzol reagent (Invitrogen) and separated in a 12% denaturing polyacrylamide gel containing 8.3 M urea in Tris-borate/EDTA buffer. The RNA was electroblotted onto nylon membranes for 1 h at 400 mA. Radiolabeled probes were generated by end labeling of DNA oligonucleotides with [g-32P]ATP using T4 polynucleotide kinase. The following probes were used. Antisense probe for PpFtsZ2-1-amiRNA, 5#-CGCGGACACGTTAATTACGAA-3#; antisense probe for PpGNT1-amiRNA, 5#-AAGCGTCCTGATTATTTGGAA-3#; detection of sense transitive PpFtsZ2-1 siRNAs, 5#-CCCCAGTGACGGAAGCGTTCAATCTTGCAGACGACATCCTTCGGC-3#; detection of antisense transitive PpFtsZ2-1 siRNAs, 5#-GCCGAAGGATGTCGTCTGCAAGATTGAACGCTTCCGTCACTGGGG-3#; detection of sense transitive PpGNT1 siRNAs, 5#-GTGAATTTCCTGCAGCATTTAGATGAAAATCCTCCCAAGACAAGG-3#; detection of antisense transitive PpGNT1 siRNAs, 5#-CCTTGTCTTGGGAGGATTTTCATCTAAATGCTGCAGGAAATTCAC-3#; detection of the U6snRNA control, 5#-GGGGCCATGCTAATCTTCTCTG-3#. Blot hybridization was carried out in 0.05 M sodium phosphate (pH 7.2), 1 mM EDTA, 63 SSC, 13 Denhardt’s, 5% SDS. Blots were washed three times with 23 SSC, 0.2% SDS, and one time with 13 SSC, 0.1% SDS. Blots were hybridized and washed at temperatures 5°C below the melting temperature of the oligonucleotide. Detection of mRNA Cleavage Products Synthesis of 5# RACE-ready cDNAs was carried out according to Zhu et al. (2001) using the BD Smart RACE cDNA amplification kit (CLONTECH). Subsequent PCR reactions were performed using the UPM Primer-Mix supplied with the kit in combination with gene-specific primers derived from the target gene PpFtsZ2-1 (5#-GACTATCCCTGTGGCTCGCTCAATACCC-3#), a PpFtsZ2-1 nested primer (5#-CCAATAGAGGAGATTGGATTGCGCTCA-3#), a gene-specific primer derived from the gene PpFtsZ2-2 (5#-CCAATACGCGACTTGCATACTGCATAC-3#), and a gene-specific primer derived from the gene PpGNT1 (5#-ACTTTGGAGCAAGTTCTTCCCAGGTGGA-3#). Amplification products corresponding to the size of the expected cleavage products were excised from the gel, cloned and sequenced. Total RNA Gel Blots Twenty micrograms of total RNA were mixed with an equal volume of RNA denaturing buffer and incubated for 10 min at 65°C. The RNA gel was blotted to a Hybond-N+ nylon membrane (GE Healthcare) using a Turbo blotter (Schleicher & Schuell) with 203 SSC. RNA was fixed by UV crosslinking. Hybridization was carried out with an [a-32P]dCTP-labeled DNA probe derived from PpFtsZ2-1 amplified with primers 5#-AGACACGTCATTAAAGGT-3# and 5#-TAAGTGTGCAAGAAGATA-3#, a probe derived from PpFtsZ2-2 amplified with primers 5#-AAGGTAGTACAAATGGGATGGC-3# and 5#-TCATTAAGTCTGCCACTCCAC-3#, and a probe derived from PpGNT1 amplified with primers 5#-GCACTCTCGATCGGATTCTC-3# and 5#-TCGGGAGAGATTTCCATGTC-3#. DNA labeling was carried out with the Rediprime II random prime labeling kit (GE Healthcare). Prehybridization was carried out at 67°C for 4 h, subsequent hybridization at 67°C overnight. Blots were washed three times with 0.53 SSC, 0.1% SDS, and one time with 13 SSC, 0.1% SDS at 67°C. Signals were detected using the Molecular Imager FX (Bio-Rad). Microscopy For microscopic analyses, we used the Axioplan 2 epifluorescence microscope equipped with an AttoArc HBO 100-W bulb and the stereomicroscope Stemi 2000-C (Carl Zeiss). Image acquisition was achieved using the Canon digital camera EOS D300 (Canon), and confocal laser-scanning microscopy (TCS 4D; Leica). 692 Supplemental Figure S1. Analysis of Physcomitrella and Arabidopsis miR319 precursors. Supplemental Figure S2. Impeded plastid division and formation of macrochloroplasts in PpFtsZ2-1-amiRNA overexpressors. Supplemental Figure S3. Nucleotide sequence alignment of PpFtsZ2-1 and PpFtsZ2-2 coding regions. ACKNOWLEDGMENTS We thank Andras Viczian for providing the pPCV expression vector, Enas Qudeimat for assisting with confocal laser-scanning microscopy, and Björn Voß and Isam Fattash for advice on miR319 precursor sequence analysis. Received August 13, 2008; accepted August 22, 2008; published August 27, 2008. LITERATURE CITED Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134–1151 Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5: 337–350 Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43: 837–848 Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13: 343–349 Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127: 565–577 Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19: 1750–1769 Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297 Baulcombe D (2004) RNA silencing in plants. Nature 431: 356–363 Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133: 470–474 Bezanilla M, Perroud PF, Pan A, Klueh P, Quatrano RS (2005) An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Plant Biol 7: 251–257 Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185–1190 Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8: 884–896 de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inze D, Castresana C (1992) Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602 Egener T, Granado J, Guitton MC, Hohe A, Holtorf H, Lucht JM, Rensing SA, Schlink K, Schulte J, Schween G, et al (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2: 6 Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, et al (2007) Highthroughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2: e219 Fattash I, Voss B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid Plant Physiol. Vol. 148, 2008 Artificial MicroRNAs in Physcomitrella patens expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7: 13 Frank W, Decker EL, Reski R (2005) Molecular tools to study Physcomitrella patens. Plant Biol 7: 220–227 Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952 Hohe A, Egener T, Lucht JM, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44: 339–347 Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19: 926–942 Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57: 19–53 Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467–8471 Koprivova A, Altmann F, Gorr G, Kopriva S, Reski R, Decker EL (2003) N-glycosylation in the moss Physcomitrella patens is organized similarly to that in higher plants. Plant Biol 5: 582–591 Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101: 12753–12758 Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854 Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrowlike mRNA targets directed by a class of Arabidopsis miRNA. Science 297: 2053–2056 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5# region. EMBO J 23: 3356–3364 Matzke MA, Primig M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649 Moissiard G, Parizotto EA, Himber C, Voinnet O (2007) Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA 13: 1268–1278 Myers JW, Jones JT, Meyer T, Ferrell JE Jr (2003) Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 21: 324–328 Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289 Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24: 1420–1428 Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53: 674–690 Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315: 241–244 Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, Plant Physiol. Vol. 148, 2008 and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18: 2237–2242 Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81: 6690–6699 Quatrano RS, McDaniel SF, Khandelwal A, Perroud PF, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10: 182–189 Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407–3425 Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69 Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6: 3343–3353 Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53: 477–501 Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121–1133 Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527 Schween G, Fleig S, Reski R (2002) High-throughput-PCR screen of 15,000 transgenic Physcomitrella plants. Plant Mol Biol Rep 20: 43–47 Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368–4373 Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006) Identification of trans-acting siRNAs in moss and an RNAdependent RNA polymerase required for their biogenesis. Plant J 48: 511–521 Tretter EM, Alvarez JP, Eshed Y, Bowman JL (2008) Activity range of Arabidopsis small RNAs derived from different biogenesis pathways. Plant Physiol 147: 58–62 Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14: 857–867 Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18: 