* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Evolutionary algorithms
Philosophy of artificial intelligence wikipedia , lookup
Machine learning wikipedia , lookup
History of artificial intelligence wikipedia , lookup
Gene expression programming wikipedia , lookup
Pattern recognition wikipedia , lookup
Ethics of artificial intelligence wikipedia , lookup
Intelligence explosion wikipedia , lookup
Existential risk from artificial general intelligence wikipedia , lookup
http://lamda.nju.edu.cn 演化学习 基于演化优化处理机器学习问题 俞扬 南京大学 软件新技术国家重点实验室 机器学习与数据挖掘研究所 Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction for binary vector: archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 mutation: [1,0,0,1,0] → [1,1,0,1,0] crossover: [1,0,0,1,0] + [0,1,1,1,0] → [0,1,0,1,0] + [1,0,1,1,0] for real vector: mutation: .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary algorithms Genetic Algorithms [J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.] Evolutionary Strategies [I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.] Evolutionary Programming [L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution, John Wiley, 1966.] and many other nature-inspired algorithms ... problem-independent reproduction archive new solutions evaluation & selection only need to evaluate solutions ⇒ calculate f(x) ! 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Applications Series 700 Series N700 this nose ... has been newly developed ... using the latest analytical technique (i.e. genetic algorithms) N700 cars save 19% energy ... 30% increase in the output... This is a result of adopting the ... nose shape 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Applications human designed QHAs(human designed) 38% efficiency 2015.11.23, CAAMAS:演化学习 evolved antennas 93% efficiency .nju.edu.cn Evolutionary optimization v.s. machine learning [Computing machinery and intelligence. Mind 49: 433-460, 1950.] “We cannot expect to find a good child machine at the first attempt. One must experiment with teaching one such machine and see how well it learns. One can then try another and see if it is better or worse. There is an obvious connection between this process and evolution, by the identifications “Structure of the child machine = Hereditary material Alan Turing 1912-1954 “Changes of the child machine = Mutations “Judgment of the experimenter = Natural selection” [Genetic algorithms and machine learning. Machine Learning, 3:95-99, 1988.] [Evolvability. Journal of the ACM, 56(1), 2009.] D. E. Goldberg J. H. Holland Leslie Valiant ACM/Turing Award 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Evolutionary optimization v.s. machine learning Selective ensemble: [Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002] The GASEN approach minimize the estimated generalization error directly by a genetic algorithm regression classification figures from [Zhou et al., AIJ’02] 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Fundamental Problems Unsolved When get the result? How is the result? Which operators affect the result? ... 2015.11.23, CAAMAS:演化学习 .nju.edu.cn A summary of our work When get the result: we developed a general tool for the first hitting time analysis [AIJ’08] and disclosed a general performance bound How is the result: we derived a general approximation performance bound [AIJ’12] and disclosed that EAs can be the best-so-far algorithm with practical advantages Which operators affect the result: we proved the usefulness of crossover for multi-objective optimization. [AIJ’13] on synthetic as well as NP-hard problems And more: optimization with noisy [Qian et al., PPSN’14], class-wise analysis [Qian, Yu and Zhou, PPSN’12], statistical view [Yu and Qian, CEC’14] ... 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Outline - Approximation ability - Pareto v.s. Penalty - Evolutionary learning - Pareto Ensemble Pruning - Pareto Sparse Regression - Conclusion 2015.11.23, CAAMAS:演化学习 .nju.edu.cn In applications... “...save 19% energy ... 30% increase in the output...” “...38% efficiency ... resulted in 93% efficiency...” “... roughly a fourfold improvement...” A simple EA takes exponential time to find an optimal solution, but time to find a -approximate solution Maximum Matching: find the largest possible number of non-adjacent edges 2015.11.23, CAAMAS:演化学习 [Giel and Wegener, STACS’03] .nju.edu.cn Exact v.s. approximate approximate optimization: obtain good enough solutions f(x) with a close-to-opt. objective value x* x measure of the goodness: (for minimization) is called the approximation ratio of x x is an r-approximate solution 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Previous studies On Minimum Vertex Cover (MVC) (NP-Hard problem) [Friedrich et al., ECJ’10] ⇒ performance a simple EA: arbitrarily bad! Pareto optimization: good C B A better price: A better performance: A price problem-independent reproduction solution multi-objective evolutionary algorithm a special case or a general principle? 