Download European underground laboratories for Astroparticle

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
European underground laboratories
for Astroparticle Physics
Lino Miramonti – 8 Feb 2007
Campinas - Sao Paulo (Brasil)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
1
What Astroparticle Physics is?
Employs knowledges and techniques from particle physics
in order to study cosmological and astrophysical aspects
Particle
physics
Astroparticle
physics
Astrophysics
&
Cosmology
Detects particles coming from space for particle physics studies
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
2
Typical studies of astroparticle physics are:

Neutrino Physics (Solar, Supernova, Atmospherics, Geoneutrinos,
neutrinos from reactors and from accelerators, etc..)

Cosmic Ray Physics

Rare Processes (double beta decay, proton decay etc..)

Dark Matter (WIMP’s)

Gravitational Waves

Nuclear Physics (Cross section measurements of astrophysics interest)

…….
Very little cross sections
and/or
very rare processes
Underground
laboratories
means to shield the detector apparatus
from cosmic radiation
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
3
Underground
Laboratories
in Europe
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
4
LNGS - Laboratori Nazionali del
Gran Sasso, Italy
http://www.lngs.infn.it/
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
5
3 main halls
A B C 100 x 18 m2 (h.20 m)
Operating
Institution
Istituto Nazionale di Fisica Nucleare
(INFN)
Location
Gran Sasso Tunnel (Abruzzi, Italy)
Excavation
1987
Underground area
3 halls A B C (100m x 18m x h 20m)
+ service tunnels
Depth
1400 m (3800 mwe)
Total volume
180000 m3
Surface
> 6000 m2
Permanent staff
66 (physicists, technicians,
administration)
Muon Flux (μ m-2 day-1)
24
450
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
O(1)
Radon (Bq/m3)
0(100)
Scientists users
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
6
Completed experiments
Atm ν, Monopoles
Solar neutrinos
ββ
Dark Matter
MACRO
GALLEX / GNO
Heidelberg-Moscow
Mibeta
DAMA
(Streamer tubes + Liquid scintillators)
(~ 30 T Gallium radiochemical detector)
(~ 11 kg enriched 76Ge detectors)
(~ 7 kg Bolometers TeO2)
(~ 100 kg NaI detectors)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
7
Running experiments
ββ
Dark Matter
Supernova neutrinos
Nuclear astrophysics
Cuoricino
CRESST
LIBRA
WARP
HDMS
XENON10
LVD
LUNA
(~ 41 kg TeO2 crystals)
(Sapphire cryodetector & CaWO4 crystals (phonons+scintillation))
(~ 250 kg NaI crystals)
(Liquid Argon)
(Ge detector 73Ge enriched)
(10 kg Xe TPC)
(Streamer tubes + Liquid scintillator)
(Accelerator 50-400 kV)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
8
Under construction
CERN-GS beam ν
Solar Neutrinos
OPERA
ICARUS
Borexino
(Emulsion)
(~ 600 T Liquid Argon)
(~ 300 T Liquid scintillator)
Planned & proposed
ββ
Nuclear astrophysics
Gravitational waves
Dark matter
CUORE
GERDA
COBRA
LUNA-III
LISA R&D
Liquid Ar
XENON100
(~ 750 kg Te02)
(76Ge)
(116Cd and 130Te)
(TPCs)
(100 kg Xe TPC)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
9
LSM - Laboratoire Souterrain
de Modane, France
http://www-lsm.in2p3.fr/
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
10
1 Main hall 30 x 10m2 (h 11m) + gamma spectr. hall (70 m2) + 2 secondary halls of 18 m2 and 21 m2
Operating
Institutions
CEA/DSM & CNRS/IN2P3
Location
Fréjus Tunnel (Italian-French
border)
Excavation
1983
Underground
area
1 main hall (30m x 10m x 11m) +
gamma spectroscopy hall (70 m 2)
+ 2 secondary halls of 18 m 2 and
21 m2
Depth
1700 m (4800 mwe)
Surface
> 400 m2
Permanent staff
4
Scientists users
100
Muon Flux (μ m-2 day-1)
4
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
O(1)
Radon (Bq/m3)
O(10)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
11
Completed experiments
p decay & Atm ν
ββ
Dark Matter
Frejus proton decay exp
NEMO-I
NEMO-II
TGV
EDELWEISS-I
(Fe and flash chamber).
(prototype NemoIII)
(prototype NemoIII)
(Stack of Ge detectors with sheets of DBD candidates)
(1 kg Ge bolometer heat+ionization)
Running experiments and Under construction
ββ
Dark Matter
NEMO-III
EDELWEISS-II
(Tracking + calorimeter)
(10 to 35 kg Ge heat+ioniz.)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
12
LSC - Laboratorio Subterraneo
de Canfranc, Spain
http://ezpc00.unizar.es/lsc/index2.html
Tobazo's peak
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
13
2 small halls [Lab1] 36 m2 +
1 Main hall [Lab3] 20 x 5 m2 (h 4.5 m)
Canfranc railway
tunnel entrance
Now used only to store materials
Operating
Institutions
Zaragoza University
Location
Railway tunnel of Somport (Canfranc,
Pyrenes) 7.5 km
Excavation
1986 [lab1] – 1994 [lab3]
Underground
area
2 small halls [lab1] + Main hall [lab3]
Depth
900 m (2450 mwe) [lab3]
Surface
118 m2 [lab3]
Permanent staff
7
Scientists users
35
Mobile Lab (now dismounted)
Muon Flux (μ m-2 day-1)
400
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