1187–1197 Vidali L, Augustine RC, Kleinman KP, Bezanilla M (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell 19: 3705–3722 Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3: e1829 Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411: 834–842 Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333 Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30: 892–897 693 Supplemental Figure S1 A 5’ 3’ ppt-MIR319a 5’ 3’ ppt-MIR319b 5’ 3’ ppt-MIR319c 5’ 3’ ppt-MIR319d 5’ 3’ ath-MIR319a B miRNA* miRNA Supplemental Figure S1. Analysis of Arabidopsis and Physcomitrella miRNA319 precursors. A, Secondary structures of foldbacks of Physcomitrella patens miR319a-d precursors (ppt-MIR319a, b, c, d) and Arabidopsis thaliana miR319a precursor (ath-MIR319a). The mature miRNA is highlighted in green with uppercase letters.B, Multiple sequence alignment of Physcomitrella patens miR319a-d precursors (ppt-MIR319a, b, c, d) and the Arabidopsis thaliana miR319a precursor (ath-MIR319a). Black boxes with underlined sequences indicate miRNA/miRNA* sequences. Supplemental Figure S2 A PpFtsZ2-1-amiRNA lines WT 1 3 2 Protonema - - - 100µm - Leaves - - - - B Protonema - -- Leaves - -- 50µm Supplemental Figure S2. Impeded plastid divison and formation of macrochloroplasts in PpFtsZ2-1-amiRNA overexpressors. A, Light microscopy from protonema and leaves of wild type (WT) and three PpFtsZ2-1-amiRNA overexpression lines (1-3) (Size bars: 100 µm). B, Confocal laser scanning microscopy from protonema and leaves of wild type (WT) and three PpFtsZ2-1amiRNA overexpression lines (1-3) (Size bars: 50 µm). Red: chlorophyll autofluorescence in plastids. Supplemental Figure S3 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 1 ATGGCGTTGTTTAGTGGGTGCTCGGGATGGGCGGGGCTCAAGGTGTCATC |||||| |||| | | ||||||| | || ||| |||| |||| || 1 ATGGCGCTGTTAGGCAGTCGCTCGGGCTTGGTGGGCCTCAGGGTGAGCTC 50 50 51 GCGAGTGGGTGGGGAGGCTTGCAGAA-----CCCCCCCCGTT-GTTCACT 94 ||||||||| |||||| | |||| ||| | || | || || 51 GCGAGTGGGCGGGGAGAGCAGTAGAATAGTGCCCGCGACGAGAGATCGCT 100 95 GCAGCATGCATTCTAGGTCAAGCGTTCGAGCTCTACGCCGAATCGACCGA 144 | || |||| | ||| | ||| ||| || | || || | || | 101 TCTGCGTGCACTTGAGGCCGAGCACTCGGGCGCATCGTCGTCTGGATAGG 150 145 GCTTTGAGTAATGGGGGTCTTTGCAATTTTGGAGAGAGGGACTTGTTGGC 194 || | | |||| | ||||||||| | | |||||||||| |||| 151 ACTGTAGGGAATGAGAGTCTTTGCACTCCCCGGGAGAGGGACT---TGGC 197 195 TTTGGAAGCAAAATC---GCCTTTGCGATGTGAACCCCCCTCGA------ 235 | ||| | |||| || | |||| || | | || 198 TGCGGAGCCTAAATTCTTGCACACGGGATGGGAGTCTTCTTCTTCTTCTT 247 236 ------------GCGTGATGCGGAATCCTGTCATGGCATTTGAAGGAAGC 273 ||| || ||| || |||| |||||||| ||| | 248 CTTCTTCTTCTTGCGAGACTGGGATACCCGTCACGGCATTTGGAGGTAAT 297 274 GGAGACGACACTGGAAGTTATAACGAAGCGAAAATTAAAGTAATAGGGGT 323 |||||||| || |||| || || |||||||||||||| ||||| || 298 GGAGACGAATATGAGAGTTCCAATGAGGCGAAAATTAAAGTGATAGGCGT 347 324 CGGAGGTGGGGGTTCCAACGCCGTAAACCGAATGCTTGAGAGCGAGATGC 373 || || ||||||||||||||||| |||||||||||||||||||| |||| 348 GGGGGGCGGGGGTTCCAACGCCGTCAACCGAATGCTTGAGAGCGAAATGC 397 374 AAGGGGTAGAATTTTGGATCGTGAATACTGATGCGCAGGCTATGGCCTTG 423 |||| || ||||| ||||| |||||||| ||||| ||||| ||||| ||| 398 AAGGTGTGGAATTCTGGATTGTGAATACGGATGCTCAGGCAATGGCGTTG 447 424 TCCCCTGTTCCGGCTCAGAATCGTCTGCAGATTGGGCAAAAATTGACGAG 473 || || ||||||||||||||||||||||||||||| || ||||||||| | 448 TCTCCGGTTCCGGCTCAGAATCGTCTGCAGATTGGTCAGAAATTGACGCG 497 474 AGGTCTGGGGGCGGGCGGGAATCCAGAAATAGGGTGTAGTGCTGCGGAAG 523 ||||||||||||||| || ||||| ||||||||||||||||| ||||||| 498 AGGTCTGGGGGCGGGTGGTAATCCGGAAATAGGGTGTAGTGCCGCGGAAG 547 524 AGAGCAAAGCTATGGTGGAAGAAGCCCTACGCGGAGCTGACATGGTTTTC 573 |||||||||||||||||||||||||| ||||||||||||||||||||||| 548 AGAGCAAAGCTATGGTGGAAGAAGCCTTACGCGGAGCTGACATGGTTTTC 597 574 GTAACGGCGGGTATGGGTGGCGGCACTGGCAGCGGTGCAGCACCAATAAT 623 || || ||||| |||||||| ||||||||||||||||| |||||||| || 598 GTTACAGCGGGCATGGGTGGTGGCACTGGCAGCGGTGCTGCACCAATCAT 647 624 TGCGGGTGTGGCGAAGCAGTTGGGAATTCTTACTGTAGGAATAGTTACTA 673 ||| ||||| |||||||| |||||||||||||| || |||||||| |||| 648 TGCTGGTGTAGCGAAGCAATTGGGAATTCTTACCGTGGGAATAGTAACTA 697 674 CTCCTTTCGCCTTTGAAGGGCGGAGACGAGCTGTCCAAGCCCACGAGGGT 723 | ||||| ||||||||||||||||||||| | || ||||| ||||| || 698 CGCCTTTTGCCTTTGAAGGGCGGAGACGATCCGTTCAAGCTCACGAAGGC 747 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 FtsZ2-1 FtsZ2-2 724 ATTGCAGCTCTCAAAAATAACGTGGACACGTTAATTACGATTCCAAACAA || || |||||||||||||| || ||||| ||||||||||| |||||||| 748 ATCGCGGCTCTCAAAAATAATGTTGACACTTTAATTACGATACCAAACAA 773 824 CAAACTTTTGACTGCAGTTGCGCAGTCTACCCCAGTGACGGAAGCGTTCA ||| ||||||||||||||||||||||||||||| ||||||||||| |||| 798 CAAGCTTTTGACTGCAGTTGCGCAGTCTACCCCCGTGACGGAAGCATTCA 823 824 ATCTTGCAGACGACATCCTTCGGCAGGGAGTGCGGGGTATTTCAGATATT ||||||| || ||||||||||||||||||||||||||||||||||||||| 848 ATCTTGCCGATGACATCCTTCGGCAGGGAGTGCGGGGTATTTCAGATATT 873 874 ATCACGGTCCCTGGGCTGGTTAACGTAGATTTTGCCGACGTGCGGGCGAT ||||| || ||||| || |||||||| || ||||| || ||||||||||| 898 ATCACTGTTCCTGGTCTCGTTAACGTGGACTTTGCGGATGTGCGGGCGAT 923 924 CATGGCTAATGCAGGATCATCTTTGATGGGCATAGGGACCGCCACAGGTA |||||| ||||||||||||||||||||||| || || ||||| ||||| | 948 CATGGCCAATGCAGGATCATCTTTGATGGGAATTGGAACCGCTACAGGGA 973 797 847 897 947 997 974 AGTCAAGAGCTAGAGAAGCAGCATTGAGCGCAATCCAATCTCCTCTATTG 1023 |||||| ||||||||| ||||||||||| || || || ||||| | ||| 998 AGTCAAAAGCTAGAGAGGCAGCATTGAGTGCCATTCAGTCTCCATTGTTG 1047 1024 GATGTGGGTATTGAGCGAGCCACAGGGATAGTCTGGAATATCACTGGGGG 1073 ||||||||||||||||||||||||||||| || |||||||| |||||||| 1048 GATGTGGGTATTGAGCGAGCCACAGGGATCGTTTGGAATATTACTGGGGG 1097 1074 AAGCGACATGACTCTCTTTGAGGTAAATGCTGCAGCAGAGGTGATTTATG 1123 |||||||||||| |||||||| || ||||||||||||||||| || |||| 1098 AAGCGACATGACCCTCTTTGAAGTCAATGCTGCAGCAGAGGTAATCTATG 1147 1124 ATTTGGTCGATCCCAACGCAAATCTTATTTTTGGAGCCGTAGTAGACGAA 1173 ||||||| ||||| ||||||||||||||||| |||||||||||||||||| 1148 ATTTGGTGGATCCTAACGCAAATCTTATTTTCGGAGCCGTAGTAGACGAA 1197 1174 GCACTTCATGGCCAAGTTAGTATAACTTTGATAGCAACAGGATTTAGTTC 1223 |||||||||| |||| |||| ||||| || ||||||||||| |||||||| 1198 GCACTTCATGACCAAATTAGCATAACCTTAATAGCAACAGGGTTTAGTTC 1247 1224 TCAAGATGAACCTGATGCGCGTAGTATGCAAAATGTGAGTCGTATTTTGG 1273 ||||||||| |||||||| || |||||||| ||| ||||| | |||| 1248 TCAAGATGATCCTGATGCACGGAGTATGCAGTATGCAAGTCGCGTATTGG 1297 1274 ATGGACAAGCTGGTCGATCACCGACAGGTTTATCTCAAGGCAGCAATGGC 1323 | || ||||||||||||||| ||| | | ||| | ||| ||||| || 1298 AGGGTCAAGCTGGTCGATCATCGATGGCCTCATCCCGAGGTGGCAATAGC 1347 1324 TCTGCGATCAATATACCAAGTTTCTTAAGGAAGCGAGGCCAGACACGTCA 1373 ||| |||| || ||||||| ||||||| | |||||||| || | 1348 TCTACGATTAACATACCAAATTTCTTACGAAAGCGAGGGCAAAGG----- 1392 1374 TTAA 1377 || 1393 –TAG 1395 Supplemental Figure S3. Nucleotide sequence alignment of PpFtsZ2-1 and PpFtsZ2-2 coding regions. The highly conserved central region with 89% sequence identity is highlighted in yellow. The PpFtsZ2-1-amiRNA target site is highlighted in green. Chapter IV Appendices 4 Chapter IV: Appendices 4.1 Flow cytometric measurements (FCM) For ploidy level determination 10-20 mL of protonema liquid culture were used. The plant material was harvested four to seven days after the last sub-culturing, resuspended with 2 mL of DAPI buffer, and chopped up with a razor blade in a Petri dish. The solution was filtered through a sieve of 30 μm pore size prior to measuring the fluorescence intensity with a PAS cell analyser (Partec, Münster) using a 100 W high-pressure mercury lamp for detection. The ploidy level was derived from the resulting histograms. For Physcomitrella, a prominent peak at a fluorescence intensity of about 200 indicates a haploid genotype, whereas signals at fluorescence intensities of about 400 represent a diploid plant. Figure 1: Flow cytometric analysis. Flow cytometric histograms of protonema from WT and ΔPpDCL1b mutants (1-4) grown in parallel in Knop medium. The abscissa represents the channel numbers corresponding to the relative fluorescence intensities of analyzed particles (linear mode), while the ordinate indicates the number of events counted. 