Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Journal of Biogeography Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander Journal of Biogeography r Fo Journal: Manuscript ID: Manuscript Type: Complete List of Authors: Original Article Pe Date Submitted by the Author: Draft er Parra-Olea, Gabriela; Instituto de Biologia, UNAM, Zoology Windfield-Perez, Juan Carlos; Instituto de Biologia, UNAM, Zoology Velo-Anton, Guillermo; Cornell University, Ecology and Evolutionary Biology Zamudio, Kelly; Cornell University, Ecology and Evolutionary Biology phylogeography, Endemism, glacial refugia, México, plethodontid, Pleistocene, salamander, Trans-Volcanic Belt, volcanism ew vi Re Key Words: Page 1 of 56 Parra-Olea et al., Page 1 Original Article Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander Gabriela Parra-Olea1*, Juan Carlos Windfield1, Guillermo Velo-Antón2, and Kelly R. Zamudio2 1 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal 04510, México 2 r Fo Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA *Correspondence: Gabriela Parra-Olea, Departamento de Zoología, Instituto de Biología, Pe Universidad Nacional Autónoma de México, Distrito Federal 04510, México. E-mail: [email protected] RRH: Montane diversification in the tropics ew vi Re LRH: G. Parra-Olea et al. er 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 2 ABSTRACT Aim Our goal was to reconstruct the phylogenetic history and historical demography of highly divergent populations of the endemic plethodontid salamander Pseudoeurycea leprosa, to elucidate the timing and mechanisms of divergences in the Trans-Volcanic Belt of México. Location The Trans-Volcanic Belt (TVB) of Central México, including the states of México, Morelos, Puebla, Tlaxcala and Veracruz. Methods We sequenced the cytochrome b mitochondrial DNA (mtDNA) gene for 281 individuals from 26 populations and 9 mountain ranges in the TVB, and used Bayesian tree r Fo reconstruction and MCMC coalescent methods to infer historical demographic parameters and divergences among populations in each mountain system. Results We found deep genetic divergences between eastern and central TVB mountain systems Pe despite their recent volcanic origin. Populations of P. leprosa show a pattern of refugial populations in the northeastern and eastern limits of the species’ distribution, and genetic evidence of rapid population expansion in mountain ranges of the central TVB. The oldest er divergences among populations date to ~3.8 million of years, and the most recent divergences in the central TVB are Pleistocene in age (~0.8mya). Re Main conclusions Given the timing and order of population diversification in P. leprosa, we conclude that early isolation in multiple habitat refuges in northeastern and eastern mountain vi ranges played an important role in structuring population diversity in the TVB, followed by ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 2 of 56 population expansion and genetic divergence of the central range populations. We also found evidence of peripheral isolation of highly divergent forms. The dynamic climatic and volcanic changes in this landscape generally coincide with the history of intraspecific diversification in P. leprosa. Combined, climate-driven changes in habitat distribution, in an actively changing volcanic landscape, have shaped divergences in the TVB and very likely contributed to the high levels of speciation and endemism in this biodiverse region. Keywords Endemism, glacial refugia, México, phylogeography, Pleistocene, plethodontid, salamander, Trans-Volcanic Belt, volcanism. Page 3 of 56 Parra-Olea et al., Page 3 INTRODUCTION The differentiation of montane species has been of particular interest to evolutionary biologists, because the patchy distribution of appropriate habitat combined with the geographic isolation of populations on mountain ‘islands’ will potentially promote diversification and increase the rate of speciation for montane-adapted taxa (Fjeldså & Lovett, 1997; Jetz et al., 2004). Montane species are also particularly useful for evaluating historical responses to climate fluctuations because they are often physiologically adapted to a narrow range of environmental conditions and thus particularly susceptible to climate change (Brereton et al., 1995; Hughes, 2003; Galbreath et al., 2009). Many cold-adapted montane organisms experienced range r Fo expansion and increased gene flow during glacial periods (Hewitt, 2004) and range contractions during warmer interglacials (DeChaine & Martin, 2006; Assefa et al., 2007; Browne & Ferree, 2007). Their low physiological tolerance to higher temperatures implies that populations isolated Pe on different mountain ranges should carry the signature of historical changes in connectivity associated with either glacial or interglacial periods even if the periods of climatic instability were relatively recent (Knowles, 2000; Smith & Farrell, 2005; DeChaine & Martin, 2006; Assefa er et al., 2007; Browne & Ferree, 2007; Popp et al., 2008). Re In the tropics, where the environmental gradient from lowland to mountains is most pronounced (Janzen, 1967), montane regions are important historical centers of diversity and endemism, even more so than tropical lowlands (Smith et al., 2007). Thus, understanding vi microevolutionary processes promoting diversification, and specifically how isolation and ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography genetic drift interact to enhance speciation and diversification in tropical montane species, will provide a framework for understanding broader patterns of biodiversity distributions in these habitats (Kozak & Wiens, 2006; Kozak & Wiens, 2007; Smith et al., 2007; Wiens et al., 2007). Global patterns of species richness across montane and non-montane landscapes are relatively well-defined (Rahbek, 1995; Jetz et al., 2004; Wiens & Donoghue, 2004; Wiens et al., 2006) but fine-scale examinations of the processes that engender diversity in mountain species are still needed. In this study we focus on diversification in a tropical salamander endemic to the TransVolcanic Belt (TVB) of central México, a young (Ferrari et al., 1999; Ferrari & Rosas-Elguera, 1999) volcanic mountain chain that harbors a large percentage of the country’s endemic flora and fauna (Luna et al., 2007). This mountainous landscape was affected by the climatic cycles of the Plio-Pleistocene, which resulted in large altitudinal shifts in the pine forests typical of higher Journal of Biogeography Parra-Olea et al., Page 4 elevations, and changed patterns of connectivity among mountain ranges in the system (Brown, 1985; Graham, 1993; McDonald, 1993; Lozano-García et al., 2005). The TVB is one of the areas of highest vertebrate biodiversity in México, second only to the Sierra Madre del Sur (Luna et al., 2007). These dynamic highlands of México have been a center for diversification of many plant and animal radiations, including tropical salamanders (Lynch et al., 1983; Luna et al., 2007) and thus offer an excellent opportunity to study the underlying microevolutionary processes (Adams et al., 2009) that have contributed to the high rate of local population divergence and speciation. We examine population genetic diversification in the plethodontid salamander r Fo Pseudoeurycea leprosa, a species endemic to the TVB that occurs at elevations between 2000 and 3500 m, and belongs to the diverse Bolitoglossini, the clade that includes most Neotropical salamanders (Wiens, 2007). We compare diversity of cytochrome b (cytb) mitochondrial gene Pe sequences among populations of P. leprosa and infer the historical population