Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Usingabestresponseoracletosolvesearchgamesongraphs ThomasLidbetter*andLisaHellerstein** *RutgersBusinessSchool **NewYorkUniversity GRASTA2017 BroadcharacterizationofSearchGamesforanimmobileHider • Zero-sumgamesbetweenaSearcherandaHider • Strategyset𝐻 forHideristypicallyasetof𝑛 locations • Strategyset𝑆 forSearchercouldbemuchlarger,eg.allorderingsof n : = {1, … , 𝑛},orasubsetthereof(couldberestrictedbysomegraph structure) • PayoffissomecosttoSearcheroffindingHiderorprobabilityoffinding him • Mainproblem:findoptimal(minimax)strategiesandvalueofthegame • Ideallyclosedformsolutions,butifnot,isthereanefficientalgorithm (polynomialin𝑛)forfindingsolutions? • LPapproachnotefficient Example:searchingforballsinboxes • 𝐻 = 𝑛 = setofboxes,𝑆 = allpermutationson[𝑛] • Costs𝑐/ , … , 𝑐0 ofsearchingboxes • Payoffiscostofallboxessearcheduntilballfound(searchcost) • Eg. $3 $7 $3 $2 $6 Example:searchingforballsinboxes • 𝐻 = 𝑛 = setofboxes,𝑆 = allpermutationson[𝑛] • Costs𝑐/ , … , 𝑐0 ofsearchingboxes • Payoffiscostofallboxessearcheduntilballfound(searchcost) • Eg. $3 $7 $3 $2 $6 Example:searchingforballsinboxes • 𝐻 = 𝑛 = setofboxes,𝑆 = allpermutationson[𝑛] • Costs𝑐/ , … , 𝑐0 ofsearchingboxes • Payoffiscostofallboxessearcheduntilballfound(searchcost) • Eg. $3 $7 $3 $2 $6 Example:searchingforballsinboxes • 𝐻 = 𝑛 = setofboxes,𝑆 = allpermutationson[𝑛] • Costs𝑐/ , … , 𝑐0 ofsearchingboxes • Payoffiscostofallboxessearcheduntilballfound(searchcost) • Eg. $3 $7 $3 $2 $6 Example:searchingforballsinboxes • 𝐻 = 𝑛 = setofboxes,𝑆 = allpermutationson[𝑛] • Costs𝑐/ , … , 𝑐0 ofsearchingboxes • Payoffiscostofallboxessearcheduntilballfound(searchcost) • Eg.searchcost= 7 + 6 + 3 = 16 $3 $7 $3 $2 $6 • ThreedifferentclosedformsolutionsfoundbyAlpern &L(2013), L(2013)and(implicitly)by Condon,Deshpande,Hellerstein &Wu(2009) Example:searchingforballsinboxes • Wecanconsiderthebestresponseproblem:foragivenmixed (randomized)strategyoftheHider,whatisthebestresponseofthe Searcher? • Eg. $3 2/15 $7 5/15 $3 3/15 $2 1/15 $6 4/15 • Answer:openboxesindecreasingorderofprobabilitytocost (Blackwell,1964) Example:searchingforballsinboxes • Wecanconsiderthebestresponseproblem:foragivenmixed (randomized)strategyoftheHider,whatisthebestresponseofthe Searcher? • Eg. $3 2/15 $7 5/15 $3 3/15 $2 1/15 $6 4/15 • Answer:openboxesindecreasingorderofprobabilitytocost (Blackwell,1964;Smith,1956) • Generalquestion:canweusesolution(orapproximatesolution)tobest responseproblemtosolveagame? Maintheorems(Hellerstein &L,2017) • Considerazero-sumgamewithvalue𝑉 wherePlayerI(maximizer)has 𝑛 purestrategiesandPlayerII(minimizer)hasanarbitrarynumberof purestrategies. • Supposewehaveanbestresponseoraclethatfindsan𝛼-approximation tothebestresponseproblem(𝛼 ≥ 1)intimepolynomialinn. • Thentherearepolynomialtime*algorithmsthatfindamixedstrategy forPlayerIthatguaranteesanexpectedpayoffofatleast𝛼𝑉 anda mixedstrategyforPlayerIIthatguaranteesanexpectedpayoffofat most𝑉/𝛼.(Callthesestrategies𝛼-optimal.) Approach1 • WritegameasLPanduseellipsoidapproachwiththebestresponse oracletosimulatetheseparationoracle • Sameapproach(butnotforgames)usedbyJansen(2003),Carr and Vempala (2002),Friggstad andSwamy (2012)andFeldmanetal.(2012) • Reliesonellipsoidalgorithmsoispolynomialinnotonly𝑛 butlog𝑀, where𝑀 = largestpossiblepayoffingame. Approach2 • Multiplicativeweightsupdatemethod • More“combinatorial”algorithmandruntimedoesnotdependon𝑀 • However,algorithmactuallyoutputs𝛼(1 + 𝜀)-optimalstrategies,and algorithmispolynomialinnotjust𝑛 but1/𝜀 and𝛼 • SimilarapproachasFreundandSchapire (1999),buttheydonot consider𝛼-approximations,andtheygivestrategiesthatarewithinan additivedistanceof𝜀 from𝑉 Example1:Expandingsearchgame(Alpern &L,2013) Anexpandingsearchofanedge-weighted,connectedgraphwithroot vertex𝑂 isasequenceofedges,startingat𝑂,eachoneofwhichis incidenttoapreviouslychosenedge. Hiderstrategy:avertex 2 3 1 1 Searcherstrategy:anexpanding search Payoff:costoffindingHider 2 3 𝑂 Example1:Expandingsearchgame(Alpern &L,2013) • Bestresponseproblemsolvedfortrees(Alpern &L,2013;Sidney,1975) • NP-hardforgeneralgraphs;unknownwhetherapproximatesolutions canbefound Example2:Expandingsearchgameonadirectedacyclicgraph(DAG) • Bestresponseproblemiswell-knownNP-hardschedulingproblem • Many2-approximationsknown: • • • • • • • Ambuhl &Mastrolili (2009) Chekuri &Motwani (1999) Chudak &Hochbaum (1999) Hall,Schultz&Shmoys (1997) Margot,Queyranne &Wang(2003) Pisaruk (2003) Schulz(1996) Example3:Expandingsearchratio(Angelopoulos,Dürr,L,2016) • Likeexpandingsearchgame,butpayoffisdividedbyshortestpath distanceofvertexfromroot • Bestresponseproblemissameasforexpandingsearchgame • Sothisgamecanbesolvedpreciselyfortreesanda2-approximationcan befoundforDAGs Example4:Pursuit-evasiongame(Gal,Cassas,2014) • Hiderchoosesoneof𝑛 locations • Searchercansearch𝑘 ofthem,andiftheycontainHider’slocation𝑖,a pursuitensuesandheisfoundwithprobability𝑝G • Moregeneralversion:locationshavecosts𝑐G andsearchercansearcha subsetoftotalcost≤ 𝑘 • BestresponseproblemisKnapsackProblem,whichhasaFully PolynomialTimeApproximationScheme Example5:VonStengel&Werchner (1997) • Hiderchoosesavertexofanunweightedgraph • Searcherchoosesaconnectedsubgraphwith𝑘 edges • SearcherwinsifhissubgraphcontainstheHider’svertex WinforSearcher • Bestresponseproblemisweighted𝑘-CARDTREE(Fischetti etal,1994) • NP-hardandnoapproximationsknown