136 Chapter IV 4.2 Appendices Physcomitrella patens DCL1b (PpDCL1b) mRNA LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM DQ675601 6052 bp mRNA linear PLN 03-JUL-2008 Physcomitrella patens Dicer-like 1b protein (DCL1b) mRNA, complete cds. DQ675601 DQ675601.1 GI: 110520366 Physcomitrella patens Physcomitrella patens Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Bryophyta; Moss Superclass V; Bryopsida; Funariidae; Funariales; Funariaceae; Physcomitrella REFERENCE 1 (bases 1 to 6052) AUTHORS Khraiwesh, B., Seumel, G.I., Reski, R. and Frank, W. TITLE Direct genetic evidence for the involvement of a Dicer-like gene in microRNA mediated target cleavage in plants. JOURNAL Unpublished REFERENCE 2 (bases 1 to 6052) AUTHORS Khraiwesh, B., Seumel, G.I., Reski,R. and Frank,W. TITLE Direct Submission JOURNAL Submitted (06-JUN-2006) Plant Biotechnology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany FEATURES Location/Qualifiers Source 1..6052 /organism="Physcomitrella patens" /mol_type="mRNA" /db_xref="taxon: 3218" Gene 1..6052 /gene="DCL1b" CDS 607..5694 /gene="DCL1b" /codon_start=1 /product="Dicer-like 1b protein" /protein_id="ABG74922.1" /db_xref="GI:110520367" /translation="MRRARSVRLENGLNGKDEGEEKARTYQLEVLAQAKV KITVAFLDTGAGKTLIAILLMKHKHQVLREYDKRMLALFLVPKVPLVYQQADVIRNGTKFSVGHYCGEMGSRFWD ARGWQREFDTKDVFVMTAQILLNILRHSIVKMEAIHLLILDECHHAVKKHPYSLVMSEFYLMTPKDKRPCVFGMI ASPVNLKGVSNQEDCAIEIRNLESKLDSIVCTIRDRKELEKHVPLPSETMILYDKPALLFSLRKERKQMEATVEK AANASVRRSKWKCMGARDAGAKEELQLVYSVAERTESDGAASLSQKLRAITYALDELGQWCAYKVSLGYLTSLHN DERVNHQLDVKFQKLYLKKVCTLLRCSLREGAAGWEVPAEIGESEGDKAQDPMDVEEGSFLTLVSVGEHLDEILG AAVADGKVTPKVQSLIKVLIGYQHTDDFRAIIFVERVWVGVTLCRSLQSCPSLKFVKCASLIGHNNNQDMPTRQM QETISKFRDGRVTLLVATSVAAEGLDIRQCNVVIRFDLAKTVLAYIQSRGRARKPGSDYILMLERGNLQHEAFFR NAKNSEETLRKEAIERTDLGEKRENAILASIDIGEGEIYQVPATGAVVSMNSAVGLIHFYCSQLPSDRYSLLRPE FIMNKIEDQRGAIRYSCRLQLPCHAPFEAVEGPECNSMRGAQQSCVLEGLQKMHEMGAFTDMLLSNKGSREEAAK LEGSEEGESLPGTSRHREYYPEGIADILKGDRIVAEKDSDTKEGSKVLVFMYTVKCENVGFSRDSLLTETSDFTL LVGQQLHDQVLTMTINLFVANPTLLITMSWKKRDLDCSNSQLTELKSFHVRLMSIVLDVNVEPATTRWDPAKAYL FAPVLHKDASDPKDLVDWVVMRRTIETDSWSNPLQRASPDVNLGTDERALGGDRREYGFGKLRCSLAFGQGAHPT YGARGAKAQFDVVKATGLLPTSDMVEETTVQEVPPEGKLLIVDGFVEVEVLVGRIVTAVHSGKRLYVDSVRFDMT ADSSFPQKDGYLGPLEYTSYADYYKQKYGVELVCKKQPLLRGRGVSHCKNLLSPRFETSGDSLDALDKTYYVMLP PELCLIHPLPGSLVRGAQRLPSVMRRVESMLLAIQLKHQIDYPIAASKVALTAASGQETSYERAELLSDAYLEWV VSHRLFLKFPSKHEGQLTRMRQKIVSNSVLYQHALEKGLQSYIQADRFAPSRWAAPGVPPAFDEDLRDGDDSDKE SKPEVEREVVEIVGEEGEIVKELNTESENMEDGEIEGDSGSYRVLSSKTLADVVEVFMGMYYVEGGGEAATHFMN WVGIPVEDDVETDLATGGCQVPETVMRSIDFSSLQKNVGHEFRERSLLVEAITHASRPSLGVPCYQRLEFVGDAV LDHLITRYLFFKYTNLPPGRLTDLRAAAVNNENFARVAVKHSYHLHLRHGSTALETQIRNFVNDIHSELDKPGVN SFGLGDFKAPKVLGDIFESIAGALFLDARLDTHQVWKVFEPLLQPMVSPETLPIHPVRGLQERCQQEAEGLEYKV SRAESVATVEVYVDGVQIGSTQSAQKKMAQKLGARNALVKLKDKEVIKVKAEAENGDLNAGKSSKNGHTNFTRKT INDLCLKRQWPMPQYKCVLESGPAHAKKFTLSVRVLTTTDGWTEECVGEPMASVKKAKDSAALVLLATLRRSYPL RNNIIDC" U U U U 137 Chapter IV Appendices ORIGIN 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341 2401 2461 2521 2581 2641 2701 2761 2821 2881 2941 3001 3061 3121 3181 3241 3301 3361 3421 3481 aacgcgggga tgaattgtca gtttgatgga gaggctcgtg atgaagggta tctgtgtcga gcagggaggg agaagagggg tgacgcgcga ctcgggagcg tttgaaatga ggtgaggaga acggttgcat cataagcacc aaagtaccgc ggtcactact tttgatacca agcattgtaa aagaaacatc cgaccgtgtg gaagattgtg atcagggatc tacgataagc gtagaaaagg gatgcgggtg gatggcgcag ggtcaatggt agggttaatc cttctgcgat gagtctgagg ctcgtatcag gtgactccga ttccgagcta cagagttgcc caagacatgc acgttgctgg gtcatccgtt cggaagcctg ttttttcgga gatctgggtg atttaccagg cacttctact atgaacaaaa tgccatgctc cagtcctgtg ctattatcta gagtctcttc ctgaagggcg ctcgtattca accgagacat atgacaataa agggatttgg atgagcattg gcgtatctct tgggtcgtta tcacctgatg gggtttggaa gctcgtggcg gacatggtgg ggtggagaag agtaaggaac gcaggtgggg atcgagggaa gaggtggtgg ggtctaggtc gaggaagcga gcggcatttc cagaccttgg atttgttgcg gaagggcgcg aggcgcggac ttctagacac aggtgttgcg tcgtctacca gcggagagat aagatgtttt aaatggaagc cctattcttt tctttgggat caatagagat ggaaagagct cggccttgct ctgctaatgc ctaaagagga ctagtctttc gtgcttacaa atcagttaga gcagtctacg gcgataaagc tgggtgaaca aggtgcagtc ttatatttgt cttcattgaa cgacacggca tggctacaag ttgatcttgc gttcagatta atgcaaaaaa aaaaacggga tgccagccac gctctcagct ttgaggatca cgtttgaagc tgcttgaagg ataaaggaag ctggcacatc atcggatagt tgtacacggt cagactttac atctttttgt attgctctaa ttttagacgt ttgctccagt tgagaaggac tgaacttggg aactgcgatg ctaaagctca aggagacaac tggctctttt gattcaatta agcggagggg gaggagccgg tggtgtgaga agagagaggc aggtcggctt catgaattgg attggcagag tcgtctcgtg aagcgtgaga ttatcagctt gggcgctggg ggagtatgac gcaagcagat gggatcaaga tgtaatgacc cattcatcta ggtgatgtct gatagcatcg tcgaaattta cgaaaagcac tttctcgttg aagtgtcaga actgcaactt tcaaaagctt ggtctcgctg cgtgaagttt tgaaggtgct acaagatcca tttggatgag tttaattaag ggagcgagtc gtttgtgaaa gatgcaggag cgtggccgca taaaaccgtg tattttaatg tagtgaggag gaatgcgatt tggggcagtc tcccagtgac aagaggtgct tgtggaaggc cttgcaaaaa tagggaagaa ccgtcatcga ggctgagaaa gaagtgtgaa cttacttgtc cgcaaacccg ttcccagttg aaatgtcgag tctgcataag gatcgagact gactgacgaa tagtctggcc atttgatgtt tgtgcaggaa tctagcacta gagcgccgcg tgaaatgcgc gagagcgacg ggattcgtca ctaaagagag tcgaatatgc gagattatcg gggattgcga atcgggagag ctggagaatg gaagtgctgg aagaccctaa aagcgtatgc gtgattcgca ttttgggacg gcacagattc cttattctcg gaattctatc cctgtgaacc gaaagcaagt gtgcctttgc cggaaagaga cgcagcaaat gtgtacagtg agagccatta ggatatctga caaaagttgt gcagggtggg atggatgtgg attcttgggg gttttaatag tgggtgggtg tgtgccagtc actatttcca gagggattag ttagcctaca cttgagagag actttacgga ctggcctcca gtgagcatga aggtattctc ataagatact ccagaatgta atgcacgaaa gctgctaagt gaatattatc gattcggata aatgttggct ggccaacagc actttactga actgagctca ccggcaacaa gatgcctccg gattcatgga cgtgctcttg tttgggcagg gtgaaagcca gtacctcccg tccctctcga aattgattga aagcaagggg ggagagttgg ggaggagcag ggcggagatg ctttgatgat agattaccac ccggcgatca agagtgggag ggctgaatgg ctcaggcgaa ttgcgattct tcgctctgtt acggcacaaa cccgagggtg ttttgaacat atgagtgcca ttatgacacc tcaaaggggt tggactcgat cgtcagagac gaaaacagat ggaaatgcat tcgcggagag cctatgcact caagtcttca acttgaagaa aggtacctgc aagaaggaag ccgctgtagc gttatcagca ttacgctttg tgatagggca agtttcgaga atattcgcca tccagtctcg gaaatctgca aggaggctat ttgacattgg actcagctgt tcttgcgtcc cgtgcagact attctatgcg tgggggcatt tggagggtag cagaggggat caaaggaagg tctcgagaga ttcatgacca tcacgatgag agagttttca ctcgttggga atcctaaaga gtaatcccct gtggggatcg gagcgcatcc caggtctact agggtaagct ggagcggagg attacgagtg tgtacatgac cgaggctgga ggagaggcgg acgggagaca aggcgcgatg ggttccatag aggatggagg cggtcgcgtg gaaggatgag ggtgaagatt gttgatgaag cctcgtccct gtttagtgtt gcagcgagaa ccttaggcat ccatgccgtg taaagataag atcaaaccag agtgtgtaca aatgattctg ggaggccact gggcgctcgg aacggaaagc tgatgaatta taatgatgaa ggtttgtact tgaaattgga cttcctgact agatggaaaa tacggatgat caggtctttg caacaataac tggacgggtg atgtaatgtg tggtcgtgct acatgaggcg tgaaagaact ggaaggggag aggtcttatt tgagttcatt gcagttgcct aggagcgcag cacggacatg tgaagaggga tgcagatatt cagcaaggtg cagccttttg ggtgttaacc ctggaaaaag tgtgaggctt tcccgccaag cttggtggac ccagcgcgca tagagagtac aacgtatggt tcctacctca gttgatagtg 138 Chapter IV 3541 3601 3661 3721 3781 3841 3901 3961 4021 4081 4141 4201 4261 4321 4381 4441 4501 4561 4621 4681 4741 4801 4861 4921 4981 5041 5101 5161 5221 5281 5341 5401 5461 5521 5581 5641 5701 5761 5821 5881 5941 6001 gatggttttg aagaggcttt aaggatggat tacggtgtcg tgcaaaaatt aagacgtatt ttggtgagag gccatacaac gctgcgtctg ctcgaatggg cttacacgta aaaggtcttc ggagtgcctc aaacctgaag gaactaaata tatcgagtgc tatgtggagg gagtttgatg atgcggagca agtttattgg caaaggctgg tttaaatata aacgaaaatt tcaaccgctt aagcctggag attttcgaat tggaaggttt ccagtacgag tctcgtgcag acgcaaagtg ttgaaggata ggaaaatcga cttaagagac gctaagaagt tgtgttgggg ttggctactt ccaaattgat atatccgtgc tagccagcgc catgatatgt gttcaaagaa tgtctttcat Appendices ttgaagttga atgtggattc accttggtcc agttggtttg tattgtcgcc atgtgatgct gcgcacaaag taaagcacca gtcaagagac ttgttagtca tgagacagaa agagttacat ctgcattcga ttgaaagaga cagaaagtga tttcgagtaa ggggggggga acgtggagac tagacttttc tagaggccat agtttgtggg ctaatttgcc tcgcacgtgt tagaaactca tgaactcttt ccattgcagg ttgagccttt ggttgcagga agagtgttgc ctcagaagaa aggaggtgat gcaagaacgg agtggccgat ttacgctctc agcctatggc tgagacgatc cagaaaacat cccgtcaaca cagttcgttc tttgtctttt agtagtgagt ttttcagttt agtattggtg ggtgcgcttt actggaatac caagaaacag acgttttgag gccacctgag attgccatcg aatcgattac attcagctat tcgattgttc aattgtcagc tcaggccgac tgaggacttg agtagtggag aaatatggaa aaccttggca ggctgctact agacttagcc atcattacaa cacgcacgcg ggatgccgtg cccaggtagg tgctgtgaag gattcgcaat tggactaggg cgctctattc gttgcagccc gcgttgtcaa gaccgtggag aatggcccaa caaagtgaaa tcacactaac gccacagtac tgtacgggtt gagtgtgaag atatcctttg acagaactac taaatttgtg aaggagctgc tggatcaaat ttttgtaccg ttcagagaaa ggaaggattg gacatgacag acatcgtatg cctctgttga acctctggcg ctttgcctta gtcatgagac cctattgctg gagcgtgcag ctgaagttcc aattccgttc cgctttgcac agagatggcg attgtcggtg gacggtgaaa gacgtggtag cacttcatga acaggtggct aaaaacgttg tctcgaccat ttggaccatc ttgaccgatt cactcgtatc ttcgtgaatg gattttaagg ctggacgctc atggtgtccc caagaagctg gtgtatgtag aaattaggtg gctgaggcag ttcactcgca aaatgcgttc ctgaccacca