Download Physics Equation Sheet File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Kinematics
1
x  x o  v o t  at 2
2
v  v o  at
v 2  v o2  2a( x  x o )
x-displacement
v-velocity
t-time
a-acceleration
Dynamics
F  ma
f   k FN
w  mg
F-force
m-mass
a-acceleration
f-friction
k-coefficient of kinetic
friction
FN-normal force
w-weight
g-acceleration due to gravity
Centripetal Acceleration
v2
a
r
t
1
T

N
f
N 1
f 

t T
2r
v
 2rf
T
a-acceleration
v-velocity
r-distance
T-period
t-elapsed time
f-frequency
N-number of cycles
Universal Gravitation
FG 
Gm1 m 2
r2
GM
r2
GM
v
r
T 2 4 2

r 3 GM
g
FG-gravitational force
G-gravitational constant
m1, m2, M-mass
r-distance
g- acceleration due to gravity
T-period
Energy
W  Fd parallel
GPE  mgh
1
KE  mv 2
2
W
P
t
P  Fv parallel
Eo  W  E f
Fspring  kx
EPE 
1 2
kx
2
W-work
F-force
d-distance
GPE-gravitational potential
energy
m-mass
g-acceleration due to gravity
h-height
KE-kinetic energy
v-velocity
P-power
t-time
E-energy
Fspring-force of a spring
k-spring constant
x-extension or compression
EPE-elastic potential energy
Momentum
p  mv
p  m1v1  m2v2  ...
m1v1  m2v2  m1v1  m2v2
v1  v1  v2  v2
I  p
I  mv
I  Ft
p-momentum
m, m1, m2-mass
v-velocity
v1, v2-initial velocity
v1, v2-final velocity
I-impulse
F-force
t-time
Fluids
F
P
A
m

V
P  gh

SG 
 water
Pin  Pout
Pabs  Patm  Pgauge
Electric Current
Q
I
t
V  IR
FB  m fluid g
I- current
Q-charge
t-time
V-voltage
R-resistance
-resistivity
l-length
A-area
P-power
UE-electric potential energy
FB  gV
P-pressure
F-force
A-area
-density
m-mass
V-volume
g-acceleration due to gravity
h-height
SG-specific gravity
Pabs-absolute pressure
Patm-atmospheric
pressure
Pgauge-gauge pressure
FB-buoyant force
mfluid-mass of fluid
Electrostatics, Fields and
Potential
kq q
FE  12 2
r
F
E
q
kq
E po int  2
r
kq1q2
UE 
r
U E   q V
kq
V po int 
r
V
Euniform 
r
U E   qEr
FE-electric force
k-electric constant
q, q1, q2, Q-charge
r- distance
E-electric field
F-force
Epoint- point charge electric
field
UE-electric potential energy
∆V-potential difference or
Voltage
Vpoint-voltage due to a point
charge
Euniform-uniform electric field
R
P
l
A
UE
t
P  IV  I 2 R 
V2
R
Resistors in Series
VT  V1  V 2  V3 ...
I T  I 1  I 2  I 3 ...
R Eq  R1  R 2  R3 ...
VT-total voltage
V1, V2, V3-voltage
IT-total current
I1, I2, I3-current
REq-equivalent resistance
R1, R2, R3-resistance
Resistors in Parallel
VT  V1  V 2  V3 ...
I T  I 1  I 2  I 3 ...
1
1
1
1



...
R EQ R1 R 2 R3
VT-total voltage
V1, V2, V3-voltages
IT-total current
I1, I2, I3-current
REq-equivalent resistance
R1, R2, R3-resistance
EMF
  IR  Ir
V    Ir
T
-emf
I-current
R-resistance
r-internal resistance
VT-teminal voltage
Magnetic Fields
F  IlB 
F  qvB
 I
B o
2 r
 II
F2  o 1 2 l2
2 d
F-force
I, I1, I2-current
l, l2-length
B-magnetic field
q-charge
v-velocity
r, d-distance
 o -permeability constant
2
Magnetic Flux
  BA
 N

t
  Blv
-flux
B-magnetic field
A-area
-emf
N-number of coils
t-time
Quantum Physics
E  hf 
hc

KEmax  eVo
hf  KE  Wo
E  mc 2
p
h

h
mv
n 2 r1
rn 
Z
E1
E 2
n

E1 (hydrogen) = -13.6eV
E-Energy
h-Plank’s constant
f-frequency
c-speed of light
λ-wavelength
KEmax-max kinetic energy
e-electron charge
Vo-stopping voltage
Wo-work function
m-mass
p-momentum
v-velocity
r-atomic radius
n-energy level
Z-atomic number
Simple Harmonic
Motion
Mass – Spring
m
T  2
k
1 k
2 m
Pendulum
l
T  2
g
f 
f 
1
2
g
l
Waves / Sound Waves
v  f
n 
fn 
FT

2L
n
v
n
n
c  f
n
c
v
n 

n
Double Slit
mL
x max 
d
(m  1 2)L
x min 
d
m  0,1,2...
Single Slit
T-period
m-mass
k-spring constant
f-frequency
l-length
g-acceleration due to gravity
v
EM Waves / Light
v
 nf1
2L
Open Tubes
v
v
fn 
n
 nf 1
n
2L
2L
n 
n
n  1,2,3...
Closed Tubes
v
v
fn 
n
 nf 1
n
4L
4L
n 
n
n  1,3,5...
f-frequency
v-velocity
λ-wavelength
FT-tension
-linear density
L-length
n- harmonic number
L-length
m L
xmin 
D
m  0,1,2...
Thin Films
filmmax , bubblemin : 2t  m
filmmin , bubblemax :
1

2t   m  
2

c-speed of light
λ-wavelength
f-frequency
x-distance to
maxima/minima
L-distance to screen
d-distance between slits
D-slit width
n-index of refraction
v-velocity
t-thickness of film
Optics
r
2
1
1
1


f do di
f 
d
h
m i  i
d o ho
f-focal length
r-radius of curvature
di-image distance
do-object distance
m-magnification
hi-image height
ho-object height
Constants
m
g  9.8 2
s
  3.14
G  6.67 x10 11
Nm 2
kg 2
mE  6.0 x10 24 kg
rE  6.4 x10 6 m
kg
g
1 3
m3
cm
 1atm  101kPa 
 water  1000
Patm
1.01  105 Pa
Nm 2
C2
 e  1.6 x10 19 C
k  9.0 x10 9
qelectron
melectron  9.11x10 31 kg
m proton  1.67 x10 27 kg
o
Tm
 2 x10 7
2
A
m
s
m
c  3.0 x108
s
34
h  6.6 x10 Js 
vsound  340
4.14 x10 15 eVs
Conversions
mega( M )  x10 6
kilo(k )  x103
centi(c)  x10  2
milli (m)  x10 3
micro (  )  x10 6
nano(n)  x10 9
pico ( p )  x10 12
Geometry
r
d
2
Acircle  r 2
C  2r
1
Areatriangle  bh
2
Arearec tan gle  bh
Volume  Ah
r-radius
d-diameter
A-area
C-circumference
b-base
h-height