2015.11.23, CAAMAS:演化学习 archive new solutions evaluation & selection .nju.edu.cn Our work [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 2012.] We propose the SEIP framework for analysis approximation ratios isolation function: isolates the competition among solutions Only one isolation ⇒ the bad EA Properly configured isolation ⇒ the multi-objective reformulation Partial ratio: measures infeasible solutions feasible 2015.11.23, CAAMAS:演化学习 infeasible .nju.edu.cn Our work [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 2012.] Theorem SEIP can find -approximate solutions in time number of isolations best conditional partial ratio in isolations size of an isolation bad EAs ⇒ only one isolation ⇒ c is very large multi-objective EAs ⇒ balance q and c 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Our work [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 2012.] On minimum set cover problem a typical NP-hard problem for approximation studies For unbounded minimum set cover problem: SEIP finds -approximate solutions in time n elements in E m weighted sets in C k is the size of the largest set For minimum k-set cover problem: SEIP finds solutions in -approximate time EAs can be the best-so-far approximation algorithm 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Our work [Y. Yu, X. Yao, and Z.-H. Zhou. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 2012.] Greedy algorithm: bad! no better than SEIP: for , time (anytime algorithm) approximate ratio solutions in -approximate time EAs can be the best-so-far approximation algorithm, with practical advantages 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Outline - Approximation ability - Pareto v.s. Penalty - Evolutionary learning - Pareto Ensemble Pruning - Pareto Sparse Regression - Conclusion 2015.11.23, CAAMAS:演化学习 .nju.edu.cn For constrained optimizations ⇒ Constrained optimization: Penalty method: Pareto method (multi-objective reformulation): when Pareto method is better? 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained Boolean Pareto Optimization. IJCAI’15] Minimum Matroid Problem matroid rank: minimum matroid optimization given a matroid (U,S), let x be the subset indicator vector of U e.g. minimum spanning tree, maximum bipartite matching 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Problem Class 1 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained Boolean Pareto Optimization. IJCAI’15] Minimum Matroid Problem - the worst problem-case average-runtime complexity - solve optimal solutions For the Penalty Function Method For the Pareto Optimization Method 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained Boolean Pareto Optimization. IJCAI’15] Minimum Cost Coverage Monotonic submodular function minimum cost coverage problem given U, let x be the subset indicator vector of U, given a monotone and submodular function f , and some value e.g. minimum submodular cover, minimum set cover 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Problem Class 2 [C. Qian, Y. Yu and Z.-H. Zhou. On Constrained Boolean Pareto Optimization. IJCAI’15] Minimum Matroid Problem - the worst problem-case average-runtime complexity - solve Hq-approximate solutions For the Penalty Function Method For the Pareto Optimization Method 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Outline - Approximation ability - Pareto v.s. Penalty - Evolutionary learning - Pareto Ensemble Pruning - Pareto Sparse Regression - Conclusion 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Previous approaches Previous approaches Ordering-based methods error minimization [Margineantu and Dietterich, ICML’97] OEP diversity-like criterion maximization [Banfield et al., Info Fusion’05] [Martínez-Munõz, Hernańdez-Lobato, and Suaŕez TPAMI’09] combined criterion [Li, Yu, and Zhou, ECML’12] Optimization-based methods semi-definite programming [Zhang, Burer and Street, JMLR’06] quadratic programming [Li and Zhou, MCS’09] genetic algorithms [Zhou, Wu and Tang, AIJ’02] SEP artificial immune algorithms [Castro et al., ICARIS’05] 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Back to selective ensemble [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] multi-objective reformulation reduce error reduce size selective ensemble can be divided into two goals Pareto Ensemble Pruning (PEP): 1. random generate a pruned ensemble, put it into the archive 2. loop | 2.1 pick an ensemble randomly from the archive | 2.2 randomly change it to make a new one | 2.3 if the new one is not dominated | | 2.3.1 put it into the archive | | 2.3.2 put its good neighbors into the archive 3. when terminates, select an ensemble from the archive 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Back to selective ensemble [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Pareto Ensemble Pruning (PEP): 1. random generate a pruned ensemble, put it into the archive 2. loop | 2.1 pick an ensemble randomly from the archive | 2.2 randomly change it to make a new one | 2.3 if the new one is not dominated | | 2.3.1 put it into the archive | | 2.3.2 put its good neighbors into the archive 3. when terminates, select an ensemble from the archive reproduction: archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Can we have theoretical comparisons now? 