aaagctaagg cgtaataata ataccggcct aatgcacaaa aggccagctc tgtgagagac taagacagct aaaaaaaaaa ttactgcggt ccgacagctc cggattatta ggggtcgtgg actctctgga tacatcctct gtgtagagag cttcgaaggt agcttttaag ctagtaaaca tgtatcaaca cgtcccggtg atgattcgga aggaaggtga ttgaaggtga aggtattcat actgggtagg gccaagttcc gccatgaatt cgttgggagt tgattacacg tgcgagctgc atcttcattt atatacactc cccctaaagt gtcttgacac cagagacatt aaggtctgga acggtgtaca ctcgtaatgc agaatggtga aaacaattaa tggagagcgg ctgatggatg actctgcagc ttatagactg gtgggtgctt tcacaaggtt agccctcgtt agagcacagg gcgtctctcc aaaaaaaaaa gcattctggg ttttcctcaa caaacaaaag ggtttctcat tgccttggat tccgggatcc catgttgctt agcgttgacg cgacgcgtac tgaggggcag tgccctagag ggccgcaccg taaggagtcg aattgttaag ttccggttcc gggaatgtat cattcctgtg tgaaaccgtt tcgtgaacga tccttgctac ttatctattc tgcagtgaat gcggcatggt ggagttagac gctgggtgat acaccaagtg gccgatccat gtacaaagtg gataggttct gttggtcaaa cttgaacgct cgacctttgt accagcgcat gaccgaagaa tcttgtactt ctaaaatgac caggttcaac tggatagcac ttataccttt tcagtatacc ctcttaattt aa 139 Chapter IV 4.3 Appendices DNA vectors Origin of DNA vectors that were used for cloning and transformations Name pCR4-TOPO Backbone pCR4-TOPO Insert PpDCL1b cDNA region; nptII Reference Invitrogen, Karlsruhe PpFtsZ2-1-amiRNA and PpGNT1pPCV (Figure 2) ---- amiRNA sequences with A. Koncz, C. et al., thaliana miRNA319a Precursor 1989 Figure 2: pPCV plant overexpression vector containing a double 35S promoter, nos terminator and hpt selection marker cassette. 140 Chapter IV 4.4 Appendices Genes downregulated in ΔPpDCL1b mutants Cosmoss Annotation Fold change -1.46 -1.49 -1.59 -1.82 -1.59 -1.80 -3.15 -2.21 -1.60 -1.66 -1.43 -1.34 -1.50 PP_10382_C1 PP_10385_C1 PP_10479_C1 PP_10658_C1 PP_1073_C1 PP_10745_C1 PP_10817_C1 PP_11302_C1 PP_11331_C1 PP_11112_C1 PP_11390_C1 PP_1146_C3 PP_11513_C1 PP_11795_C1 PP020018263R **: Homolog of OSJNBa0003O19.20|putative MYC transcription factor ***: Q7XN04 OSJNBb0038F03.7 protein. **: Homolog of Similar to phytochrome and flowering time 1 protein ***: Q8RYB8 Aldehyde dehydrogenase Aldh21A1. **: Homolog of Roc1-related|o_sativa|chr_8|P0020B10|4196 **: Homolog of (AB032182) homeobox protein PpHB10 [Physcomitrella patens] **: Homolog of aldehyde dehydrogenase, putative|o_sativa|chr_11|OSJNBa0052O08|5272 **: Homolog of GRAS family transcription factor, putative|o_sativa|chr_1|P0406G08|2927 **: Homolog of Helicase conserved C-terminal domain, ***: Q84WK0 At4g33880. **: Homolog of (68417.m02544 vernalization 2 protein VRN2) ***: Q8SA80 Disease-resistent-related protein. **: Homolog of 68416.m05958 protein kinase family protein contains eukaryotic protein kinase domain ***: PSAG_ARATH Photosystem I reaction center subunit V, chloroplast precursor ***: Q6Z5T6 Putative intensifier. ***: Q8S1X3 Putative SUVH4. **: Homolog of AP2 domain, putative|o_sativa|chr_6|P0021C04|3631 **: Homolog of AT3g02790/F13E7_27|o_sativa|chr_6|P0621D05|1946 **: Homolog of (AB084898) mitochondrial aldehyde dehydrogenase [Sorghum bicolor] not annotated Physcomitrella patens ***: Q8X1E7 Histidine kinase. ***: Q9M551 Polyubiquitin. ***: Q948P1 Peroxisomal ascorbate peroxidase. ***: Q41067 Polyubiquitin. ***: Q9LV44 Similarity to signal peptidase. ***: Q9M077 Putative serine/threonine protein kinase. ***: Q93V58 Putative serine threonine-protein kinase. **: Homolog of 68418.m05603 YEATS family protein contains Pfam domain PP_12005_C1 PP_12101_C1 PP_12167_C1 PP_12301_C1 PP_12301_C1 PP_12365_C2 PP_12367_C1 PP_125_C1 PP_12576_C1 PP_12599_C1 PP_12681_C1 PP_12858_C1 PP_12940_C1 PP_13101_C1 PP_13149_C1 PP_13160_C1 PP_13170_C1 PP_13256_C1 PP_13508_C1 **: Homolog of Neutral/alkaline nonlysosomal ceramidase|o_sativa|chr_1|P0501G01|2708 ***: Q9ARE4 ZF-HD homeobox protein. **: Homolog of (AY034888) aldehyde dehydrogenase Aldh21A1 [Tortula ruralis] contains: (COIL:coil) contains: (COIL:coil) ***: Q9FH40 Similarity to unknown protein (TAF14b) (Hypothetical protein At5g45600). ***: Q8W314 Putative dehydratase/deaminase. **: Homolog of (68415.m03211 plectin-related contains **: Homolog of SNF2 family N-terminal domain **: Homolog of expressed protein|o_sativa|chr_4|OSJNBa0013K16|5362 ***: Q7XPK1 OSJNBa0087O24.9 protein. **: Homolog of 68417.m05252 expressed protein contains Pfam profile PF04784 ***: Q7Y1Z3 Putative small nuclear ribonucleoprotein Prp4p. ***: Q43303 Histone H3 (Fragment). ***: Q9ZPN6 Transcription factor MYC7E (Fragment). ***: RL71_ARATH 60S ribosomal protein L7-1. ***: Q9SII9 Putative ubiquitin protein. **: Homolog of expressed protein|o_sativa|chr_2|P0506A08|3865 contains: Protein kinase-like(InterPro:IPR011009,SUPERFAMILY:SSF56112) Sequence ID EST BJ165956 BJ172212 BJ200093 BJ200754 BJ579811 BJ580674 BJ583348 BJ583460 BJ587267 BJ589432 BJ601044 PP_10059_C1 PP_10115_C2 -3.18 -1.58 -1.90 -1.50 -1.70 -1.45 -1.39 -2.11 -1.86 -2.22 -1.66 -1.60 -1.87 -1.35 -1.50 -1.58 -1.65 -4.19 -2.40 -2.06 -1.35 -1.71 -1.25 -1.70 -2.34 -2.51 -1.74 -1.42 -1.43 -1.79 -1.38 -1.42 -1.85 -1.58 141 Chapter IV PP_13734_C1 PP_13750_C1 PP_13846_C1 PP_1387_C1 PP_14366_C1 PP_14581_C1 PP_14609_C1 PP_14674_C1 PP_1468_C1 PP_15181_C1 PP_1665_C2 PP_17120_C1 PP_1761_C1 PP_18023_C1 PP_18168_C1 PP_11285_C4 PP_18237_C1 PP_18520_C1 PP_2007_C1 PP_2015_C1 PP_2094_C3 PP_2103_C2 PP_2104_C1 PP_214_C9 PP_224_C1 PP_2272_C1 PP_2294_C1 PP_2113_C3 PP_2320_C1 PP_2360_C1 PP_233_C4 PP_2537_C1 PP_2633_C1 PP_2646_C2 PP_2738_C1 PP_276_C1 PP_2920_C1 PP_2921_C1 PP_285_C2 PP_2980_C1 PP_2817_C1 PP_6215_C1 PP_3091_C1 PP_323_C1 PP_3684_C1 PP_3846_C1 PP_3876_C1 PP_3950_C1 PP_3864_C1 PP_4087_C4 Appendices **: Homolog of 68415.m02009 ARID/BRIGHT DNA-binding domain-containing protein contains **: Homolog of (AB015183) transcription factor Vp1 [Mesembryanthemum crystallinum] ***: Q8LB52 Scarecrow-like protein. ***: Q7X9V3 Nuclear shuttle interacting protein. **: Homolog of (Transcription factor E2F/dimerisation partner TDP) **: Homolog of (AY077758) WRKY transcription factor 1 [Physcomitrella patens] ***: Q39183 Serine/threonine protein kinase (Protein kinase (EC 2.7.1.37) 5) (AT5g47750/MCA23_7). "**: Homolog of (68417.m04184 acid phosphatase class B family protein similar to acid phosphatase not annotated Physcomitrella patens ***: O82527 Polyubiquitin (Fragment). ***: RL71_ARATH 60S ribosomal protein L7-1. **: Homolog of 68417.m02122 myb family transcription factor contains Pfam profile contains: Nascent polypeptide-associated complex NAC(InterPro:IPR002715,PFAM:PF01849) **: Homolog of (68415.m03211 plectin-related contains ***: SU91_HUMAN Histone-lysine N-methyltransferase, H3 lysine-9 specific 1 -2.23 -1.91 -1.37 -1.51 -1.74 -1.75 -1.56 -1.58 -1.92 -1.46 -2.11 -1.55 -1.89 -2.11 -1.63 -1.80 -1.73 -1.56 -1.95 -1.38 -1.71 -1.43 **: Homolog of (AB112672) auxin response factor 2 [Cucumis sativus] ***: ARP_ARATH Apurinic endonuclease-redox protein (DNA-(apurinic or apyrimidinic site) "**: Homolog of ((AP004849) putative CCR4-NOT transcription complex ***: Q7XU22 OSJNBb0034G17.2 protein (Transcription factor DREB). ***: Q8LKS8 Early drought induced protein. ***: Q8RXD3 ABI3-interacting protein 2. ***: Q8GRK2 Somatic embryogenesis receptor kinase 1. **: Homolog of Similar to chloroplast DNA-binding protein PD3|o_sativa|chr_2|P0017C12|3841 ***: AHM7_ARATH Potential copper-transporting ATPase 3 (EC 3.6.3.4). **: Homolog of 68417.m02632 lil3 protein identical to Lil3 protein [Arabidopsis thaliana] ***: O81077 Putative cytochrome P450. **: Homolog of expressed protein|o_sativa|chr_6|OSJNBa0019F11|6897 ***: Q9FIX3 Gb|AAD30619.1. ***: Q852K5 Putative zinc finger protein (Putative zinc finger transcription factor ZFP38). ***: AHM1_ARATH Potential cadmium/zinc-transporting ATPase HMA1 (EC 3.6.3.3) (EC 3.6.3.5). ***: Q943L1 Putative Ubiquitin carrier protein UBC7. ***: Q9ZS93 T4B21.6 protein. contains: Transcription factor, MADS-box contains: GCN5-related N-acetyltransferase ***: O23310 CCAAT-binding transcription factor subunit A(CBF-A) **: Homolog of (AB106274) SCARECROW-like protein [Lilium longiflorum] **: Homolog of GRAS family transcription factor, putative|o_sativa|chr_1|P0406G08|2927 ***: T2AG_ARATH Transcription initiation factor IIA gamma chain (TFIIA-gamma). **: Homolog of AT3g02790/F13E7_27|o_sativa|chr_6|P0621D05|1946 ***: Q8H1G0 Putative flowering protein CONSTANS (GATA-type zinc finger protein). contains: Protein of unknown function DUF296(InterPro:IPR005175,PFAM:PF03479) ***: Q8S9V3 Putative zinc finger protein. ***: Q9SNA4 Receptor-like protein kinase homolog. ***: PSAG_ARATH Photosystem I reaction center subunit V, chloroplast precursor (PSI-G). "**: Homolog of (X58577) DNA-binding protein; bZIP type [Petroselinum crispum] **: Homolog of aldehyde dehydrogenase, **: Homolog of (68414.m05059 Ras-related GTP-binding protein **: Homolog of (AB028078) homeobox protein PpHB7 [Physcomitrella patens] **: Homolog of (68416.m02515 basic helix-loop-helix bHLH) family protein "**: Homolog of (68416.m01203 aspartate/glutamate/uridylate kinase family protein -1.74 -2.08 -1.34 -40.91 -1.59 -2.07 -1.65 -1.64 -1.96 -2.16 -1.67 -1.66 -1.82 -1.50 -1.45 -1.56 -1.31 -1.37 -1.56 -2.49 -1.53 -1.59 -1.70 -1.85 -1.36 -1.58 -2.01 -1.50 142 Chapter IV PP_4109_C1 PP_4163_C1 PP_4175_C1 PP_4238_C1 PP_4183_C1 PP_4368_C1 PP_438_C1 PP_4383_C1 PP_4394_C1 PP_4227_C2 PP_4501_C1 PP_4570_C3 PP_4710_C1 PP_4819_C1 PP_4820_C1 PP_4988_C1 PP_5004_C1 PP_5046_C1 PP_5138_C1 PP_5262_C1 PP_5396_C1 PP_5526_C1 PP_5624_C1 PP_5836_C2 PP_5905_C1 PP_6171_C1 PP_6223_C1 PP_6242_C1 PP_6285_C1 PP_6114_C1 PP_6587_C1 PP_646_C2 PP_6731_C1 PP_6766_C1 PP_683_C1 PP_6888_C1 PP_6969_C1 PP_6973_C1 PP_6875_C1 PP_7128_C1 PP_7321_C2 PP_11287_C4 PP_7371_C1 PP_7586_C1 PP_7694_C1 PP_7708_C1 PP_775_C1 PP_7994_C1 PP_8047_C1 PP_8107_C1 Appendices **: Homolog of (M62985) protein kinase [Zea mays] **: Homolog of (AF029984) COP1 homolog [Lycopersicon esculentum] **: Homolog of (68414.m07887 basic helix-loop-helix bHLH) family protein **: Homolog of (68414.m01246 eukaryotic translation initiation factor 3 subunit 3 / eIF-3 **: Homolog of (AY077758) WRKY transcription factor 1 [Physcomitrella patens] **: Homolog of (68418.m04281 histidine kinase AHK2) identical to histidine kinase **: Homolog of 68418.m05840 myb family transcription factor contains Pfam profile **: Homolog of (68415.m02898 basic helix-loop-helix bHLH) family protein **: Homolog of Protein kinase domain, putative|o_sativa|chr_1|OJ1529_G03|4777 **: Homolog of (transcription initiation factor iib general transcription factor tfiib). **: Homolog of OSJNBa0003O19.1|putative AT-Hook DNA-binding protein "**: Homolog of (68418.m08464 F-box family protein similar to unknown protein (dbj|BAA78736.1) **: Homolog of 68416.m05166 Dof-type zinc finger domain-containing protein [Arabidopsis thaliana] **: Homolog of Similar to histidine kinase-like protein|o_sativa|chr_6|P0709F06|1935 **: Homolog of (AF378125) GAI-like protein 1 [Vitis vinifera] **: Homolog of (68415.m05233 basic helix-loop-helix bHLH) family protein "**: Homolog of (68418.m01242 sensory transduction histidine kinase-related "**: Homolog of (68415.m04408 zinc finger (C3HC4-type RING finger) family protein **: Homolog of (AF439278) ethylene-responsive transciptional coactivator-like protein [Retama raetam] **: Homolog of 68415.m04505 PHD finger transcription factor, putative **: Homolog of (AF311224) C2H2 zinc-finger protein [Zea mays] **: Homolog of 68418.m04803 Dof-type zinc finger domain-containing protein [Arabidopsis thaliana] **: Homolog of TAZ zinc finger, putative|o_sativa|chr_1|P0696G06|5647 **: Homolog of 68416.m05063 myb family transcription factor **: Homolog of OSJNBa0053C23.4|putative serine/threonine protein kinase ***: Q84XK6 Peroxisomal targeting signal type 2 receptor. contains: Helix-turn-helix, Fistype(InterPro:IPR002197,GO:0003700,GO:0006355,PRINTS:PR01590) not annotated Physcomitrella patens **: Homolog of (Y10685) G/HBF-1 [Glycine max] **: Homolog of F-box domain, putative|o_sativa|chr_4|OSJNBa0043A12|8129 ***: O82064 Putative beta-subunit of K+ channels. **: Homolog of Dof domain, zinc finger, putative|o_sativa|chr_1|P0453A06|2679 not annotated Physcomitrella patens ***: Q8W2B8 Serine acetyltransferase (Hypothetical protein At4g35640). ***: YPT6_CHLRE Ras-related protein YPTC6. contains: Ubiquitin-conjugating enzymes **: Homolog of (68415.m03211 plectin-related contains "***: Q9C8A0 Serine/arginine-rich protein, putative; 48931-50251 (TAF7) (At1g55300)." contains: U2 snRNP auxilliary factor **: Homolog of (AF467900) hypothetical transcription factor [Prunus persica] ***: Q9FJC9 26S proteasome regulatory particle chain RPT6-like protein (AT5g53540/MNC6_8). ***: RL5_ARATH 60S ribosomal protein L5. contains: Tubby(InterPro:IPR000007,PFAM:PF01167) ***: DR1D_ARATH Dehydration responsive element binding protein ***: Q39031 Protein kinase. ***: Q7X976 Putative AT-Hook DNA-binding protein. ***: Q9SQ79 Helix-loop-helix protein 1A. **: Homolog of (AY077758) WRKY transcription factor 1 [Physcomitrella patens] **: Homolog of 68417.m01380 KOW domain-containing transcription factor family protein chromatin **: Homolog of Similar to TINY-related|o_sativa|chr_2|OJ1711_D06|4260 -1.86 -1.68 -2.79 -1.61 -1.50 -2.10 -1.42 -1.56 -3.02 -1.39 -1.43 -1.63 -1.53 -2.13 -4.01 -1.80 -1.70 -3.59 -3.39 -1.92 -1.73 -1.31 -1.62 -27.29 -1.50 -1.29 -3.32 -2.62 -1.94 -1.91 -3.86 -2.29 -1.89 -2.19 -1.97 -1.65 -9.85 -1.39 -1.60 -2.40 -1.71 -1.55 -2.04 -1.54 -2.02 -1.43 -1.79 -1.50 -1.45 -2.55 143 Chapter IV PP_8413_C1 PP_8463_C1 PP_8293_C1 PP_8547_C1 PP_86_C1 PP020016117R PP_723_C1 PP_9108_C3 PP_12500_C1 PP_9253_C1 PP_9264_C1 PP_9369_C1 PP_9394_C1 PP_9399_C1 PP_9419_C1 PP_9627_C1 PP_9785_C1 PP_9953_C1 PP_9960_C1 PP_6995_C2 PP020064243R PP_SD_251_C1 PP_SD_60_C1 PP_SD_88_C1 PP_SD_92_C1 PP_SD_245_C1 PP_5766_C1 PP_SD_0_C1 PP001001061F PP001008059F PP001009093F PP001019006F PP001030028F PP001030033F PP001068061R PP001085009R BJ165389 PP004021140R PP004058038R PP004067310R PP004086076R PP004087236R BI488008 PP004095105R PP013015004R PP015004308R PP015011331R PP015020123R PP015029288R Appendices contains: Zn-finger, RING(InterPro:IPR001841,PFAM:PF00097) ***: Q86AZ8 Similar to Anabaena sp. (Strain PCC 7120). Hypothetical WD-repeat protein alr2800. contains: (COIL:coil) **: Homolog of 68414.m01463 hypothetical protein **: Homolog of (AY566696) unknown [Xerophyta humilis] **: Homolog of (AB032182) homeobox protein PpHB10 [Physcomitrella patens] ***: Q8LST6 Mitochondrial aldehyde dehydrogenase. ***: FTH2_ARATH Cell division protein ftsH homolog 2, chloroplast precursor **: Homolog of (68414.m01494 basic helix-loop-helix bHLH) family protein / F-box family protein ***: Q9C1Q7 Putative two-component histidine kinase Fos-1. "***: Q9SRM4 Putative nucleic acid binding protein (At3g11200/F11B9.12) ***: Q9FJ00 Gb|AAF24948.1. ***: O94094 Histidine kinase FIK. ***: Q8X1E7 Histidine kinase. **: Homolog of 68417.m04480 WRKY family transcription factor contains Pfam profile ***: Q7WZ30 MmoS. ***: Q8LPA5 MADS-box protein PpMADS1. ***: Q852U6 At1g49850. contains: Nascent polypeptide-associated complex NAC (InterPro:IPR002715,PFAM:PF01849) ***: Q9ZNX9 Sigma-like factor precursor (RNA polymerase sigma subunit SigE). ***: Q9LWW0 Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 6, clone:P0425F02. **: Homolog of (AB115546) phototropin 2 [Adiantum capillus-veneris] ****: Physcomitrella patens mRNA for homeobox protein PpHB9, complete cds. not annotated Physcomitrella patens ****: Physcomitrella patens PpHB10 mRNA for homeobox protein PpHB10, complete cds. **: Homolog of (68418.m05453 disease resistance protein TIR-NBS-LRR class) **: Homolog of (68418.m02952 zinc finger B-box type) family protein similar to CONSTANS-like protein ****: Physcomitrella patens subsp. patens mRNA for MADS-box protein PpMADS1, complete cds. **: Homolog of (X98744) chloroplast DNA-binding protein PD3 [Pisum sativum] **: PP_CL_6374.Singlet Homolog of (AB046872) PpSIG2 [Physcomitrella patens] **: Homolog of OSJNBa0010C11.3|putative transcription regulatory protein **: PP_CL_8395.Singlet Homolog of (68416.m00477 RNA recognition motif (RRM) **: Homolog of (AC005315) putative non-LTR retroelement reverse transcriptase "**: Homolog of 68414.m08061 paired amphipathic helix repeat-containing protein **: PP_CL_18208.Singlet Homolog of 68415.m05104 expressed protein **: PP_CL_6389.Singlet Homolog of (AY324646) katanin [Gossypium hirsutum] ***: Q41067 Polyubiquitin. ****: Physcomitrella patens subsp. patens mRNA for MADS-box protein PpMADS1, complete cds. ***: O49977 Ubiquitin (Fragment). **: PP_CL_7066.Singlet Homolog of (AB026657) unnamed protein product ***: Q41067 Polyubiquitin. ****: Physcomitrella patens subsp. patens mRNA for MADS-box protein PpMADS1, complete cds. ***: O82527 Polyubiquitin (Fragment). ***: O82527 Polyubiquitin (Fragment). **: Homolog of OSJNBb0070O09.2|unknown protein ***: Q8LNW1 Putative transcription factor. **: Homolog of (68414.m08326 GCN5-related