changes that contributed to differentiation in this species complex. Despite its high diversity, the TVB was formed only recently in the Middle Miocene (Ferrari & Rosas-Elguera, 1999), thus er diversification of endemic species occurred relatively rapidly. We use this focal taxon to test hypotheses about how volcanic activity and quaternary glaciations affected the colonization or Re dispersal among mountain ranges in the TVB and to infer the microevolutionary processes that promoted diversification in this lineage. Specifically, we use our data to investigate whether 1) vi population structure among independent mountain ranges shows the genetic signature of isolation, migration, and/or drift, 2) whether TVB populations evolved from a single, or few ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 4 of 56 source populations, 3) whether historical migration patterns from ancestral populations were directional, and 4) whether the timing of isolation is concordant with the volcanic origin of TVB mountains or changes in habitat distribution that occurred during Plio-Pleistocene climatic cycles. We compare our results to patterns inferred from other plants and animals endemic to this region, and to an earlier study that examined genetic divergence among a subset of P. leprosa populations using allozymes (Lynch et al., 1983). Deforestation and anthropogenic climate change will severely impact the distribution of appropriate habitat for this and other TVB endemic species in the future (Parra-Olea et al., 2005b); we discuss the importance of understanding the current geographic distribution of genetic diversity as well as the historical deployment of lineages for conservation of high-elevation species in this region. Page 5 of 56 Parra-Olea et al., Page 5 MATERIALS AND METHODS Study organism and geographic context In contrast to temperate zone salamanders, Neotropical salamanders occupy relatively constant thermal environments, both because tropical climates are less variable (Janzen, 1967) and because Neotropical salamanders typically occupy sheltered microhabitats (Wake & Lynch, 1976). As a result, tropical salamander populations experience lower variation in body temperature (Feder, 1976), are generally stenothermal, and thus cannot easily acclimate to large r Fo temperature fluctuations (Feder, 1978). These characteristics restrict them to small geographic and elevational ranges (Feder, 1978). Within the genus Pseudoeurycea only two species (P. leprosa and P. cephalica) have a relatively wide distribution, all others are microendemics or restricted to single mountain ranges. Pseudoeurycea leprosa is a fully terrestrial species and Pe occurs along the length of the TVB, but is restricted to pine, pine-oak and fir forests above 2000 meters. er The Mexican TVB is a narrow (ca. 160 km) arc of volcanic mountains that stretches 1200 km from the Gulf of California to the Gulf of México (García-Palomo et al., 2000). The Re volcanism that generated this mountain chain began during the late Cretaceous (80 Mya) but the activity that contributed most to shaping the present mountains dates to the mid-Miocene, and vi reached its greatest intensity during the Plio-Pleistocene (approximately 0.7 Mya) (Tamayo & West, 1964). This mountain chain defines the southern limit of the uplifted Mexican plateau ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography (Mesa Central) (Domínguez-Domínguez & Pérez-Ponce De León, 2009) and consists of three distinct segments, each with its own tectonic, volcanic, and geomorphological characteristics (Pasquaré et al., 1988). The westernmost section occurs from the Pacific coast to the Colima graben and includes the Volcán de Colima; the central section extends from the Michoacán volcanic zone towards either the Valley of México and Sierra Nevada (Nixon et al., 1987) or towards the Querétaro-Taxco lineament (Pasquaré et al., 1988) and includes Nevado de Toluca, Popocatepetl, Iztaccihuatl and Sierra de las Cruces; finally, the eastern section extends toward the Gulf of México (Osete et al., 2000) and includes La Malinche, Pico de Orizaba and Cofre de Perote (Castillo-Rodríguez et al., 2007). The range of P. leprosa encompasses only the eastern and central geomorphological units of the TVB (Fig 1). Journal of Biogeography Parra-Olea et al., Page 6 All of the TVB volcanoes are relatively young, with a maximum age estimated at 2.6 Mya (Ferrari, 2000; Ferrari et al., 2000). The oldest cone construction began in Nevado de Toluca circa 2.6 Mya, whereas in the Popocateptl-Iztaccihuatl range cone growth began in the late Pleistocene and Holocene, approximately 1.6 Mya (Ferrari et al., 2000; García-Palomo et al., 2000). The cones and highlands in the eastern TVB date to 1.5-2.0 Mya approximately for Cofre de Perote (Cantagrel & Robin, 1979). Several of the volcanoes in the TVB have been intermittently active since their formation in the Pleistocene (Tamayo & West, 1964): Volcán Colima, in the western mountain range, is currently active and its last major eruption occurred in 1913, Popocateptl last erupted in 1947, and hundreds of smaller volcanoes that compose the r Fo Michoacán triangle have been active throughout the Quaternary (Johnson & Harrison, 1990). The distribution and persistence of montane habitat in the TVB has also had a dynamic history due to the glacial cycles during the Pleistocene and Holocene (Heine, 1988). Available Pe data on the most recent events show five periods of glacial advances: one at approximately 20,000 years before present (Nexcoalango) and the other four between 20,000 and 8,300 years ago (Hueyatlaco I, Hueyatlaco II, Mipulco I and Mipulco II) (Vázquez-Selem & Heine, 2004). er Climatic cycles began in the early Quaternary and numerous studies of Neotropical ectotherms have detected the genetic signature of population isolation associated with those earlier events, Re rather than the Last Glacial Maximum (Wüster et al., 2005; Fitzpatrick et al., 2009). Thus, although the most recent glacial advances certainly affected the distribution of habitat, they are vi representative of a much longer period of changes in landscape due to cyclical climatic change (Haffer, 1997; Haffer & Prance, 2001). The impact of these glaciations on TVB taxa was ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 6 of 56 probably not as dramatic as that observed at higher latitudes (Galbreath et al., 2009) however, the ice masses on the highest mountains extended altitudinally, dropping the upper tree line 600900 m below its present position (Brown, 1985; Graham, 1993; McDonald, 1993; Lozano-García et al., 2005). Paleoecological evidence indicates that the climate was cold and moist and coniferous forests reached their maximum range size with a broader distribution than is present in México today (Perry, 1991; Millar, 1998; Graham, 1999). Population Sampling We collected tissue samples of Pseudoeurycea leprosa from throughout its distribution along the TVB (Table S1; Fig. 1). We sampled a total of 281 individuals from 26 populations Page 7 of 56 Parra-Olea et al., Page 7 with a range of 1-30 individuals per site (Fig. 1, Table 1). The sampled populations were distributed across the following nine mountain ranges (ordered roughly from west to east): Nevado de Toluca, Sierra de las Cruces, Iztacchuatl-Popocatepetl, Malinche, Tlaxco, Tlatlauquitepec, Cofre de Perote, Orizaba, and Tres Mogotes (Table 1, Fig. 1). Plethodontids are cryptic salamanders, and Pseudoeurycea leprosa is no exception; thus, the large spatial sampling we obtained for this endemic species represents one of the highest for population genetic studies in