Download Positrons from dark matter annihilation in the galactic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Positrons from dark matter annihilation in the
galactic halo: Theoretical uncertainties
Roberto A. Lineros R.
Università degli studi di Torino
Based on:
T. Delahaye, R.L, F. Donato, N. Fornengo and P. Salati.
Phys. Rev. D 77, 063527 (2008)
ISCRA’08 – p.1/17
Motivation
⋆ To study positron/electron Cosmic Rays (CR) signals and its
potential to reveal new exotic signals.
⋆ To study indirect searches of galactic Cold Dark Matter (CDM)
⋆ To study uncertainties related to particle and astrophysics, for
disentangle new signals from background.
ISCRA’08 – p.2/17
Outline
•
Dark Matter indirect signals
* Dark Matter annihilations.
•
Positron/Electron CRs
* Two–Zone Propagation Model.
* Transport Equation (TE), Halo Function.
* Fluxes, Positron fraction.
•
Conclusions
ISCRA’08 – p.3/17
(Mathis et al 2002)
DM indirect signals
Many candidates from
BSM theories:
The nature of DM
is not clear.
Neutralinos, KK particles . . .
Structure formation:
DM overdensities.
DM present in galaxies
may annihilate and act as
exotic CR sources.
Experiments:
HEAT, CAPRICE, AMS,
PAMELA, MASS . . .
ISCRA’08 – p.4/17
0.10
Positron fraction
+
+
−
e / (e +e )
CR: positron/electron
0.01
Background
Heat 2000
AMS Run 1
AMS Run 2
MASS−91
CAPRICE94
0
10
1
10
Positron energy [GeV]
2
10
ISCRA’08 – p.5/17
CR: propagation overview
ISCRA’08 – p.6/17
Two–Zone Propagation Model
The CR propagation is modeled in a cylinder where all physical
processes happen (Maurin et al. 2001).
It is composed by two zones:
i) A cylinder Lz , which defines a
zone where CR propagates.
ii) A thin disk models the galactic
plane, sources and interactions
among CRs and ISM.
Rg = 20kpc , hz ∼ 100pc , Lz = 1, 20kpc
CR close to the boundaries may escape. This implies that CR
density vanishes in the boundaries.
ISCRA’08 – p.7/17
Transport Equation
In a steady–state regime, the TE for positrons and electrons is:
2 ǫ
−K0 ǫδ ∇2 ψ − ∂ǫ
ψ =q
τE
(analytically solvable)
It describes the number density per unit energy evolution.
TE is composed by:
* Diffusion term
* Energy-loss term
* Source term (we will see in a few slides)
ISCRA’08 – p.8/17
Transport Equation: parameters
Those are constrained with observation on other CR species
L [kpc]
Iso-χ2 contours for B/C (χ2< 40)
δ = 0.46
0.6
0.7
0.85
b
0.5
K0 /L [kpc Myr ]
-1
f(δ) × K0 /L [kpc Myr ]
-1
(Maurin et al.
2001)
From B/C analysis:
K0 = 0.0112 kpc2 /Myr
δ = 0.7
Lz = 4 kpc
ISCRA’08 – p.9/17
Transport Equation: solution
For source terms with the form :
q(x, ǫ) = f (x) × g(ǫ)
We define the Halo Function:
ak =
˜ D) =
I(λ
X
ak χk (x⊙ ) exp (−4k 2 λ2D )
Z
dx χ†k (x)f (x)
1−δ − ǫ1−δ
ǫ
S
λ2D = 4 K0
1−δ
k
τE
ψ(x⊙ , E) = 2
ǫ
Z
∞
˜ D ) g(ǫs )
dǫs I(λ
ǫ
ISCRA’08 – p.10/17
DM as positron source
The source term for case of DM annihilation is:
ρ2⊙ dn
q(x, E) = α hσann vi 2
(E)
mχ dE
ρ2 (x)
ρ2⊙
Thermally av. cross section
Annihilation distribution
WMAP, particle model
Isothermal, NFW, Moore
Multiplicity distribution
decays, hadronization, (PYTHIA)
ISCRA’08 – p.11/17
Halo function for CDM distributions
The Halo Function encodes the information about CDM distribution.