N-acetyltransferase GNAT) family protein **: Homolog of (AB032182) homeobox protein PpHB10 [Physcomitrella patens] "**: PP_CL_5054.Singlet Homolog of (68418.m08510 TAZ zinc finger family protein -1.47 -1.76 -2.52 -1.84 -1.83 -1.93 -1.51 -1.70 -3.17 -1.41 -1.33 -1.59 -1.81 -1.67 -2.93 -3.06 -1.73 -1.59 -2.92 -1.77 -1.40 -1.33 -1.87 -3.49 -2.00 -1.66 -1.47 -1.96 -2.13 -1.52 -1.35 -1.54 -1.96 -1.47 -2.18 -1.60 -1.41 -1.48 -1.31 -1.60 -1.58 -1.52 -1.59 -1.59 -1.51 -1.70 -1.43 -1.47 -1.99 144 Chapter IV PP015033075R PP015037157R PP015044155R PP015054317R PP015071162R PP020027384R PP020032226R PP020034124R PP020036015R PP020036307R PP020044335R PP020051260R PP020062195R PP020065285R PP020069226R PP030015063R AY123146 Appendices **: Homolog of (AB121445) histidine kinase 3 [Zea mays] **: Homolog of Helicase conserved C-terminal domain, putative|o_sativa|chr_8|OJ1034_C08|7210 **: PP_CL_1670.Singlet Homolog of (AJ419328) putative MADS-domain transcription factor **: Homolog of Helix-loop-helix DNA-binding domain, putative|o_sativa|chr_1|OSJNBa0093F16|4658 ***: AGO1_ARATH Argonaute protein. ****: Physcomitrella patens subsp. patens PPLFY1 mRNA for FLORICAULA/LEAFY homolog **: PP_CL_18682.Singlet Homolog of (AJ011828) NDX1 homeobox protein [Lotus corniculatus **: PP_CL_4373.Singlet Homolog of (AB115546) phototropin 2 [Adiantum capillus-veneris] **: PP_CL_9604.Singlet Homolog of OJ1365_D05.10|putative response regulator protein ***: Q9FT60 Histidine kinase-like protein. "**: Homolog of 68416.m03380 oligopeptide transporter OPT family protein ***: Q9SXL4 Histidine kinase 1. **: Homolog of (AJ419328) putative MADS-domain transcription factor [Physcomitrella patens] **: PP_CL_10589.Singlet Homolog of (AL670011) related to regulatory protein SET1 ***: Q9LRI1 Homeobox protein PpHB10. ***: O82527 Polyubiquitin (Fragment). PP_SD_72.Singlet not annotated Physcomitrella patens -4.00 -1.73 -1.50 -1.53 -1.40 -1.40 -1.59 -1.65 -2.19 -1.44 -1.94 -2.12 -1.82 -1.49 -1.60 -1.55 -1.76 145 Chapter IV 4.5 Appendices Genes upregulated in ΔPpDCL1b mutants Sequence ID EST AW561368 BJ160934 BJ163321 BJ181458 BJ187175 BJ189887 BJ609923 BJ610672 BU051751 PP_10130_C2 PP_10143_C1 PP_10308_C1 PP_1034_C1 PP_10379_C1 PP_10320_C1 PP_10567_C1 PP_10875_C1 PP_10880_C1 PP_10919_C1 PP_11080_C1 PP_1112_C1 PP_11139_C1 PP_12499_C1 PP_13554_C1 PP_11359_C1 PP032001093R PP_18394_C1 PP_1179_C1 PP_1012_C1 PP_12120_C1 PP_12140_C1 PP_12145_C1 PP001005057F PP_12587_C1 PP_12713_C2 PP_12802_C1 PP_1303_C1 PP_13105_C1 PP_13136_C1 PP_13592_C1 PP_13985_C1 PP_14045_C1 PP_14113_C1 PP_1440_C1 PP_14547_C1 Cosmoss Annotation Fold change "**: Homolog of (68417.m01135 F-box family protein (FBL8) FBL24) contains **: Homolog of (AF004165) 2-isopropylmalate synthase [Lycopersicon pennellii] ***: Q8S0L3 Ankyrin-kinase-like protein. ***: Q9AV93 Response regulator 8. ***: Q84VL6 Putative polyubiquitin (Fragment). **: PP_CL_6916.Singlet Homolog of ((AP003273) histone H1-like protein (Oryza sativa ) ***: EFTM_ARATH Elongation factor Tu, mitochondrial precursor. **: Homolog of expressed protein|o_sativa|chr_4|OSJNBa0013K16|5362 ***: Q7X864 OSJNBa0093F12.4 protein. ***: Q8H9A2 Dehydratiion responsive element binding protein 1 like protein. ***: Q8YMN1 All4902 protein. **: Homolog of OSJNBb0015I11.23|putative ubiquitin protein|o_sativa|chr_10|OSJNBb0015I11|31 ***: Q9SEK4 Putative succinic semialdehyde dehydrogenase "**: Homolog of (68417.m00335 AAA-type ATPase family protein ***: Q96327 Putative nuclear DNA-binding protein G2p (Nuclear DNA-binding protein) not annotated Physcomitrella patens ***: Q94H06 Putative zinc finger protein. ***: Q8GYN7 Putative SCARECROW gene regulator. ***: Q8S8P6 Putative salt-inducible protein. ***: Q9SA69 F10O3.17. ***: Q9ZVG0 Putative ATP-dependent DNA helicase RECG. **: Homolog of 68414.m03428 expressed protein ***: PRS7_ARATH 26S protease regulatory subunit 7 (26S proteasome subunit 7) ***: Q9LKG4 Putative DNA binding protein. **: Homolog of 68416.m01881 DNA-binding protein-related **: PP_CL_11223.Singlet Homolog of 68414.m05053 expressed protein **: Homolog of RNA polymerase I specific transcription initiation factor **: Homolog of Similar to probable zinc finger protein [imported] - Arabidopsis thaliana **: Homolog of 68418.m05158 kelch repeat-containing F-box family protein contains Pfam profiles ***: Q7X6J0 RNA binding protein Rp120. **: Homolog of (AF470350) WD40 [Tortula ruralis] **: Homolog of hypothetical protein|o_sativa|chr_1|P0470A12|2880 ***: O82527 Polyubiquitin (Fragment). **: Homolog of AP2-related transcription factor, putative|o_sativa|chr_4|OSJNBa0079A21|8302 ***: Q9GZS3 Homo sapiens cDNA: FLJ21101 fis, clone CAS04682 (G protein beta subunit) ***: Q7XXN2 Putative serine/threonine-protein kinase ctr1. contains: Dihydrodipicolinate synthetase(InterPro:IPR002220,PFAM:PF00701) ***: Q84QC2 Putative AP2 domain transcription factor. ***: Q9SGP0 F3M18.14. ***: Q94DZ5 Putative helicase-like transcription factor. ***: Q9FHJ4 Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MFC19. ***: O65567 Puative protein. ***: IF35_ARATH Eukaryotic translation initiation factor 3 subunit 5 (eIF-3 epsilon) (eIF3 p32 subunit) contains: RNA-binding region RNP-1 (RNA recognition motif) **: Homolog of (68414.m00475 zinc finger (C3HC4-type RING finger) family protein 1.32 2.24 1.94 1.97 1.81 1.30 1.43 1.70 1.55 1.76 1.87 1.62 1.53 1.95 1.75 1.57 2.11 1.67 1.69 1.39 1.41 1.38 1.43 1.30 2.03 1.58 2.11 2.07 2.43 1.73 1.41 1.78 1.65 2.46 1.56 2.19 1.86 1.72 1.96 2.17 1.39 1.81 1.47 1.69 1.32 146 Chapter IV Appendices PP_14811_C1 **: Homolog of (AF098674) lateral suppressor protein [Lycopersicon esculentum] 1.40 PP_15007_C1 PP_15083_C1 PP_15177_C2 ***: Q9ZV05 Expressed protein. **: Homolog of zinc finger protein, putative|o_sativa|chr_6|P0550B04|1978 ***: Q9SJR0 Putative AP2 domain transcription factor (Putative AP2/EREBP transcription factor). ***: Q9FHA7 Emb|CAB62312.1 (Putative bHLH transcription factor). ***: Q7XJM3 Putative mitochondrial translation elongation factor G. ***: O81763 Protein kinase-like protein. **: Homolog of 68416.m05464 phototropic-responsive protein **: Homolog of 68417.m00399 elongation factor Tu, putative / EF-Tu, putative ***: Q9LW84 Gb|AAF26996.1. **: Homolog of Similar to DNA helicase-like|o_sativa|chr_2|P0724B10|6621 ***: MAT1_MOUSE CDK-activating kinase assembly factor MAT1 (RING finger protein MAT1) ***: Q9SJW0 Transfactor-like protein. ***: Q8VZG7 AT5g07350/T2I1_60. **: Homolog of expressed protein|o_sativa|chr_4|OSJNBa0013K16|5362 contains: Zn-binding protein, LIM(InterPro:IPR001781,PFAM:PF00412) ***: EFTM_ARATH Elongation factor Tu, mitochondrial precursor. ***: Q9SI75 F23N19.11 (Hypothetical protein At1g62750). ***: Q851S7 Pescadillo-like protein. ***: Q9LVF7 Gb|AAD14441.1. "**: Homolog of (68414.m09356 coatomer protein complex, subunit beta 2 (beta prime), ***: Q8S3E7 Putative bHLH transcription factor. ***: Q9LSQ8 Arabidopsis thaliana genomic DNA, chromosome 5, BAC clone: F24B18. ***: EFGM_ARATH Probable elongation factor G, mitochondrial precursor (mEF-G). contains: Pathogenesis-related transcriptional factor and ERF ***: O82527 Polyubiquitin (Fragment). **: Homolog of auxin response factor 1 [imported] - Arabidopsis thaliana|o_sativa|chr_2|P0506A08|3865 ***: Q9LS31 Homeobox protein Pphb7 short form. **: Homolog of OSJNBa0003O19.20|putative MYC transcription factor contains: Zn-finger, Dof type(InterPro:IPR003851,GO:0003677,PFAM:PF02701) ***: Q8W3M3 AP2 domain containing protein (Putative AP2/EREBP transcription factor). ***: Q9SAK5 T8K14.15 protein. **: Homolog of (AJ131113) VP1/ABI3-like protein [Chamaecyparis nootkatensis] ***: Q7XSB1 OJ991113_30.18 protein. ***: Q9SSF9 F25A4.28 protein. contains: (COIL:coil) not annotated Physcomitrella patens **: Homolog of RNA polymerase I specific transcription initiation factor ***: O65567 Puative protein. "**: Homolog of (68417.m02830 nucleoside phosphatase family protein / GDA1/CD39 family protein **: Homolog of Kelch motif, putative|o_sativa|chr_6|OJ1378_E04|3445 not annotated Physcomitrella patens ***: Q8SB10 Putative crp1 protein. **: Homolog of EREBP-type transcription factor, putative|o_sativa ***: Q9ZVU6 T5A14.12 protein. ***: Q8GZ22 Putative ankyrin (At2g03430). ***: Q84TU4 Arm repeat-containing protein. contains: (SUPERFAMILY:SSF54171) ***: Q94ID6 ERF domain protein12 (Ethylene responsive element binding factor, putative). ***: Q9M8Z0 T6K12.4 protein. ***: Q9FWR5 F14P1.8 protein. 