this lineage. We selected Pseudoeurycea lynchi and Pseudoeurycea lineola as successively more distant outgroups according to published higher-level relationships within the Bolitoglossini (Wiens et al., 2007). r Fo MtDNA amplification and sequencing Total genomic DNA was extracted from ethanol preserved tissues (muscle or liver) with DNeasy Tissue Kits using manufacturer’s protocols (Qiagen). Polymerase chain reaction (PCR) Pe was used to amplify 675 base pairs of the mitochondrial cytochrome b gene (cytb), using the primers MVZ15 and MVZ16 (Moritz et al., 1992). PCR amplifications were performed in a 25µl er volume including 1µl of DNA template (~100ng/µl), 1U Taq polymerase (Applied Biosystems), 1× PCR buffer with 1.5 mM MgCl2, 0.4mM dNTPs, and 0.5µM forward and reverse primers. Re PCR reactions consisted of 35 cycles with a denaturing temperature of 94 ºC (1 min), annealing at 50 ºC (1 min), and extension at 72 ºC (1 min). We electrophoresed the resulting PCR products with ethidium bromide staining to verify their size. Successful amplicons were purified with vi shrimp alkaline phosphatase (1U) and exonuclease I (10U) to remove non-incorporated dNTPs ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography and primers. Fragments were sequenced in both directions using the original amplification primers and BigDye termination sequencing chemistry. Sequencing reactions were carried out in a total volume of 5µl with 1µl cleaned PCR product, 0.24µM primer, 1µl Big Dye Terminator Ready Reaction Mix, and 1X Sequencing buffer (Applied Biosystems). Cycle sequencing products were column-purified with Sephadex G-50 and run on an ABI PRISM 3100 DNA Analyzer. We checked electropherograms by eye before constructing contiguous sequences for each individual using Sequencher version 4.7 (Gene Codes). Phylogeographic Analyses We aligned sequences and identified unique haplotypes for phylogenetic analyses in the program COLLAPSE v1.2 (Posada, 2006). We used the program JMODELTEST v0.1.1 (Posada, Journal of Biogeography Parra-Olea et al., Page 8 2008) to select the model of nucleotide substitution that best fit our data. We tested the full complement of 88 models using the default base frequency and rate variation settings, and ML optimized base tree for the likelihood calculations (Guindon & Gascuel, 2003). We used AIC scores to select the appropriate model with which to infer a population-level phylogeny using fully partitioned Bayesian Inference (BI) implemented in MRBAYES v3.1 (Huelsenbeck & Ronquist, 2001). The Bayesian analysis consisted of 10 chains sampling every 10,000 generations for 10 million generations. We used two methods to verify convergence and determine adequate burn-in: we examined a plot of likelihood scores of the heated chain, and checked the stationarity of chains using the software TRACER v1.4 (Rambaut & Drummond, r Fo 2007). We disregarded a total of 250 trees as burn-in; using the remaining trees, we estimated the 50% majority-rule consensus topology with branch lengths and posterior probabilities for each node in MRBAYES. Finally, a haplotype network was constructed using statistical parsimony (Templeton et al., 1992) implemented in TCS v1.13 (Clement et al., 2000). Pe Genetic diversity and historical demographic analyses er We used ARLEQUIN v3.01 (Excoffier et al., 2005) to estimate haplotype diversity (h) and nucleotide diversity (π) (Tajima, 1983; Nei, 1987) for each population and mountain range. We Re characterized genetic differentiation among mountain ranges by estimating DXY (Nei, 1987), the average number of nucleotide substitutions per site between pairs of mountain ranges, in DNASP v5 (Rozas et al., 2003), and PiXY, the average number of pairwise differences among haplotypes of different mountain ranges, in ARLEQUIN v3.01. ew vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 8 of 56 We used mismatch analyses of sequences within each mountain range to infer historical demographic changes in Pseudoeurycea leprosa (Schneider & Excoffier, 1999). This analysis compares the frequency distribution of pairwise differences between haplotypes with that expected under a model of population expansion. Significant difference between observed and expected distributions is tested using a bootstrap approach (1,000 replicates). The frequency distribution is predictably unimodal for lineages that have undergone recent population expansions and multimodal for lineages whose populations are either subdivided or in equilibrium. We compared the sum of square deviations (SSD) between the observed and expected mismatch to test the hypothesis of population expansion (Schneider & Excoffier, 1999); a significant P-value rejects the fit of the data to the expansion model. Additionally, for Page 9 of 56 Parra-Olea et al., Page 9 each sampled population, and for each mountain range, we used Tajima’s D (Tajima, 1989) and Fu’s FS (Fu, 1997) tests of selective neutrality. Historical population growth predicts significantly negative D and FS values, which we tested with 10,000 bootstrap replicates. All three tests for population expansion were performed in ARLEQUIN v3.01. To reconstruct the age of particular groups of haplotypes and changes in demography over the history of each major lineage, we used the coalescent-based methods applied in the program BEAST v1.4.7 (Drummond et al., 2005; Drummond & Rambaut, 2007). This approach allows inferences of population fluctuations over time by estimating the posterior distribution for effective population size at intervals along a phylogeny (Drummond et al., 2005; Drummond & r Fo Rambaut, 2007). We estimated changes in demography for all P. leprosa populations combined, for the populations in the NE I clade, and for populations in the Central TVB clade. Times to most recent common ancestor (TMRCA) for some clades were obtained using Bayesian Markov Pe Monte Carlo searches. We used a GTR+I+G model of evolution and implemented an uncorrelated lognormal relaxed molecular clock method (Drummond et al., 2006). We used a normal distribution with a mean of 0.0075 and a standard deviation of 0.0025 as a prior for er mutation rate in cytb to reflect a priori uncertainty in this parameter (Mueller, 2006; MartínezSolano et al., 2007; Martínez-Solano & Lawson, 2009). We implemented a series of coalescent Re models (Bayesian skyline, exponential, expansion) to assess any bias these models might have on time estimates. For each analysis, we performed two independent runs of 10-25 million vi generations sampling every 1,000th generation and removing 10% of the initial samples as burnin. We combined runs and determined stationarity of the posterior distributions for all model ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography parameters using Tracer 1.4 (Drummond & Rambaut, 2007). We implemented a relaxed molecular clock with uncorrelated rates among lineages, and the following substitution model priors: rate parameters uniform (0,500), alpha exponential (1), proportion of invariant sites uniform (0,1). Scale operators were adjusted as suggested by the program. Finally, we used a coalescence model in LAMARC 2.0 (Kuhner, 2006) to estimate Θ (Θ=2Neµ for mtDNA) and migration rates (M) for P. leprosa populations. To optimize parameter estimations, we selected 11 representative populations from the mountain systems, excluding localities with less than four individuals (Tlaxco and Tres Mogotes). We followed suggestions by the authors (Kuhner, 2006) and randomly reduced sample sizes to 15 for those populations with larger sample sizes, to increase run efficiency. Default values were used for Journal of Biogeography