ISCRA’08 – p.12/17
Positron flux
The positron flux is obtained from the density:
βc
βc
φe+ (E) =
ψ(x⊙ , E) =
4π
4π
τE
ǫ2
Z
∞
˜ D ) g(ǫs )
dǫs I(λ
ǫ
For a generic DM particle,
mχ = 100, 500 [GeV]
hσann vi = 2.1 × 10−26 [cm3 /sec]
with specific annihilation channels:
e+ e−
bb̄
+
⇒
e
χχ ⇒
W +W − τ +τ −
ISCRA’08 – p.13/17
Positron flux
T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007)
10−5
E2 Φe+ [GeV cm−2 s−1 sr−1]
E2 Φe+ [GeV cm−2 s−1 sr−1]
B/C best fit
M1 flux
M2 flux
uncer. band
B/C best fit
Background
B/C best fit (no mod)
10−4
10−5
10−6
−
Direct production
bb channel
NFW Halo profile (rs = 20 kpc)
E2 Φe+ [GeV cm−2 s−1 sr−1]
<σv> = 2.1 × 10−26 cm3 s−1
mχ = 100 GeV
−
Direct production
bb channel
Boost factor = 300
Boost factor = 250
Heat 94+95
MASS−91
CAPRICE94
NFW Halo profile (rs = 20 kpc)
10−3
−26
3 −1
<σv> = 2.1 × 10
cm s
mχ = 500 GeV
Bkg. factor = 1.1
E2 Φe+ [GeV cm−2 s−1 sr−1]
10−5
10−4
10−6
10−5
10−6
+
10−7
Heat 94+95
AMS Run 1
AMS Run 2
10−3
10−6
10−7
T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007)
−
+ −
τ τ channel
W W channel
100
101
Positron energy [GeV]
102
100
101
Positron energy [GeV]
mχ = 100 GeV
+
−
+ −
τ τ channel
W W channel
Boost factor = 300
102
100
Boost factor = 400
101
102
Positron energy [GeV]
100
101
102
Positron energy [GeV]
mχ = 500 GeV
Also astrophysical uncertainties play an important role.
ISCRA’08 – p.14/17
Positron Fraction
T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007)
e+/ (e++e−)
B/C best fit
uncer. band
background
<σv> = 2.1 × 10−26 cm3 s−1
mχ = 100 GeV
Bkg. factor = 1.1
−
Direct prod.
bb channel
Boost factor = 10
Boost factor = 50
0.10
0.01
Heat 2000
MASS−91
CAPRICE94
−
τ τ channel
Boost factor = 30
Boost factor = 40
+ −
101
Positron energy [GeV]
102
100
101
Positron energy [GeV]
mχ = 100 GeV
Boost factor = 50
<σv> = 2.1 × 10−26 cm3 s−1
mχ = 100 GeV
Bkg. factor = 1.1
0.10
0.01
0.01
100
Boost factor = 10
−
bb channel
Positron fraction
0.10
W W channel
Direct production
NFW Halo profile (rs = 20 kpc)
e+/ (e++e−)
Heat 2000
AMS Run 1
AMS Run 2
Positron fraction
e+/ (e++e−)
0.01
+
B/C best fit
M1 flux
M2 flux
backg.
Expected measurement for PAMELA
(3 years)
Positron fraction
0.10
Positron fraction
e+/ (e++e−)
NFW Halo profile (rs = 20 kpc)
T. Delahaye, R. Lineros, N. Fornengo, F. Donato & P.Salati (2007)
102
+
−
W W channel
Boost factor = 30
100
101
102
Positron energy [GeV]
+ −
τ τ channel
Boost factor = 40
100
101
102
Positron energy [GeV]
Expected measurement for PAMELA
ISCRA’08 – p.15/17
Conclusions
• Astrophysical uncertainties can not be neglected, specially in
the context of the identification of a possible exotic signal.
• We obtained CDM scenarios where positron signal related to
CDM annihilation can be disentangled from the background.
• Experiments as PAMELA and AMS02 will provide new
information in the energy range above previous experiments,
and will confirm/reject the excess seen by HEAT.
ISCRA’08 – p.16/17
Thanks
ISCRA’08 – p.17/17