1.60 1.69 10.73 PP_15255_C1 PP_15299_C1 PP_15344_C1 PP_15382_C1 PP_15384_C1 PP_15546_C1 PP_15582_C1 PP_15610_C1 PP_15633_C1 PP_15636_C1 PP_15695_C1 PP_1585_C2 PP_15995_C1 PP_15997_C1 PP_16050_C1 PP_1618_C1 PP_16284_C1 PP_1662_C1 PP_1663_C1 PP_16437_C1 PP_1496_C1 BJ181914 PP_16865_C1 PP_1691_C1 PP_16923_C1 PP_1738_C3 PP_17440_C1 PP_17575_C1 PP_17900_C1 PP_17924_C1 PP_1804_C1 PP_18357_C1 PP_18393_C1 PP_18403_C1 PP_1844_C1 PP_18489_C1 PP_18663_C1 PP_18676_C1 PP_1999_C1 PP_2158_C1 PP_2271_C5 PP_2334_C1 PP_2362_C1 PP_7120_C2 PP_2324_C1 PP_2520_C1 PP_2344_C1 1.41 2.15 1.84 1.59 1.50 1.65 1.42 1.44 2.38 2.24 24.51 1.53 1.96 2.72 4.28 1.44 3.16 1.84 1.98 2.48 3.69 1.61 2.62 1.91 1.52 2.99 20.48 1.34 1.43 1.89 1.76 1.54 2.06 2.84 1.42 1.67 1.72 2.63 1.70 2.02 1.40 1.52 1.50 2.14 1.58 2.89 1.35 147 Chapter IV Appendices PP_2372_C1 ***: Q9SAI2 F23A5.13 protein (Putative CCR4-associated factor). 1.39 BQ041789 PP_10621_C1 PP_3086_C1 PP_3132_C1 PP_319_C1 PP_3479_C1 PP_3728_C1 PP_3738_C1 ***: Q9LMP8 F7H2.20 protein (At1g15870/F7H2_19). ***: Q9FPV8 Putative methionine aminopeptidase. ***: Q949D4 Putative AP2-related transcription factor. "**: Homolog of (68415.m02229 expressed protein contains Pfam profiles ***: Q9LQ28 F14M2.12 protein (Putative AP2/EREBP transcription factor). "**: Homolog of 68416.m01095 KOW domain-containing transcription factor family protein **: Homolog of 68417.m00223 WRKY family transcription factor "**: Homolog of 68418.m07197 protein kinase family protein similar to protein kinase [Glycine max] **: Homolog of DRE-binding protein 1A|o_sativa|chr_8|OJ1323_A06|7300 "**: Homolog of (AC016529) putative AP2 domain transcription factor **: Homolog of OSJNBb0033N16.2|putative RNA **: Homolog of (68414.m05749 basic helix-loop-helix bHLH) family protein contains Pfam profile **: Homolog of myb-like DNA-binding domain, SHAQKYF class "**: Homolog of (68414.m00292 GCN5-related N-acetyltransferase (GNAT) family protein not annotated Physcomitrella patens **: Homolog of (AB067689) MADS-box protein PpMADS2 [Physcomitrella patens] 1.55 1.33 3.09 1.49 1.55 1.51 1.79 1.67 PP_4015_C1 PP_4112_C6 PP_4166_C1 PP_4300_C1 PP_4459_C1 PP_4595_C1 PP_4414_C1 PP_4697_C1 PP_4719_C1 PP_4825_C1 PP_4986_C1 PP_5002_C1 PP_5288_C1 PP_5296_C1 PP_543_C1 PP_4563_C1 PP_5681_C1 PP_5719_C1 PP_573_C2 PP_5803_C2 PP_584_C1 PP_560_C1 PP_5870_C1 PP_5912_C2 PP_12254_C1 PP_6275_C1 PP_63_C1 PP_6340_C1 PP_6354_C2 PP_6368_C4 PP_6455_C1 PP_648_C2 PP_18379_C1 PP_6564_C1 PP_6651_C1 PP_6682_C1 PP_6732_C1 PP_7252_C1 PP_729_C1 PP_753_C1 PP_7668_C1 PP_10278_C1 5.29 6.24 1.31 1.51 1.77 1.35 2.27 2.22 **: Homolog of 68414.m01735 expressed protein **: Homolog of OSJNBa0053C23.4|putative serine/threonine protein kinase "**: Homolog of (68415.m03129 transducin family protein / WD-40 repeat family protein **: Homolog of (68415.m04914 eukaryotic translation initiation factor 3 subunit 5 / eIF-3 epsilon **: Homolog of (AY346455) histone deacetylase [Solanum chacoense] **: Homolog of ((AP002092) unnamed protein product [Oryza sativa japonica cultivar group)] **: Homolog of 68416.m05511 expressed protein **: Homolog of (AF184886) LIM domain protein WLIM2 [Nicotiana tabacum] **: Homolog of (AB111943) hypothetical protein [Nicotiana benthamiana] **: Homolog of expressed protein|o_sativa|chr_5|OSJNBb0015A05|5000 ***: Q852S5 Nucleoside diphosphate kinase. **: Homolog of (AB042267) response regulator 5 [Zea mays] **: Homolog of (68414.m05651 scarecrow-like transcription factor 3 (SCL3) "**: Homolog of (68418.m07708 no apical meristem (NAM) family protein **: Homolog of 68418.m01679 expressed protein **: Homolog of (AF506028) CTV.22 [Poncirus trifoliata] **: Homolog of (AF098674) lateral suppressor protein [Lycopersicon esculentum] contains: Pathogenesis-related transcriptional factor and ERF ***: Q7Y1U0 Kinesin-like calmodulin binding protein. ***: Q9SR03 Ankyrin-like protein. ***: Q9SAU3 CAO. ***: Q762A0 BRI1-KD interacting protein 114 (Fragment). ***: Q9SZM7 Protein kinase like protein. **: Homolog of (L76926) putative zinc finger protein [Arabidopsis thaliana] not annotated Physcomitrella patens "**: Homolog of 68414.m01006 protein kinase ***: O22826 Putative splicing factor (At2g43770). ***: Q7XMI6 OSJNBb0006N15.13 protein. not annotated Physcomitrella patens **: Homolog of ((AP005190) putative p53 binding protein [Oryza sativa japonica cultivargroup)] **: Homolog of GRAS family transcription factor, putative|o_sativa|chr_1|P0466H10|5982 ***: Q94D32 P0712E02.24 protein (P0700A11.5 protein). ***: PCNA_TOBAC Proliferating cell nuclear antigen (PCNA). ***: Q9FP06 P0038C05.18 protein. 22.24 1.53 1.45 1.54 1.67 1.46 2.02 1.37 1.51 1.70 1.54 2.33 2.15 1.75 2.76 1.37 1.70 1.43 1.81 1.52 1.58 1.33 2.29 1.79 1.78 1.64 1.64 1.37 1.66 1.65 1.66 1.88 1.40 2.75 148 Chapter IV PP_793_C4 PP_7999_C1 PP_8_C1 PP_8013_C1 PP_14769_C1 PP_8021_C1 PP_8274_C1 PP_8314_C1 PP_8332_C1 PP_8337_C1 PP_8348_C1 PP_8372_C1 PP_8392_C1 PP_8343_C1 PP_8584_C1 PP_8642_C1 PP_8479_C1 PP_8784_C1 PP_8794_C1 PP_8838_C1 PP_8990_C3 PP_900_C1 PP_8906_C1 PP_9142_C1 PP_9252_C1 PP_765_C1 PP_9420_C1 PP_9498_C1 PP_9599_C1 PP_9374_C1 PP_9607_C1 PP_9750_C1 PP_976_C1 PP_17043_C1 PP_9949_C1 PP_SD_12_C1 PP_SD_17_C1 PP_SD_252_C1 PP_SD_46_C1 PP_SD_67_C1 PP_SD_90_C1 PP_10747_C1 PP001063096R PP001072036R PP001077051R PP001090095R PP002015081R PP002023001R PP004003286R PP004006023R Appendices **: Homolog of (68418.m08455 basic helix-loop-helix bHLH) family protein **: Homolog of 68415.m03352 DC1 domain-containing protein contains Pfam profile contains: Protein synthesis factor, GTP-binding ***: RM21_ARATH 50S ribosomal protein L21, mitochondrial precursor. **: Homolog of GRAS family transcription factor, putative|o_sativa|chr_1|P0406G08|2927 **: Homolog of putative AP2 domain transcription factor|o_sativa|chr_4|OSJNBb0034G17|5454 not annotated Physcomitrella patens **: Homolog of Similar to Lil3 protein|o_sativa|chr_2|P0018H03|4896 **: Homolog of AP2 domain, putative|o_sativa|chr_6|P0638H11|5506 ***: Q7XNE0 OSJNBa0088A01.11 protein. ***: Q9ZV05 Expressed protein. "***: Q9CAN3 Transcription factor SCARECROW, putative; 52594-50618." ***: Q8RYF8 P0592G05.19 protein. "***: Q9C550 2-isopropylmalate synthase ***: Q39216 RNA polymerase subunit (Isoform B). **: Homolog of (AY192369) ethylene response factor 3 [Lycopersicon esculentum] contains: Basic helix-loop-helix dimerisation region bHLH contains: Protein kinase-like(InterPro:IPR011009,SUPERFAMILY:SSF56112) contains: Pathogenesis-related transcriptional factor ***: Q7XU78 OSJNBa0029H02.4 protein. **: Homolog of (GDA1/CD39 nucleoside phosphatase) family, putative ***: O49591 Putative zinc finger protein. ***: Q9M551 Polyubiquitin. "**: Homolog of 68418.m03534 bZIP transcription factor family protein ***: Q84QD7 Avr9/Cf-9 rapidly elicited protein 276. ***: O80582 Expressed protein (At2g44130/F6E13.26). ***: Q7XU22 OSJNBb0034G17.2 protein (Transcription factor DREB). **: Homolog of 68416.m01360 PHD finger family protein contains Pfam domain **: Homolog of similar to CH6 and COP9 complex subunit 6|o_sativa|chr_8|OJ1118_A06|3036 **: Homolog of SelR domain|o_sativa|chr_3|OSJNBa0048D11|3659 ***: O65639 Glycine-rich protein. ***: Q8LBL6 Cell division protein FtsH-like protein. ***: Q6ZHJ5 Pentatricopeptide (PPR) repeat-containing protein-like. **: Homolog of ((AP004068) GCN5-related N-acetyltransferase protein-like (Oryza sativa japonica ) **: Homolog of Myb-like DNA-binding domain, putative|o_sativa|chr_1|P0038F12|2733 ****: Physcomitrella patens mRNA for RNA polymerase alpha subunit, complete cds. ****: Physcomitrella patens WRKY transcription factor 1 (WRKY1) gene, complete cds. **: Homolog of 68418.m05899 protein kinase, putative similar to protein kinase G11A [Oryza sativa] ****: Physcomitrella patens mRNA for homeobox protein PpHB7, complete cds. ****: Physcomitrella patens MADS-domain protein PPM1 (ppm1) mRNA, complete cds. not annotated Physcomitrella patens ***: O81763 Protein kinase-like protein. **: PP_CL_18202.Singlet Homolog of (AC026238) Hypothetical protein [Arabidopsis thaliana] **: PP_CL_15170.Singlet Homolog of 68418.m06538 myb family transcription factor ***: O49459 Predicted protein. **: PP_CL_15183.Singlet Homolog of Similar to Z97341 apetala2 domain TINY like protein **: PP_CL_5597.Singlet Homolog of (AC006072) putative tubby protein [Arabidopsis thaliana] ***: O24460 Calmodulin-like domain protein kinase. "**: PP_CL_18294.Singlet