Parra-Olea et al., Page 10 effective population size and migration parameters. We performed Bayesian analyses with one long chain with a burn-in of 1x106 and a run of 1x106 recorded genealogies sampled every 100 steps. We applied a general-time reversal (GTR) model and performed five identical replicate analyses. LAMARC infers approximate confidence intervals (CIs) around maximum probable estimates (MPE) for each parameter. Parameter conversion was verified by examining stationarity in parameter trends over the length of the chains and Effective Sample Sizes (ESS) obtained for each Θ and migration rates, using TRACER v1.4 2. We interpreted ESS values greater than 300 as an indication that sampled trees were not correlated and thus represent independent samples. r Fo Isolation by distance and least-cost paths in the TVB We performed a least-cost path analyses (LCPA) using the Spatial Analyst extension in ARCGIS version 9.2 (ESRI, 2006) to determine the potential influence of elevation on gene flow Pe and genetic structure of P. leprosa populations across TVB mountain ranges. We estimated the least-cost path of migration among mountain ranges, using the centroid of all populations er sampled in each mountain range as endpoints for paths between pairs of mountains. To infer an appropriate cost among mountain ranges, we reclassified the elevation layer based on the current Re elevation of the species’ distribution (2500-3500m asl), and assumed higher cost for movements across terrain at elevations outside that range. A cost raster was created by giving a value to each cell equal to the cumulative cost of reaching it from the source. From the cost raster, ARCGIS vi identifies the path resulting in the lowest cost to reach location from a specified source ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 10 of 56 population. We assumed the following elevation ranges and corresponding movement costs (in parentheses) through each cell: 0-1000m (5); 1000-1500m (4); 1500-2000m (3); 2000-2500m (2); 2500-3500m (1); 3500-4000m (2); 4000-4500m (3); 4500-5000m (4); 5000-5469m (5). We also calculated straight Euclidean distances (ED) between populations and two geographic distances based on the LCPA identified: 1) Euclidean distances along every least-cost path (EDCP) and 2) the cost of moving along each path (Costpath, CP). We used Mantel tests to examine Isolation by distance (IBD) between genetic distances (DXY and PiXY) and the three geographic/cost distance matrices calculated among mountain ranges. We also used Partial Mantel tests to examine correlations between genetic distances (DXY and PiXY) and least cost distances (ED-CP), while controlling for the effect of Euclidean Page 11 of 56 Parra-Olea et al., Page 11 distances (ED). These analyses were performed with 10,000 replications using the program ZT (Bonnet & Van De Peer, 2002). RESULTS MtDNA diversity The cytb alignment contained 281 sequences and 675 characters. No insertions or deletions were found among the sequences, thus alignment was straightforward. We identified 70 unique haplotypes among the samples sequenced, and among those 139 sites were variable and r Fo 75 parsimony-informative. The ML estimated transition/transversion ratio was 3.2, with mean nucleotide frequencies of 27.7% A, 21.5% C, 15.2% G and 35.5% T. The TrN+I+G model of evolution was selected by JMODELTEST and used for subsequent Bayesian analyses. All Pe sequences have been deposited in GenBank (accession numbers GQ468424-GQ468493). Phylogeographic Analyses er The Bayesian analyses recovered a monophyletic P. leprosa with some structured regional groups of haplotypes. Two well supported “Northeast” (NE) Clades diverged relatively Re early in the history of this species; the NE I clade includes samples from Tlaxco and some but not all samples from Tlatlauquitepec; the NE II clade includes samples from Vigas and the remaining samples from Tlatlauquitepec. Thus, despite their strong support, these two clades are vi not geographically independent, a result either of secondary contact and exchange between these ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography two regions, or incomplete lineage sorting since the time of their isolation. Our phylogeny did not provide resolution for the earliest divergences within this group. A basal polytomy includes other northeastern haplotypes with those from Vigas and Gonzalez Ortega, and the relationship among those haplotypes, the two NE clades, and the two samples from Tres Mogotes is unclear. The topology also infers a large Central TVB clade which includs all samples from Nevado de Toluca, Sierra de las Cruces, Popocatepetl-Iztaccihuatl and Malinche, and a Southeast clade including all samples in the Pico de Orizaba mountain range (Xometla, Texmola and Texmalaquilla). The 70 Pseudoeurycea leprosa sequences were grouped, under the statistical parsimony 95% confidence interval, into two haplotype networks and one haplotype (70, from Tres Journal of Biogeography Parra-Olea et al., Page 12 Mogotes) independent of both networks (Fig. 3). The main network groups 65 of the haplotypes with a connection limit of 11 bp and contains the Central, Southeast, and NE II clades as well as the northeastern basal haplotypes recovered in the Bayesian tree. A common haplotype (11) is found in central mountains (Popocatepetl-Itzaccihuatl and Malinche) and a southeastern population (Xometla); additional haplotypes from these same populations and from western mountains (Nevado de Toluca and Sierra de las Cruces) are separated from this common haplotype by only a few mutational steps. Higher divergences were found among Eastern and Southeastern haplotypes in the network, with five (Texmalaquilla, Texmola and Xometla), 10 (Vigas), 14 (González Ortega) and 23 mutational steps (Tlatlauquitepec) separating those r Fo samples from Central TVB haplotypes. The most diverse population is Vigas, with 15 haplotypes separated by a maximum of 41 mutational steps, and with eastern haplotypes as closest related populations (Xometla, Tlatlauquitepec). A second network groups the NE I clade haplotypes with the single haplotype from Tlaxco, separated by 6 mutational steps. Finally, the haplotype Pe found in the southeasternmost population (70, Tres Mogotes) is isolated from all other populations in the network. er Genetic diversity and historical demographic analyses Re Haplotype diversity (h) and nucleotide diversity (π) for each population and mountain range is summarized in Table 1. The Vigas population showed the highest number of haplotypes, and highest nucleotide diversity compared to all other populations. Populations from the Central vi TVB had low nucleotide diversity overall, reflecting high sequence similarity. Most mountain ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 12 of 56 systems had low nucleotide diversity (0.002-0.018) and high haplotype diversity (0.464-0.944). Genetic distances among mountains ranged from 1.69-21.16 and 0.003-0.029 for PiXY and DXY, respectively (Table 2). The populations from the Central TVB clade were more related to each other, and more genetically differentiated from north-eastern populations (Perote and Tlatlauquitepec mountain ranges) than from SE Clade populations (Orizaba mountain ranges; Table 2). Plots of mismatch distributions (Fig. 4) were multimodal for all P. leprosa populations combined (SSD=0.025; P = 0.061) and for the NE I clade (SSD=0.062; P = 0.641) but the Central TVB clade was unimodal (SSD=0.013; P = 0.080). Tajima’s D and Fu’s FS corroborated evidence for expansion in the Central TVB clade. Fu´s FS test (Table 1) was significant only for