O(1)
Radon (Bq/m3)
O(100)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
14
Completed & Running experiments
Under construction
ββ
IGEX-2β
Dark Matter IGEX-DM
ANAIS
ROSEBUD
ββ
GEDEON
(Set of Ge crystals 30-90 kg)
Dark Matter ROSEBUD I (Bolom and Scint)
ArDM
(Liq Ar)
(~ 9 kg enriched Ge detectors)
(~ 2 kg enriched Ge detectors)
(NaI Crystals)
(Bolometers: Sapphire, Ge, BGO, CaW04)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
15
The new Canfranc Underground Laboratory
ROAD
TUNNEL
Access
gallery
installations,
clean rooms
& offices
Characteristic of the new LSC
Ultra-Low
background
Facility
15 x 10 m
(h=8 m)
Main Hall
40 x 15 m
(h=11 m)
Old
Laboratoy
RAILWAY
TUNNEL
20 x 5 m
(h=4.5 m)
Depth
900 m (2450 mwe)
Main
experimental
hall
600 m2 (oriented to CERN)
Low
background
lab
150 m2
Clean room
45 m2 (100/1000 type)
General
services
135 m2
Offices
80 m2
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
16
IUS – Boulby Mine Laboratory, UK
http://hepwww.rl.ac.uk/ukdmc/ukdmc.html
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
17
[Stub2] 300 m2 + [Stub2a] 150 m2 + [H area] + 900 m2 +
[JIF area] 2500 m2
Operating
Institution
Institute for Underground Physics
University of Sheffield
Location
Potash mine, Boulby (UK)
Excavation
1988 (Stub 2) – 1995 (Stub 2a) – 1998 (H
area) – 2003 (JIF area)
Depth
850 m (2250 mwe) to 1300 m (3600 mwe)
Surface
3000 m2
Permanent staff
2
Scientists users
30
Muon Flux (μ m-2 day-1)
34
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
O(1)
Radon (Bq/m3)
O(10)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
18
Completed Experiments
Dark Matter NaIAD
ZEPLIN-I
(~ 65 kg NaI Advanced Detector)
(~ 3.1 kg Liquid Xe scintil. Detector)
Running experiments and Under construction
Dark Matter ZEPLIN-II
DRIFT
ZEPLIN-III
(~ 30 kg Liquid Xe scintil. Detector)
(Low pressure Xe gaseous TPC)
( 6 kg Liq Xe + 3D reconstruction)
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
19
CUPP - Centre for Underground Physics
in Pyhäsalmi, Finland
http://cupp.oulu.fi/
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
20
The project to host an underground
laboratory in the mine was started in
1993, and the Centre for Underground
Physics in Pyhäsalmi (CUPP) was
physically established in 2001.
Muon Flux (μ m-2 day-1)
9
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
?
Radon (Bq/m3)
O(100)
The new mine started to operate in July 2001.
It extends to the depth of 1440 m (4000 mwe).
The old part of the mine:
There will be plenty of free space
to host and storage experiments
The largest cavern that can be easily constructed
is 100 x 15 x 20 m3.
An example of the layout
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
21
SUL – Solotvina Underground
Laboratory, Ukraine
http://lpd.kinr.kiev.ua/
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
22
It was constructed in 1984 by the Institute for
Nuclear Research (Ukrainian National Academy
of Sciences).
It is situated on the west of Ukraine, in Solotvina
near the border with Romania.
1 Main hall 30 x 20 m2 (h 8 m) + 4
small halls 3 x 6 m2 (h 3 m)
Muon Flux (μ m-2 day-1)
1500
Neutron Flux (> 1 MeV) (10-6 n cm-2 s-1)
0(1)
Radon (Bq/m3)
?
Primordial Radionuclides
Due to a low radioactive contamination of
salt, the natural gamma background in the
SUL is 10-100 times lower than in other
underground laboratories
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
23
The principal scientific goal of the Laboratory is search for rare or
forbidden processes in nuclear and particle physics, mainly for
double beta (2β) decay of atomic nuclei.
116CdWO
4
detectors
the CARVEL (CAlcium Research for VEry Low neutrino mass)
proposal is developed for 2β0ν decay of 48Ca with 48CaWO4
crystal scintillators (~100 kg ) with sensitivity of
T1/2 ≥ 1027 yr and
mν ≤ 0.04-0.09 eV
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
24
Integrated
Large
Infrastructures
France
Commissariat a l’Energie Atomique,
Centre National de la Recherche Scientifique
for
Italy
Istituto Nazionale di Fisica Nucleare,
Istituto di Fotonica e Nanotecnologie Trento,
European Gravitational Observatory
Germany
Max Planck Institut für Kernphysik, Technische
Universität München,
Max Planck Institut für Physik Muenchen, Eberhardt,
Karls Universität Tubingen
Astroparticle
Science
Spain
Zaragoza University
UK
Sheffield University,
Glasgow University,
London University
Czech Rep
Czech Technical Univ. in Prague
Denmark
University of Southern Denmark
Netherland
Leiden University
Finland
University of Jyväskylä
Slovakia
Comenius University Bratislavia
Greece
Aristot University of Thessaloniki
ILIAS is an initiative supported by the
European Union with the aim to
support
the
European
large
infrastructures
operating
in
the
astroparticle physics sector.
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
25
The ILIAS project is based on 3 groups of activities:
• Networking Activities
(N2) Deep Underground science laboratories
(N3) Direct dark matter detection
(N4) Search on double beta decay
(N5) Gravitational wave research
(N6) Theoretical astroparticle physics
• Joint Research Activities (R&D Projects)
(JRA1) Low background techniques for Deep Underground Science
(JRA2) Double beta decay European observatory
(JRA3) Study of thermal noise reduction in gravitational wave detectors
• Transnational Access Activities
(TA1) Access to the EU Deep Underground Laboratories
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
26
JRA1 (Joint Research Activities 1):
Low background techniques for deep
underground sciences (LBT-DUSL)
Objectives:
Background identification and measurement (intrinsic, induced, environmental)
Background rejection techniques (shielding, vetoes, discrimination)
Working packages
A vast R&D programme on the
improvement and implementation of
ultra-low background techniques
will be carried out cooperatively in the
European Underground Laboratories.
WP1:
Measurements of the backgrounds in the underground labs
WP2:
Implementation of background MC simulation codes
WP3:
Ultra-low background techniques and facilities
WP4:
Radiopurity of materials and purification techniques
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
27
Italy (INFN & Universiy of Milano Genova, Perugia
LNGS)
USA (Princeton Univ., Virginia Tech.)
Russia (RRC KI, JINR, INP MSU, INP St.
Petersburg)
Germany (Hiedelberg MPI, Munich Technical
University)
France (College de France)
Hungary (Research Institute for Particle & Nuclear
Physics)
Poland (Institute of CHERENKOV
Physics, Jaegollian University,
Cracow)
Less than 0.01% of the
RADIOCHEMICAL
Integrated in energy and
time
solar
neutrino flux is been measured in
real time.
The main goal of Borexino is to measure in
real time the low energy (< 1 MeV) component
of solar neutrinos.
Radiocontaminants < 10-16 g/g (238U and 232Th equivalent) !
Background from natural radioactivity
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
28
Direct observation of vacuum oscillations
Survival probability (LMA-Solution)
Vacuum
oscillations
Oscillation in matter
(MSW)
7Be
Not still studied in direct way
MeV
Beside solar ν Borexino could study:
neutrinos coming from the Earth (Geoneutrinos),
neutrinos coming from Supernova,
magnetic moment of neutrino [with artificial source 51Cr]
51Cr
(E = 751 keV)
Activity = 2.5 MCi
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
29
BOREXINO: subsystems
Borexino detector
Scintillator purification systems:
Water extraction
Vacuum distillation
Silicagel adsorption
Storage tanks: 300tons of PC
Control room
Counting room
CTF
DI Water plant
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
30
Core of the detector: 300 tons of liquid
scintillator (PC+PPO) contained in a nylon
vessel of 8.5 m diameter. The thickness of
nylon is 125 µm.
1st shield: 1000 tons of ultra-pure buffer
liquid (pure PC) contained in a stainless steel
sphere of 13.7 m diameter (SSS).
2200 photomultiplier tubes pointing towards
the center to view the light emitted by the
scintillator.
2nd shield: 2400 tons of ultra-pure water
contained in a cylindrical dome.
200 photomultiplier tubes mounted on the
SSS pointing outwards to detect Cerenkov
light emitted in the water by muons.
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
31
Eν = 862 keV (monochromatic)
7
ΦSSM = 4.8 · 109 ν s-1 cm2
Be  e   7Li   e
e
Recoil nuclear energy of the e-
x
Elastic Scattering
 x  e   x  e
  1044 cm 2 (at 1 MeV )
expected rate (LMA hypothesis) is 35 counts/day in the 250-800 keV energy range
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
32
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
33
18 m
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
34
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
35
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
36
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
37
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
38
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
39
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
40
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
41
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
42
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
43
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
44
Cleen Room (on top of the Water Tank) for the insertions of lasers
and sources for calibrations.
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
45
CTF is a prototype of Borexino. Its main goal was to verify the capability to
reach the very low-levels of contamination needed for Borexino
100 PMTs
4 tons of scintillator
4.5m thickness of water shield
Muon-veto detector
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
46
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
47
Lino Miramonti – 8 Feb 2007 – Campinas - Sao Paulo (Brasil)
48