Homolog of (68414.m07536 gibberellin regulatory protein RGL1) ****: Physcomitrella patens phytochrome (phy2) gene, complete cds. 1.56 1.37 1.62 1.51 1.32 8.04 1.66 1.61 7.71 1.79 1.68 2.32 2.63 2.61 2.05 3.41 1.63 1.67 1.87 2.11 1.59 2.44 1.42 1.55 1.49 2.39 3.06 1.63 1.35 1.91 1.33 1.28 1.74 1.79 1.71 2.09 1.55 1.49 3.51 1.37 2.32 1.54 1.89 1.32 1.89 1.59 1.56 4.72 2.15 1.44 149 Chapter IV PP004007192R PP004009367R PP004012159R PP004015085R PP004020107R PP004024038R PP004029122R PP004030378R PP004032225R PP004040295R PP004043210R PP004046136R PP004054012R PP004054209R PP004057142R PP004062128R PP004075103R BQ827548 PP004034373R PP004082282R PP004083344R PP004088245R PP004092140R PP004094219R PP004095066R PP004095253R PP004096225R PP004097116R PP004103024R PP004105269R PP006002067R PP010001010R PP010002038R PP010008086R PP011003080R PP011005059R PP011006015R PP015001075R PP015006184R PP015015236R PP015024237R PP015028003R PP015028194R PP015030306R PP015033189R PP015040077R PP015041065R PP015041271R PP015042038R PP015044222R Appendices ***: Q9FJ91 Dbj|BAA78737.1 (AT5g52010/MSG15_9). **: Homolog of (AF004165) 2-isopropylmalate synthase [Lycopersicon pennellii] **: Homolog of 68414.m06061 mechanosensitive ion channel domain **: Homolog of OSJNBa0010C11.3|putative transcription regulatory protein **: PP_CL_11223.Singlet Homolog of 68414.m05053 expressed protein ***: Q8VYE7 Putative calcium-dependent protein kinase. ***: RPOA_PSINU DNA-directed RNA polymerase alpha chain (EC 2.7.7.6) (PEP) **: Homolog of Similar to DRE binding factor 1|o_sativa|chr_6|P0516A04|3745 **: Homolog of (AB164647) vascular plant one zinc finger protein [Physcomitrella patens] **: PP_CL_18294.Singlet Homolog of (AY269087) GAI-like protein [Lycopersicon esculentum] ***: Q9SGT9 T6H22.8.2 protein. **: Homolog of VIP2 protein|o_sativa|chr_2|OJ1311_D08|4248 **: PP_CL_15491.Singlet Homolog of (68418.m00567 zinc finger (C3HC4-type RING finger) PP_SD_13.Singlet not annotated Physcomitrella patens ***: Q94C56 Putative FtsH protease (Fragment). **: Homolog of 68418.m06038 phototropic-responsive NPH3 family protein ***: Q7XPK1 OSJNBa0087O24.9 protein. ***: Q8H386 Casein kinase II alpha subunit. ****: Physcomitrella patens phytochrome (phy2) gene, complete cds. **: Homolog of (AJ579910) NIN-like protein 1 [Lotus corniculatus var. japonicus] ***: Q40164 Ubiquitin. ***: Q9M1K4 Leucine zipper-containing protein AT103. **: PP_CL_18318.Singlet Homolog of (AB028621) unnamed protein product [Arabidopsis thaliana] ***: Q8LST4 Mitochondrial aldehyde dehydrogenase. **: Homolog of NF-X1 type zinc finger, putative|o_sativa|chr_1|P0041E11|2738 **: Homolog of (AF328842) homeodomain protein HB2 [Picea abies] ****: PP_SD_29.Singlet Physcomitrella patens mRNA for putative P-type II calcium **: Homolog of ((AP005243) VP1/ABI3 family regulatory protein-like [Oryza sativa] ***: O99018 Chloroplast protease precursor. **: Homolog of 68416.m01747 scarecrow transcription factor family protein ***: Q9M378 TATA box binding protein (TBP) associated factor (TAF)-like protein. ***: Q8GV68 Phytochrome. **: Homolog of (AC068602) F14D16.2 [Arabidopsis thaliana] **: Homolog of (AL163912) putative protein [Arabidopsis thaliana] "**: PP_CL_17423.Singlet Homolog of (68418.m02981 transducin family protein **: Homolog of ATP-dependent metalloprotease FtsH, putative|o_sativa|chr_5|OJ1362D02|3955 **: Homolog of (AY514604) gibberelin response modulator dwarf 8 Zea mays 2.04 1.77 1.79 1.64 1.92 2.59 1.56 1.59 1.57 2.13 4.14 1.43 1.39 1.92 2.33 1.34 1.52 1.47 1.58 2.23 1.67 1.43 2.09 1.33 1.48 1.44 2.55 1.60 1.72 1.60 2.78 1.60 1.64 1.94 1.52 2.28 3.63 ****: PP_SD_46.Singlet Physcomitrella patens gene for homeobox protein **: PP_CL_2250.Singlet Homolog of Cyclin, N-terminal domain, putative ****: PP_SD_46.Singlet Physcomitrella patens mRNA for homeobox protein PpHB7, complete cds. **: PP_CL_3101.Singlet Homolog of (68414.m03658 DNA-directed RNA polymerase family protein **: Homolog of (68414.m07827 zinc finger B-box type) family protein **: Homolog of 2-isopropylmalate synthase|o_sativa|chr_12|OSJNBb0034E23|7059 "**: PP_CL_3039.Singlet Homolog of (68417.m04350 translation initiation factor 3 IF-3) **: Homolog of (68414.m08377 CCAAT-box-binding transcription factor-related **: Homolog of (AF098674) lateral suppressor protein [Lycopersicon esculentum] **: Homolog of Similar to RSSG8|o_sativa|chr_12|OJ1396_C02|7247 **: Homolog of Helix-loop-helix DNA-binding domain, putative|o_sativa|chr_11|P0410D09|7510 **: PP_CL_6025.Singlet Homolog of expressed protein|o_sativa|chr_1|B1064G04|2860 **: PP_CL_18339.Singlet Homolog of (AF328786) EIL3 [Lycopersicon esculentum] 3.50 2.35 3.32 1.58 3.56 2.35 1.66 2.41 1.54 1.75 2.00 1.72 1.32 150 Chapter IV PP015050353R PP015058275R PP015060167R PP020009267R PP020016269R PP020019294R PP020024305R PP020026165R PP020029315R PP020031042R PP020031185R PP020032141R PP020039216R PP020041086R PP020043294R PP020053142R PP020054111R PP020054231R PP020058260R PP020060244R PP020063226R PP020063256R PP020070127R PP030007003R PP030013070R PP032009070R Appendices ***: Q9S786 Calcium-dependent protein kinase. ***: Q9FGR7 Similarity to salt-inducible protein. ***: Q8W3N8 26S proteasome regulatory particle triple-A ATPase subunit4b (Fragment). ***: Q9SI82 F23N19.4. **: Homolog of OSJNBb0033N16.3|putative protein kinase|o sativa|chr 3|OSJNBb0033N16|761 **: PP_CL_15.Singlet Homolog of (AF534891) type-B response regulator [Catharanthus roseus] ***: O04235 Transcription factor. contains: Response regulator receiver "**: Homolog of (68418.m00739 transcription factor jumonji (jmjC) domain-containing protein ***: Q9LPC6 F22M8.8 protein. **: Homolog of expressed protein|o_sativa|chr_5|P0683B12|6231 "**: Homolog of (68416.m05316 bacterial transferase hexapeptide repeat-containing protein **: Homolog of A67797 unnamed protein product-related|o sativa|chr 8|OSJNBa0054L03|4675 ***: Q9LTD4 Similarity to unknown protein. ***: Q6K7E2 Mitochondrial transcription termination factor-like. ***: Q9S729 GlsA. "**: PP_CL_10402.Singlet Homolog of (68414.m01147 NF-X1 type zinc finger family protein ***: Q9FP06 P0038C05.18 protein. ***: Q9FLM7 Gb|AAC33480.1 (MYB transcription factor). **: PP_CL_10622.Singlet Homolog of (AB107691) AG-motif binding protein-3 [Nicotiana tabacum] ***: Q9LV30 Emb|CAB40755.1. **: Homolog of Protein kinase domain, putative|o_sativa|chr_1|P0695A04|2742 PP_SD_242.Singlet not annotated Physcomitrella patens sporophyte ***: Q8S9J9 At1g14000/F7A19_9. ***: O82527 Polyubiquitin (Fragment). ***: Q8GV68 Phytochrome. 1.50 1.66 1.39 1.42 1.63 1.34 1.72 1.90 1.56 2.58 1.64 1.54 1.41 1.96 3.27 1.78 1.85 1.50 1.51 1.77 1.48 1.46 1.81 1.93 1.34 2.22 151 Acknowledgment 4.6 Acknowledgments First of all I would like to thank Prof. Dr. Ralf Reski for giving me the opportunity of doing my PhD in his research group and for his support and encouragement along the way. I am also indebted to him for his guidance I would like to thank PD Dr. Wolfgang Frank for his invaluable supervision, great efforts in guidance, encouragement throughout the research work. Great appreciation is also due to my family for their encouragement and support. Special thanks to my wife Enas for valuable help, encouragement and support. I would like to say thanks to: Dr. Volker Speth and Dr. Claudia Gack for sample preparation and valuable help at the scanning electron micrographs Andras Viczian for providing the pPCV expression vector Björn Voß for advice on miR319 precursor sequence analysis Gregor Gierga for assisting in the small RNA blots technique Richard Haas for practical support in the lab Anne Katrin Prowse for proofreading my thesis. Special thanks are expressed to my dearest colleagues; Fattash, I., Arif, M. A., Rödel, P., Tomek, M. Finally, I would like to say thanks to all members from the Reski group for the wonderful working ambience. Thank you all… 152 Erklärung 4.7 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quellen gekennzeichnet. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs, beziehungsweise Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher weder im In noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Die Bestimmungen der Promotionsordnung der Fakultät für Biologie der Universität Freiburg sind mir bekannt; insbesondere weiß ich, dass ich vor Vollzug der Promotion zur Führung des Doktortitels nicht berechtigt bin. Basel Khraiwesh März, 2009 Freiburg, 153