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Can we have theoretical comparisons now? ✓ PEP is at least as good as ordering-based methods 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Can we have theoretical comparisons now? ✓ ✓ PEP is at least as good as ordering-based methods PEP can be better than ordering-based methods 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Can we have theoretical comparisons now? ✓ ✓ ✓ PEP is at least as good as ordering-based methods PEP can be better than ordering-based methods PEP/ordering-based methods can be better than the direct use of heuristic search 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Can we have theoretical comparisons now? ✓ ✓ ✓ PEP is at least as good as ordering-based methods PEP can be better than ordering-based methods PEP/ordering-based methods can be better than the direct use of heuristic search For the first time 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Pruning bagging base learners with size 100 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] Pruning bagging base learners with size 100 on error 2015.11.23, CAAMAS:演化学习 on size .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] On pruning different bagging size 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Application [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Ensemble Pruning. AAAI’15] mobile human activity recognition 3 times more than the runner-up saves more than 20% storage and testing time than the runner-up Compared with previous overall accuracy 89.3% [Anguita et al., IWAAL’12], we achieves 90.2% 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Outline - Approximation ability - Pareto v.s. Penalty - Evolutionary learning - Pareto Ensemble Pruning - Pareto Sparse Regression - Conclusion 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Sparse regression Regression: Sparse regression (sparsity k): denotes the number of non-zero elements in w Previous methods Greedy methods [Gilbert et al.,2003; Tropp, 2004] Forward (FR) Current best approximation ratio: on R2 [Das and Kempe, ICML’11] Forward-Backward (FoBa), Orthogonal Matching Pursuit (OMP) ... Convex relaxation methods [Tibshirani, 1996; Zou & Hastie, 2005] 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Our approach [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] multi-objective reformulation: reduce MSE reduce size sparse regression can be divided into two goals 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Our approach [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] reproduction archive new solutions evaluation & selection 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Theoretical advantages [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] Is POSS as good as the previously best method (FR) ? ✓ Yes, POSS can achieve the same approximation ratio Can POSS be better ? ✓ Yes, POSS can solve exact solutions on problem subclasses, while FR cannot 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] select 8 features, report R2 (the larger the better), average over 100 runs 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] Comparison optimization performance with different sparsities 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] Comparison test error with different sparsities with L2 regularization 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Empirical comparison [C. Qian, Y. Yu and Z.-H. Zhou. Pareto Optimization for Subset Selection. NIPS’15] POSS running time v.s. performance best greedy performance theoretical running time 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Outline - Approximation ability - Pareto v.s. Penalty - Evolutionary learning - Pareto Ensemble Pruning - Pareto Sparse Regression - Conclusion 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Conclusion Motivated by the hard optimizations in machine learning We did research on the theoretical foundation of evolutionary algorithms With the leveraged optimization power, we can solve learning problems better convex formulations are limited non-convex formulations are rising 2015.11.23, CAAMAS:演化学习 .nju.edu.cn Thank you! [email protected] http://cs.nju.edu.cn/yuy Collaborators 钱超 2015.11.23, CAAMAS:演化学习 Prof. Xin Yao 周志华教授 .nju.edu.cn