Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
European underground laboratories for Astroparticle Physics Lino Miramonti – 8 Feb 2007 Campinas - Sao Paulo (Brasil) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 1 What Astroparticle Physics is? Employs knowledges and techniques from particle physics in order to study cosmological and astrophysical aspects Particle physics Astroparticle physics Astrophysics & Cosmology Detects particles coming from space for particle physics studies Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 2 Typical studies of astroparticle physics are: Neutrino Physics (Solar, Supernova, Atmospherics, Geoneutrinos, neutrinos from reactors and from accelerators, etc..) Cosmic Ray Physics Rare Processes (double beta decay, proton decay etc..) Dark Matter (WIMP’s) Gravitational Waves Nuclear Physics (Cross section measurements of astrophysics interest) ……. Very little cross sections and/or very rare processes Underground laboratories means to shield the detector apparatus from cosmic radiation Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 3 Underground Laboratories in Europe Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 4 LNGS - Laboratori Nazionali del Gran Sasso, Italy http://www.lngs.infn.it/ Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 5 3 main halls A B C 100 x 18 m2 (h.20 m) Operating Institution Istituto Nazionale di Fisica Nucleare (INFN) Location Gran Sasso Tunnel (Abruzzi, Italy) Excavation 1987 Underground area 3 halls A B C (100m x 18m x h 20m) + service tunnels Depth 1400 m (3800 mwe) Total volume 180000 m3 Surface > 6000 m2 Permanent staff 66 (physicists, technicians, administration) Muon Flux (μ m-2 day-1) 24 450 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) O(1) Radon (Bq/m3) 0(100) Scientists users Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 6 Completed experiments Atm ν, Monopoles Solar neutrinos ββ Dark Matter MACRO GALLEX / GNO Heidelberg-Moscow Mibeta DAMA (Streamer tubes + Liquid scintillators) (~ 30 T Gallium radiochemical detector) (~ 11 kg enriched 76Ge detectors) (~ 7 kg Bolometers TeO2) (~ 100 kg NaI detectors) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 7 Running experiments ββ Dark Matter Supernova neutrinos Nuclear astrophysics Cuoricino CRESST LIBRA WARP HDMS XENON10 LVD LUNA (~ 41 kg TeO2 crystals) (Sapphire cryodetector & CaWO4 crystals (phonons+scintillation)) (~ 250 kg NaI crystals) (Liquid Argon) (Ge detector 73Ge enriched) (10 kg Xe TPC) (Streamer tubes + Liquid scintillator) (Accelerator 50-400 kV) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 8 Under construction CERN-GS beam ν Solar Neutrinos OPERA ICARUS Borexino (Emulsion) (~ 600 T Liquid Argon) (~ 300 T Liquid scintillator) Planned & proposed ββ Nuclear astrophysics Gravitational waves Dark matter CUORE GERDA COBRA LUNA-III LISA R&D Liquid Ar XENON100 (~ 750 kg Te02) (76Ge) (116Cd and 130Te) (TPCs) (100 kg Xe TPC) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 9 LSM - Laboratoire Souterrain de Modane, France http://www-lsm.in2p3.fr/ Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 10 1 Main hall 30 x 10m2 (h 11m) + gamma spectr. hall (70 m2) + 2 secondary halls of 18 m2 and 21 m2 Operating Institutions CEA/DSM & CNRS/IN2P3 Location Fréjus Tunnel (Italian-French border) Excavation 1983 Underground area 1 main hall (30m x 10m x 11m) + gamma spectroscopy hall (70 m 2) + 2 secondary halls of 18 m 2 and 21 m2 Depth 1700 m (4800 mwe) Surface > 400 m2 Permanent staff 4 Scientists users 100 Muon Flux (μ m-2 day-1) 4 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) O(1) Radon (Bq/m3) O(10) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 11 Completed experiments p decay & Atm ν ββ Dark Matter Frejus proton decay exp NEMO-I NEMO-II TGV EDELWEISS-I (Fe and flash chamber). (prototype NemoIII) (prototype NemoIII) (Stack of Ge detectors with sheets of DBD candidates) (1 kg Ge bolometer heat+ionization) Running experiments and Under construction ββ Dark Matter NEMO-III EDELWEISS-II (Tracking + calorimeter) (10 to 35 kg Ge heat+ioniz.) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 12 LSC - Laboratorio Subterraneo de Canfranc, Spain http://ezpc00.unizar.es/lsc/index2.html Tobazo's peak Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 13 2 small halls [Lab1] 36 m2 + 1 Main hall [Lab3] 20 x 5 m2 (h 4.5 m) Canfranc railway tunnel entrance Now used only to store materials Operating Institutions Zaragoza University Location Railway tunnel of Somport (Canfranc, Pyrenes) 7.5 km Excavation 1986 [lab1] – 1994 [lab3] Underground area 2 small halls [lab1] + Main hall [lab3] Depth 900 m (2450 mwe) [lab3] Surface 118 m2 [lab3] Permanent staff 7 Scientists users 35 Mobile Lab (now dismounted) Muon Flux (μ m-2 day-1) 400 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) O(1) Radon (Bq/m3) O(100) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 14 Completed & Running experiments Under construction ββ IGEX-2β Dark Matter IGEX-DM ANAIS ROSEBUD ββ GEDEON (Set of Ge crystals 30-90 kg) Dark Matter ROSEBUD I (Bolom and Scint) ArDM (Liq Ar) (~ 9 kg enriched Ge detectors) (~ 2 kg enriched Ge detectors) (NaI Crystals) (Bolometers: Sapphire, Ge, BGO, CaW04) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 15 The new Canfranc Underground Laboratory ROAD TUNNEL Access gallery installations, clean rooms & offices Characteristic of the new LSC Ultra-Low background Facility 15 x 10 m (h=8 m) Main Hall 40 x 15 m (h=11 m) Old Laboratoy RAILWAY TUNNEL 20 x 5 m (h=4.5 m) Depth 900 m (2450 mwe) Main experimental hall 600 m2 (oriented to CERN) Low background lab 150 m2 Clean room 45 m2 (100/1000 type) General services 135 m2 Offices 80 m2 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 16 IUS – Boulby Mine Laboratory, UK http://hepwww.rl.ac.uk/ukdmc/ukdmc.html Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 17 [Stub2] 300 m2 + [Stub2a] 150 m2 + [H area] + 900 m2 + [JIF area] 2500 m2 Operating Institution Institute for Underground Physics University of Sheffield Location Potash mine, Boulby (UK) Excavation 1988 (Stub 2) – 1995 (Stub 2a) – 1998 (H area) – 2003 (JIF area) Depth 850 m (2250 mwe) to 1300 m (3600 mwe) Surface 3000 m2 Permanent staff 2 Scientists users 30 Muon Flux (μ m-2 day-1) 34 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) O(1) Radon (Bq/m3) O(10) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 18 Completed Experiments Dark Matter NaIAD ZEPLIN-I (~ 65 kg NaI Advanced Detector) (~ 3.1 kg Liquid Xe scintil. Detector) Running experiments and Under construction Dark Matter ZEPLIN-II DRIFT ZEPLIN-III (~ 30 kg Liquid Xe scintil. Detector) (Low pressure Xe gaseous TPC) ( 6 kg Liq Xe + 3D reconstruction) Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 19 CUPP - Centre for Underground Physics in Pyhäsalmi, Finland http://cupp.oulu.fi/ Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 20 The project to host an underground laboratory in the mine was started in 1993, and the Centre for Underground Physics in Pyhäsalmi (CUPP) was physically established in 2001. Muon Flux (μ m-2 day-1) 9 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) ? Radon (Bq/m3) O(100) The new mine started to operate in July 2001. It extends to the depth of 1440 m (4000 mwe). The old part of the mine: There will be plenty of free space to host and storage experiments The largest cavern that can be easily constructed is 100 x 15 x 20 m3. An example of the layout Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 21 SUL – Solotvina Underground Laboratory, Ukraine http://lpd.kinr.kiev.ua/ Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 22 It was constructed in 1984 by the Institute for Nuclear Research (Ukrainian National Academy of Sciences). It is situated on the west of Ukraine, in Solotvina near the border with Romania. 1 Main hall 30 x 20 m2 (h 8 m) + 4 small halls 3 x 6 m2 (h 3 m) Muon Flux (μ m-2 day-1) 1500 Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1) 0(1) Radon (Bq/m3) ? Primordial Radionuclides Due to a low radioactive contamination of salt, the natural gamma background in the SUL is 10-100 times lower than in other underground laboratories Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 23 The principal scientific goal of the Laboratory is search for rare or forbidden processes in nuclear and particle physics, mainly for double beta (2β) decay of atomic nuclei. 116CdWO 4 detectors the CARVEL (CAlcium Research for VEry Low neutrino mass) proposal is developed for 2β0ν decay of 48Ca with 48CaWO4 crystal scintillators (~100 kg ) with sensitivity of T1/2 ≥ 1027 yr and mν ≤ 0.04-0.09 eV Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 24 Integrated Large Infrastructures France Commissariat a l’Energie Atomique, Centre National de la Recherche Scientifique for Italy Istituto Nazionale di Fisica Nucleare, Istituto di Fotonica e Nanotecnologie Trento, European Gravitational Observatory Germany Max Planck Institut für Kernphysik, Technische Universität München, Max Planck Institut für Physik Muenchen, Eberhardt, Karls Universität Tubingen Astroparticle Science Spain Zaragoza University UK Sheffield University, Glasgow University, London University Czech Rep Czech Technical Univ. in Prague Denmark University of Southern Denmark Netherland Leiden University Finland University of Jyväskylä Slovakia Comenius University Bratislavia Greece Aristot University of Thessaloniki ILIAS is an initiative supported by the European Union with the aim to support the European large infrastructures operating in the astroparticle physics sector. Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 25 The ILIAS project is based on 3 groups of activities: • Networking Activities (N2) Deep Underground science laboratories (N3) Direct dark matter detection (N4) Search on double beta decay (N5) Gravitational wave research (N6) Theoretical astroparticle physics • Joint Research Activities (R&D Projects) (JRA1) Low background techniques for Deep Underground Science (JRA2) Double beta decay European observatory (JRA3) Study of thermal noise reduction in gravitational wave detectors • Transnational Access Activities (TA1) Access to the EU Deep Underground Laboratories Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 26 JRA1 (Joint Research Activities 1): Low background techniques for deep underground sciences (LBT-DUSL) Objectives: Background identification and measurement (intrinsic, induced, environmental) Background rejection techniques (shielding, vetoes, discrimination) Working packages A vast R&D programme on the improvement and implementation of ultra-low background techniques will be carried out cooperatively in the European Underground Laboratories. WP1: Measurements of the backgrounds in the underground labs WP2: Implementation of background MC simulation codes WP3: Ultra-low background techniques and facilities WP4: Radiopurity of materials and purification techniques Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 27 Italy (INFN & Universiy of Milano Genova, Perugia LNGS) USA (Princeton Univ., Virginia Tech.) Russia (RRC KI, JINR, INP MSU, INP St. Petersburg) Germany (Hiedelberg MPI, Munich Technical University) France (College de France) Hungary (Research Institute for Particle & Nuclear Physics) Poland (Institute of CHERENKOV Physics, Jaegollian University, Cracow) Less than 0.01% of the RADIOCHEMICAL Integrated in energy and time solar neutrino flux is been measured in real time. The main goal of Borexino is to measure in real time the low energy (< 1 MeV) component of solar neutrinos. Radiocontaminants < 10-16 g/g (238U and 232Th equivalent) ! Background from natural radioactivity Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 28 Direct observation of vacuum oscillations Survival probability (LMA-Solution) Vacuum oscillations Oscillation in matter (MSW) 7Be Not still studied in direct way MeV Beside solar ν Borexino could study: neutrinos coming from the Earth (Geoneutrinos), neutrinos coming from Supernova, magnetic moment of neutrino [with artificial source 51Cr] 51Cr (E = 751 keV) Activity = 2.5 MCi Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 29 BOREXINO: subsystems Borexino detector Scintillator purification systems: Water extraction Vacuum distillation Silicagel adsorption Storage tanks: 300tons of PC Control room Counting room CTF DI Water plant Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 30 Core of the detector: 300 tons of liquid scintillator (PC+PPO) contained in a nylon vessel of 8.5 m diameter. The thickness of nylon is 125 µm. 1st shield: 1000 tons of ultra-pure buffer liquid (pure PC) contained in a stainless steel sphere of 13.7 m diameter (SSS). 2200 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator. 2nd shield: 2400 tons of ultra-pure water contained in a cylindrical dome. 200 photomultiplier tubes mounted on the SSS pointing outwards to detect Cerenkov light emitted in the water by muons. Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 31 Eν = 862 keV (monochromatic) 7 ΦSSM = 4.8 · 109 ν s-1 cm2 Be e 7Li e e Recoil nuclear energy of the e- x Elastic Scattering x e x e 1044 cm 2 (at 1 MeV ) expected rate (LMA hypothesis) is 35 counts/day in the 250-800 keV energy range Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 32 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 33 18 m Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 34 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 35 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 36 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 37 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 38 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 39 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 40 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 41 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 42 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 43 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 44 Cleen Room (on top of the Water Tank) for the insertions of lasers and sources for calibrations. Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 45 CTF is a prototype of Borexino. Its main goal was to verify the capability to reach the very low-levels of contamination needed for Borexino 100 PMTs 4 tons of scintillator 4.5m thickness of water shield Muon-veto detector Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 46 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 47 Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil) 48