Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties Roberto A. Lineros R. Università degli studi di Torino Based on: T. Delahaye, R.L, F. Donato, N. Fornengo and P. Salati. Phys. Rev. D 77, 063527 (2008) ISCRA’08 – p.1/17 Motivation ⋆ To study positron/electron Cosmic Rays (CR) signals and its potential to reveal new exotic signals. ⋆ To study indirect searches of galactic Cold Dark Matter (CDM) ⋆ To study uncertainties related to particle and astrophysics, for disentangle new signals from background. ISCRA’08 – p.2/17 Outline • Dark Matter indirect signals * Dark Matter annihilations. • Positron/Electron CRs * Two–Zone Propagation Model. * Transport Equation (TE), Halo Function. * Fluxes, Positron fraction. • Conclusions ISCRA’08 – p.3/17 (Mathis et al 2002) DM indirect signals Many candidates from BSM theories: The nature of DM is not clear. Neutralinos, KK particles . . . Structure formation: DM overdensities. DM present in galaxies may annihilate and act as exotic CR sources. Experiments: HEAT, CAPRICE, AMS, PAMELA, MASS . . . ISCRA’08 – p.4/17 0.10 Positron fraction + + − e / (e +e ) CR: positron/electron 0.01 Background Heat 2000 AMS Run 1 AMS Run 2 MASS−91 CAPRICE94 0 10 1 10 Positron energy [GeV] 2 10 ISCRA’08 – p.5/17 CR: propagation overview ISCRA’08 – p.6/17 Two–Zone Propagation Model The CR propagation is modeled in a cylinder where all physical processes happen (Maurin et al. 2001). It is composed by two zones: i) A cylinder Lz , which defines a zone where CR propagates. ii) A thin disk models the galactic plane, sources and interactions among CRs and ISM. Rg = 20kpc , hz ∼ 100pc , Lz = 1, 20kpc CR close to the boundaries may escape. This implies that CR density vanishes in the boundaries. ISCRA’08 – p.7/17 Transport Equation In a steady–state regime, the TE for positrons and electrons is: 2 ǫ −K0 ǫδ ∇2 ψ − ∂ǫ ψ =q τE (analytically solvable) It describes the number density per unit energy evolution. TE is composed by: * Diffusion term * Energy-loss term * Source term (we will see in a few slides) ISCRA’08 – p.8/17 Transport Equation: parameters Those are constrained with observation on other CR species L [kpc] Iso-χ2 contours for B/C (χ2< 40) δ = 0.46 0.6 0.7 0.85 b 0.5 K0 /L [kpc Myr ] -1 f(δ) × K0 /L [kpc Myr ] -1 (Maurin et al. 2001) From B/C analysis: K0 = 0.0112 kpc2 /Myr δ = 0.7 Lz = 4 kpc ISCRA’08 – p.9/17 Transport Equation: solution For source terms with the form : q(x, ǫ) = f (x) × g(ǫ) We define the Halo Function: ak = ˜ D) = I(λ X ak χk (x⊙ ) exp (−4k 2 λ2D ) Z dx χ†k (x)f (x) 1−δ − ǫ1−δ ǫ S λ2D = 4 K0 1−δ k τE ψ(x⊙ , E) = 2 ǫ Z ∞ ˜ D ) g(ǫs ) dǫs I(λ ǫ ISCRA’08 – p.10/17 DM as positron source The source term for case of DM annihilation is: ρ2⊙ dn q(x, E) = α hσann vi 2 (E) mχ dE ρ2 (x) ρ2⊙ Thermally av. cross section Annihilation distribution WMAP, particle model Isothermal, NFW, Moore Multiplicity distribution decays, hadronization, (PYTHIA) ISCRA’08 – p.11/17 Halo function for CDM distributions The Halo Function encodes the information about CDM distribution. ISCRA’08 – p.12/17 Positron flux The positron flux is obtained from the density: βc βc φe+ (E) = ψ(x⊙ , E) = 4π 4π τE ǫ2 Z ∞ ˜ D ) g(ǫs ) dǫs I(λ ǫ For a generic DM particle, mχ = 100, 500 [GeV] hσann vi = 2.1 × 10−26 [cm3 /sec] with specific annihilation channels: e+ e− bb̄ + ⇒ e χχ ⇒ W +W − τ +τ − ISCRA’08 – p.13/17 Positron flux T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007) 10−5 E2 Φe+ [GeV cm−2 s−1 sr−1] E2 Φe+ [GeV cm−2 s−1 sr−1] B/C best fit M1 flux M2 flux uncer. band B/C best fit Background B/C best fit (no mod) 10−4 10−5 10−6 − Direct production bb channel NFW Halo profile (rs = 20 kpc) E2 Φe+ [GeV cm−2 s−1 sr−1] <σv> = 2.1 × 10−26 cm3 s−1 mχ = 100 GeV − Direct production bb channel Boost factor = 300 Boost factor = 250 Heat 94+95 MASS−91 CAPRICE94 NFW Halo profile (rs = 20 kpc) 10−3 −26 3 −1 <σv> = 2.1 × 10 cm s mχ = 500 GeV Bkg. factor = 1.1 E2 Φe+ [GeV cm−2 s−1 sr−1] 10−5 10−4 10−6 10−5 10−6 + 10−7 Heat 94+95 AMS Run 1 AMS Run 2 10−3 10−6 10−7 T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007) − + − τ τ channel W W channel 100 101 Positron energy [GeV] 102 100 101 Positron energy [GeV] mχ = 100 GeV + − + − τ τ channel W W channel Boost factor = 300 102 100 Boost factor = 400 101 102 Positron energy [GeV] 100 101 102 Positron energy [GeV] mχ = 500 GeV Also astrophysical uncertainties play an important role. ISCRA’08 – p.14/17 Positron Fraction T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007) e+/ (e++e−) B/C best fit uncer. band background <σv> = 2.1 × 10−26 cm3 s−1 mχ = 100 GeV Bkg. factor = 1.1 − Direct prod. bb channel Boost factor = 10 Boost factor = 50 0.10 0.01 Heat 2000 MASS−91 CAPRICE94 − τ τ channel Boost factor = 30 Boost factor = 40 + − 101 Positron energy [GeV] 102 100 101 Positron energy [GeV] mχ = 100 GeV Boost factor = 50 <σv> = 2.1 × 10−26 cm3 s−1 mχ = 100 GeV Bkg. factor = 1.1 0.10 0.01 0.01 100 Boost factor = 10 − bb channel Positron fraction 0.10 W W channel Direct production NFW Halo profile (rs = 20 kpc) e+/ (e++e−) Heat 2000 AMS Run 1 AMS Run 2 Positron fraction e+/ (e++e−) 0.01 + B/C best fit M1 flux M2 flux backg. Expected measurement for PAMELA (3 years) Positron fraction 0.10 Positron fraction e+/ (e++e−) NFW Halo profile (rs = 20 kpc) T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007) 102 + − W W channel Boost factor = 30 100 101 102 Positron energy [GeV] + − τ τ channel Boost factor = 40 100 101 102 Positron energy [GeV] Expected measurement for PAMELA ISCRA’08 – p.15/17 Conclusions • Astrophysical uncertainties can not be neglected, specially in the context of the identification of a possible exotic signal. • We obtained CDM scenarios where positron signal related to CDM annihilation can be disentangled from the background. • Experiments as PAMELA and AMS02 will provide new information in the energy range above previous experiments, and will confirm/reject the excess seen by HEAT. ISCRA’08 – p.16/17 Thanks ISCRA’08 – p.17/17