Page 13 of 56 Parra-Olea et al., Page 13 Calpan (FS = –2.82; P < 0.05) and Nanacamilpa (FS = –2.85; P < 0.01) populations and for Iztaccihuatl (FS = –24.91; P < 0.05) and Malinche (FS = –9.39; P < 0.01) mountain ranges. Tajima´s D was significantly negative for Calpan (D = –1.76; P < 0.05) and Rio Frio (D = –1.86; P < 0.01) populations and for Iztaccihuatl (D = –1.60; P < 0.05) and Malinche (D = –2.00; P < 0.05) mountain ranges. Bayesian skyline plots (BSP) for all P. leprosa, NE I clade and Central TVB clade populations are shown in Figure 4. BSPs depict similar scenarios among the NE I clade and the Central clade, with low but constant increase in size from 200,000 years to the present. In contrast, BSP for all P. leprosa populations combined shows a decrease in size from 250,000 r Fo followed by a rapid expansion. The estimates of TMRCA were highly concordant among runs (Table S2), independent of the coalescent model applied. The estimated TMRCA for all P. leprosa was 3.25-3.80 million years ago over all coalescent models. An old split occurred Pe between populations from the NE and SE (clade 4 in Table S2): 3.2-3.7 million years ago, whereas the Central TVB Clade has a TMRCA of only 0.79-0.83 million years. er Repeated LAMARC runs resulted in similar posterior probability distributions and high ESS values for all Θ and most migration rates. Populations vary in Θ (Figure 4 and Table S2), Re ranging from the lowest value in Ajusco (MPE = 0.00001), to the highest value in Vigas (MPE = 0.01114), with a trend of decreasing population sizes from eastern to western populations. However, the Central clade populations of Llano Grande and Atzompa (both in the Popocatepetl- vi Itzaccihuatl mountain range) showed the highest MPE Θ values for the Central TVB and their ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography confidence intervals overlap with the highest population sizes found in eastern populations (Table S2). The LAMARC migration rate estimates (M) are scaled to the mutation rate (m/µ). The most probable estimators (MPE) of immigration obtained from LAMARC suggest an asymmetrical immigration among mountain ranges (Table 3, Figure 5). Among NE clade populations, gene flow occurs principally from Vigas to other populations, with the highest estimated value from Vigas into González Ortega (both in the Perote mountain range). Migration rates are higher from NE II clade (Perote) into populations of the SE Clade (Orizaba mountain range), and from SE into the central mountain range of Malinche, suggesting an expansion from NE to Central TVB via the southeastern mountain range. Indeed, estimated migration from NE to Journal of Biogeography Parra-Olea et al., Page 14 Central TVB populations is low and the lowest immigration rates in the entire P. leprosa distribution are into NE mountain ranges. Within the Central TVB Clade, we found higher migration from Malinche to central and northern Popocatepetl-Itzaccihuatl than to the southern end of that mountain range, and Sierra de las Cruces receives more migrants than from Nevado de Toluca or Popocatepetl-Itzaccihuatl, than vice-versa. One caveat is that although the MPEs are distinct, all immigration rate 95% confidence intervals overlap, thus estimates should be interpreted with caution (Table 3). Isolation by distance and least-cost paths in the TVB Genetic and geographic distances between pairs of mountain ranges are summarized in r Fo Table 2 and Table S3, respectively. The Mantel test revealed no significant isolation-by-distance between all three measures of geographic distance and DXY (ED, Pearson r = 0.13, P = 0.282; ED-CP, Pearson r = 0.10, P = 0.299; and CP, Pearson r = 0.07, P = 0.334), or PiXY (ED, Pearson Pe r = 0.23, P = 0.111; ED-CP, Pearson r = 0.20 P = 0.131; and CP, Pearson r = 0.16, P = 0.162). However, the partial Mantel test revealed significant isolation-by-distance between geographic er distance (ED-CP) and both genetic distances (DXY, Pearson r = -0.47, P = 0.04; PiXY, Pearson r = -0.49, P = 0.03) when Euclidean distances were accounted for. DISCUSSION vi Re Many montane regions are hotspots for biodiversity (Myers et al., 2000; Mittermeier et ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 14 of 56 al., 2005), a pattern that has been attributed both to the fact that mountains can act as cradles for diversity by promoting isolation and speciation, but also act as museums, favoring the long term persistence of lineages (Chown & Gaston, 2000; Kozak & Wiens, 2006; Wiens et al., 2007). Factors that contribute to high diversity of montane biotas are topographic complexity that result in high habitat heterogeneity and environmental diversity (Jetz et al., 2004), and the fact that mountains can harbor climatically stable refugia compared to lowlands. We now have a good understanding of the macroevolutionary patterns of species diversity in mountain landscapes (Rahbek, 1995; Rahbek & Graves, 2001) and the climatic and ecological correlates of this diversity (Francis & Currie, 2003; Hawkins et al., 2003; Oomen & Shanker, 2005; McCain, 2005 2007) but few studies examine in detail the timing and relative importance of evolutionary processes that lead to population splitting and promote lineage survival in these same landscapes Page 15 of 56 Parra-Olea et al., Page 15 (Wiens & Donoghue, 2004; Cardillo et al., 2005; Mittelbach et al., 2007; Tennessen & Zamudio, 2008). Examining the evolutionary underpinnings of other common diversity gradients has revealed that many patterns are driven by local variation in the rate and timing of lineage diversification (Cardillo et al., 2005; Stevens, 2006; Wiens et al., 2006; Ricklefs, 2006 ) and the same pattern is expected to be repeated by individual species belonging to montane assemblages (Fjeldså & Lovett, 1997; Ghalambor et al., 2006). The Mexican highlands represent a significant focus of biodiversity in North America with high degrees of endemism (Ramamoorthy et al., 1993; Bye, 1995) in plants (Nixon, 1993; Styles, 1993; Turner & Nesom, 1993), insects (Lobo & Halffter, 2000; Morrone & Márquez, r Fo 2003; Morrone, 2005), mammals (Fa & Morales, 2003; Escalante et al., 2005; Mena & VázquezDomínguez, 2005), birds (Escalante et al., 1993; McCormack et al., 2008), reptiles and amphibians (Flores-Villela & Canseco-Márquez, 2007; Flores-Villela, 2010). Several lines of evidence indicate that P. leprosa evolved in the northeastern sections of the TVB around the area Pe of Cofre de Perote in the state of Veracruz, with subsequent range expansion to the Central TVB. The presence of haplotypes exclusive to the Cofre de Perote and the fact that northeastern er haplotypes form two distinct subclades indicate that the eastern mountains may have been occupied by formerly widespread, contiguous populations which experienced fragmentation Re resulting from geological and climatological events. We found high within-population sequence divergences for the northeastern populations of Vigas and Tlatlauquitepec, respectively. High vi haplotypic and nucleotidic diversity (Table 2), their basal position of haplotypes in the tree (Fig 1, Table 2), the lack of a signature of demographic expansion, higher Θ values and the sharing of ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography haplotypes among populations in eastern and northeastern mountain ranges are indicative of older source populations for population expansion throughout the rest of the species’ range. Cofre de Perote volcano is found at the northeastern limit of the TVB (Figure 1). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes in other regions of the TVB (Carrasco-Núñez et al., 2007; Diaz-Castellón et al., 2008). Cofre de Perote is 4282 m at its peak and rises more than 3000 m above the coastal plain to the east; it formed as a massive low-angle compound shield volcano that now dwarfs the more typical smaller shield volcanoes of the central and western TVB (Carrasco-Núñez et al., 2010). The geological age of Cofre de Perote is recent (1.57-2.0 MYr BP), its isolation from the west and center segments of TVB occurred during the late Pleistocene Journal of Biogeography Parra-Olea et al., Page 16 with the formation of the Cuenca Oriental, the hydrological basin that delimits the eastern end of the TVB. The Cuenca Oriental was reconnected with the México and Apan basins during a period of intense volcanic activity in the early Holocene (Miller & Smith, 1986). However, isolation of the Cofre de Perote from mountain ranges to the west was likely maintained due to the altitudinal gradient established during the conformation of the eastern end of the TVB. Combined, these landscape changes may have created environmental conditions that caused population decreases and isolation, thus promoting divergence of the NE clades. Studies of other highly diverse taxa in this region corroborate the Cofre de Perote as an important historical refugial area. The plethodontid salamander fauna from this region is quite r Fo different from that found at lower elevations in the area of Vigas, only 5 km away. Pseudoeurycea naucampatepetl from Cofre de Perote (Parra-Olea et al., 2005a) is sister taxon to P. gigantea from Vigas with a 4.9% sequence divergence in cytb and substantial differences in coloration. Salamanders of the genus Chiropterotriton (Darda, 1994; Parra-Olea, 2003) show the Pe same pattern of divergence between these two neighboring regions. Finally, Cofre de Perote populations of curculionid beetles (Anducho-Reyes et al., 2008) and pocket gophers (Hafner et er al., 2005) are highly diverged from surrounding populations both genetically and morphologically. Re In contrast, populations from mountain ranges in the Central TVB show very little genetic divergence over a large geographic area, a pattern typical or populations resulting from vi geographic expansion (Hewitt, 1996; Grant & Bowen, 1998; Fet et al., 2005; Cortes-Rodríguez et al., 2008). Relatively low values of π and high h for the entire data set indicate a model of ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 16 of 56 range expansion for the entire range of P. leprosa, but neutrality tests and mismatch distributions by region show the strongest signal of range expansion for the Central TVB clade populations. Rapid population expansion often results in repeated bottlenecks along the expansion front, as migrants move into newly available habitats and found populations (Hewitt, 1996). The genetic consequences of these sequential founding events will be more pronounced when new habitats are patchily distributed, such that the probability of colonization is low, and when it does occur, the number of founders is also low (Hewitt, 1996). The stepping-stone colonization of mountains in the TVB meets this requirement, and the low genetic diversity in the westernmost mountain islands suggests that genetic drift due to founder’s events have significantly reduced population genetic diversity during population expansion. Founders carrying ancestral haplotype 11 Page 17 of 56 Parra-Olea et al., Page 17 colonized the western mountain islands, and the low number of mutational steps among that common haplotype and the others in those newly founded populations indicate that those novel haplotypes arose in situ during the relatively short history of independent evolution on each of the isolated mountain islands. This historical scenario of Pleistocene colonization of mountains in the Central TVB is corroborated by the estimates of historical migration among selected pairs of mountain populations. The MPE of migration rates show higher migration from east to west along the TVB. With a single mtDNA locus, we were not able to infer migration with high confidence; however, the peaks of posterior distributions corroborate the sequential colonization of mountain islands from a source populations in the region occupied by NE II clade. r Fo Our phylogeographic results are fully concordant with a study previously published by Lynch et al. (1983) that examined relationships among Pseudoeurycea species based on allozymes. That study included seven populations of P. leprosa along with samples of P. longicauda, P. robertsi and P. altamontana, and reported high intraspecific levels of Pe differentiation within P. leprosa. Lynch et al. (1983) found a ‘core group’ of populations along the main E-W axis of the TVB that included populations from Zempoala, Popocatepetl, er Iztaccihuatl and Malinche volcanic ranges, with only slight genetic differentiation among them (Nei’s genetic distances [DN] = 0.002-0.012). In contrast, populations in the eastern regions of Re the species’ distribution (Cofre de Perote and Pico de Orizaba) showed high genetic divergences when compared to each other and to the core populations. The greatest genetic divergence (DN = vi 0.539) was found between the extreme northern population (Tlaxco, pop 17 Fig. 1) and the extreme southeastern population San Bernardino (in the vicinity of Tres Mogotes, pop 26 Fig 1). ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Genetic differentiation between Las Vigas and Tlaxco, and all other populations, ranged from 0.240-0.437 and 0.325-0.539, respectively. Their samples from Xometla were intermediate, with low genetic divergence from the core populations (DN = 0.015-0.022) and large genetic divergence (DN = 0.167-0.325) from eastern populations. This population belongs to our SE Clade, which is sister taxon to the Central TVB populations we sampled. The results of the Lynch et al. (1983) study of allozyme markers indicate that the patterns we recovered based on mtDNA markers are represented in patterns of nuclear diversification as well. Our more complete sampling from throughout the range detected high divergences among populations in the eastern mountain ranges, suggesting multiple isolated refugial populations, and confirmed the east-west direction and recency of range expansion for this species. Journal of Biogeography Parra-Olea et al., Page 18 Our data underscore the importance of peripheral isolation and local adaptation for lineage diversification, especially in montane-adapted taxa where the distribution of appropriate habitat is naturally discontinuous. Our phylogenetic analysis revealed deep genetic divergence between the haplotype from the Tres Mogotes population and samples from other populations throughout the range, and this haplotype does not cluster with any other sample in the haplotype network. This population is in the extreme southeastern part of the distribution, and may have served as a southern refugium. The isolation of this region seems to have caused this population to diverge both genetically and physiologically from remaining P. leprosa populations. Individuals from the Tres Mogotes population have persisted at the drier lower elevation site by r Fo colonizing a new microhabitat; adults in this population live within bromeliads much of the year, in comparison to other P. leprosa populations that are terrestrial. The genetic consequence of adaptation to montane habitats is also evident in the results of least-cost migration routes among mountain islands. The effects of topographic complexity of Pe the TVB, combined with this species’ low tolerance for high temperatures, have impacted historical connectivity and diversification among populations. Both measures of pairwise er population genetic differentiation do not correlate independently with Euclidean distance and distance along least cost paths, but a partial Mantel test shows a significant correlation between Re Least-Cost Path distance and genetic differentiation once Euclidean distance has been accounted for. This pattern indicates that it is not distance alone, but the elevational gradient along the least vi cost path among mountain ranges that has limited historical dispersal among populations, once they became established on new mountain islands. ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 18 of 56 Estimates of divergence times for major clades of P. leprosa populations provide evidence on whether divergences in this group might be temporally correlated to the formation of specific regions of the TVB. Our TMRCA estimates under various models of molecular evolution indicate that divergence of the eastern populations occurred in the Pliocene (3.8 Mya), while divergence of Central TVB populations diverged in Pleistocene (0.8 Mya). These timing estimates reject the hypothesis that the formation of the Mexican highlands caused the diversification of P. leprosa because lineage divergences within the group largely predate the origin of the volcanic mountain ranges within the TVB. However, uplift of the TVB may have continued into the Pliocene-Pleistocene (Ferrusquía-Villafranca & González-Guzmán, 2005) and therefore might have played some role in the more recent differentiation of transvolcanic clades. Page 19 of 56 Parra-Olea et al., Page 19 Our divergence timing results for the Central TVB Clade are concordant with the timing of glacial-interglacial cycles that characterized the last 0.7 Mya of the Pleistocene and that are thought to have been the major contributor to biological diversification during this period (Webb & Bartlein, 1992). Thus, although Pleistocene climate cycles do not explain divergences of relictual populations in the northern and eastern TVB mountains, the expansion of this species to the already formed mountains of the central TVB was certainly facilitated by the broad distribution of cooler pine forests during glacial periods. Given that montane regions are important centers of diversification, understanding and maintaining the processes that lead to variation in species richness is also critical for r Fo conservation of montane taxa that are increasingly threatened (Kozak & Wiens, 2006; Smith et al., 2007; Wiens et al., 2007). Many of the montane habitats of the Central TVB are protected within National Parks (Parque Nacional Iztaccihuatl-Popocateptl, Cumbres del Ajusco, Desierto de los Leones, Nevado de Toluca, Zoquiapán, Lagunas de Zempoala, La Malinche) but our data Pe suggest that those protected areas alone are not sufficient to preserve most of the population genetic diversity within this species. In fact, the most diverse, and likely source populations for er the species in the eastern part of the range are not currently protected, and that area is also subject to severe encroachment due to urban and agricultural development (García-Romero, Re 2002; Galicia & García-Romero, 2007). The preservation of populations with high genetic diversity is especially important for preserving evolutionary potential in the face of global vi environmental change. Genetic drift leads to the overall reduction of both neutral and adaptive genetic variation (Frankham, 1996; Spielman et al., 2004; Willi et al., 2007), thus it is possible ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography that central TVB populations of P. leprosa also show reduced genetic diversity at functional genes that might be critical for local adaptation of populations to changing environments. We know that this species will be faced with threats from projected changes in global temperatures that will substantially decrease the distribution of appropriate habitat, especially in the Central TVB (Parra-Olea et al., 2005b). Thus, preservation of remaining habitats in eastern TVB is critical because those regions have highest chances of persistence with projected climate change, and because those populations will retain the highest evolutionary potential for local adaptation to changing environments (Parra-Olea et al., 2005b; Isaac, 2009). Journal of Biogeography Parra-Olea et al., Page 20 ACKNOWLEDGEMENTS Molecular data for this project were collected in the Evolutionary Genetics Core Facility and the Cornell Core Laboratories Sequencing Facility. Analyses benefited from resources of the Computational Biology Service Unit at Cornell University, a facility partially funded by Microsoft Corporation. We thank D. B. Wake, T. Papenfuss, J. Hanken, M. García-París, and E. Recuero for help with field collections; Luis Canseco, G. Casas-Andreu and Noemí Matías for providing tissues; Laura Marquez-Valdelamar for lab assistance; C. G. Becker for assistance with GIS analyses; D. Buckley and I. Martínez-Solano for advice on molecular analyses; M. Lopez-Uribe, R. Vega Bernal, and the Zamudio Lab for constructive comments on earlier r Fo versions of the manuscript. During the preparation of this study, Guillermo Velo-Antón was supported by a postdoctoral fellowship from the Spanish Ministerio de Ciencia e Innovación (Ref: 2008-0890) and Gabriela Parra by a sabbatical Fellowship from UC-MEXUS. Field and Pe laboratory efforts were partially funded by grants from SEP-CONACyT (50563) and PAPIITUNAM (211808) to G. P-O; NSF Tree of Life program (Grant EF-0334939 to D. B. Wake and M. H. Wake) and an NSF Population Evolutionary Processes Grant (DEB-0343526) to KZ. er ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 20 of 56 Page 21 of 56 Parra-Olea et al., Page 21 REFERENCES Adams, D.C., Berns, C.M., Kozak, K.H. & Wiens, J.J. (2009) Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society of London Series B, 276, 2729-2738. Anducho-Reyes, M.A., Cognato, A.I., Hayes, J.L. & Zúñiga, G. (2008) Phylogeography of the bark beetle Dendroctonus mexicanus Hopkins (Coleoptera:Curculionidae: Scolytinae). Molecular Phylogenetics and Evolution, 49, 930-940. Assefa, A., Ehrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. (2007) Pleistocene colonization of afro-alpine 'sky islands' by the arctic-alpine Arabis alpina. Heredity, 99, 133-142. Bonnet, E. & Van De Peer, Y. (2002) ZT: a sofware tool for simple and partial Mantel tests. Journal of Statistical Software, 7, 1-12. Brereton, R., Bennett, S. & Mansergh, I. (1995) Enhanced greenhouse climate change and its potential effect on selected fauna of south-eastern Australia: a trend analysis. Biological Conservation 72, 339–354. Brown, B.R. (1985) A summary of late-Quaternary pollen records from México west of the Isthmus of the Tehuantepec. Pollen records of late-Quaternary North American sediments (ed. by V.M.J. Bryant and R.G. Holloways), pp. 71-94. American Association of Stratigraph Palynologist Foundation, Dallas, Texas. Browne, R.A. & Ferree, P.M. (2007) Genetic structure of southern Appalachian "sky island" populations of the southern red-backed vole (Myodes gapperi). Journal of Mammalogy, 88, 759-768. Bye, R. (1995) Prominence of the Sierra Madre Occidental in the biological diversity of México. Biodiversity and management of the Madrean Archipelago: The sky islands of the southwestern United States and northwestern México (ed. by L.F. Debano, P.F. Ffolliott, A. Ortega-Rubio, G.J. Gottfried, R.H. Hamre and C.B. Edminster). USDA Forest Service Rockey Mountain Forest and Range Experiment Station, Fort Collins, Colorado. Cantagrel, J. & Robin, C. (1979) K-Ar dating on eastern Mexican voclanic rocks -- Relatons between the andesitic and the alkaline provinces. Journal of Volcanology and Geothermal Research, 5, 99-114. Cardillo, M., Orme, C.D.L. & Owens, I.P.F. (2005) Testing for latitudinal bias in diversification rates: an example using New World birds Ecology 86, 2278-2287. Carrasco-Núñez, G., Díaz-Castellón, R., Siebert, L., Hubbard, B., Sheridan, F. & Rodríguez, R.R. (2007) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment. Journal of Volcanology and Geothermal Research, 158, 151-176. Carrasco-Núñez, G., Siebert, L., Diaz-Castellón, R., Vázquez-Selem, L. & Capra, L. (2010) Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, eastern Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, in press. Castillo-Rodríguez, M., López-Blanco, J. & Palacios, D. (2007) Multivariate analysis of the location of rock glaciers and the environmental implications in a tropical volcano: La Malinche (Central México). Zeitschrift für Geomorphologie, 51, 39-54. Chown, S.L. & Gaston, K.J. (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 15, 311-315. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 22 Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657-1659. Cortes-Rodríguez, N., Hernández-Baños, B.E., Navarro-Sigüenza, A.G. & Omland, K.E. (2008) Geographic variation and genetic structure in the streak-backed oriole: low mitochondrial DNA differentiation reveals recent divergence. The Condor, 110, 729-739. Darda, D.M. (1994) Allozyme variation and morphological evolution among Mexican salamanders of the genus Chiropterotriton (Caudata: Plethodontidae). Herpetologica, 50, 164-187. DeChaine, E.G. & Martin, A.P. (2006) Using coalescent simulations to test the impact of quaternary climate cycles on divergence in an alpine plant-insect association. Evolution, 60, 1004-1013. Diaz-Castellón, R., Castillo-Nuñez, G. & Alvarez-Manilla, A. (2008) Mechanical instability quantification of slopes at Cofre de Perote volcano, eastern México. Boletín de la Sociedad Geológica Mexicana, 60, 187-201. Domínguez-Domínguez, O. & Pérez-Ponce De León, G. (2009) La mesa central de México es una provincia biogeográfica? Análisis descriptivo basado en componentes bióticos dulceacuícolas. Revista Mexicana de Biodiversidad, 80, 835-852. Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, 699-710. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192. Escalante, P., Navarro-Sigüenza, A. & Peterson, T. (1993) A geographic, ecological, and historical analysis of land bird diversity in México. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 281-308. Oxford University Press, Oxford. Escalante, T., Rodríguez, G. & Morrone, J. (2005) Las provincias biogeográficas del componente mexicano de montaña desde la perspectiva de los mamíferos continentales. Revista Mexicana de Biodiversidad, 76, 199-205. ESRI (2006) Arcview 9.2. Redlands, CA. Excoffier, L., Laval, G. & Schneider, S. (2005) ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 4750. Fa, J. & Morales, L.M. (2003) Patterns of mammalian diversity in México. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 319-364. Oxford University Press, Oxford. Feder, M.E. (1976) Oxygen consumption and body temperature in neotropical and temperate zone lungless salamanders (Amphibia: Pethodontidae). Journal of Comparative Physiology B, 110, 197-208. Feder, M.E. (1978) Environmental variability and thermal acclimation in neotropical and temperate zone salamanders. Physiological Zoology, 51, 7-16. Ferrari, L. (2000) Episodes of Cenozoic volcanism and tectonics in central México. Journal of Vertebrate Paleontology, 20, 40A. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 22 of 56 Page 23 of 56 Parra-Olea et al., Page 23 Ferrari, L., Conticelli, S., Vaggelli, G., Petrone, C.M. & Manetti, P. (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics, 318, 161-185. Ferrari, L., Lopez-Martinez, M., Aguirre-Diaz, G. & Carrasco-Nunez, G. (1999) Space-time patterns of Cenozoic arc volcanism in central México: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27, 303-306. Ferrari, L. & Rosas-Elguera, J. (1999) Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: A case for plume-related magmatism and propagating rifting at an active margin?: Comment. Geology, 27, 1055-1056. Ferrusquía-Villafranca, I. & González-Guzmán, L.I. (2005) Northern México's landscape, part II: The biotic setting across time. Biodiversity, ecosystems, and conservation in northern México (ed. by J.-L.E. Cartron, G. Ceballos and R.S. Felger), pp. 39-51. Oxford University Press, New York. Fet, V., Gantenbein, B., Karataş, A. & Karataş, A. (2005) An extremely low genetic divergence across the range of Euscorpius italicus (Scorpiones, Euscorpiidae). Journal of Arachnology, 34, 248-253. Fitzpatrick, S.W., Brasileiro, C.A., Haddad, C.F.B. & Zamudio, K.R. (2009) Geographic variation in genetic structure of an Atlantic Coastal Forest endemic reveals regional differences in habitat stability. Molecular Ecology, 18, 2877-2896. Fjeldså, J. & Lovett, J.C. (1997) Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres Biodiversity and Conservation, 6 325-346. Flores-Villela, O. & Canseco-Márquez, L. (2007) Riqueza de la herpetofauna. Biodiversidad de la Faja Volcánica Transmexicana (ed. by I. Luna, J.J. Morrone and D. Espinosa), pp. 407-420. Universidad Nacional Autonoma de México, México, D.F. Flores-Villela, O., L. Canseco-Márquez, and L. Ochoa-Ochoa. (2010) Geographic distribution and conservation of the herpetofauna of the highlands of Central México. Conservation of Mesoamerican amphibians and reptiles (ed. by L.D. Wilson and J. Towsend), p. in press. Eagle Mountain Publishing Co., Utah, USA. Francis, A.P. & Currie, D.J. (2003) A global consistent richness-climate relationship for angiosperms. American Naturalist 161, 523-536. Frankham, R. (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology, 10, 1500-1508. Fu, X.Y. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics, 147, 915-925. Galbreath, K.E., Hafner, D.J. & Zamudio, K.R. (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution, 63, 2848-2863. Galicia, L. & García-Romero, A. (2007) Land Use and Land Cover Change in Highland Temperate Forests in the Izta-Popo National Park, Central México. Mountain Research and Development, 27, 48-57. García-Palomo, A., Macías, J.L. & Garduño, V.H. (2000) Miocene to recent structural evolution of the Nevado de Toluca volcano region, Central México. Tectonophysics, 318, 281-302. García-Romero, A. (2002) An evaluation of forest deterioration in the disturbed mountains of Western México. Mountain Research and Development, 22, 270-277. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 24 Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G. (2006 ) Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46, 5-17. Graham, A. (1993) Historical factors and biological diversity in México. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 109-127. Oxford University Press, Oxford. Graham, A. (1999) Late Cretaceus and Cenozoic history of North American vegetation (North of México). Oxford University Press, New York. Grant, W.S. & Bowen, B.W. (1998) Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89, 415-426. Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696-704. Haffer, J. (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476. Haffer, J. & Prance, G.T. (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana, 16, 579-607. Hafner, M.S., Light, J.E., Hafner, D.J., Brant, S.V., Spradling, T.A. & Demastes, J.W. (2005) Cryptic species in the Mexican pocket gopher Cratogeomys merriami. Journal of Mammalogy, 86, 1095-1108. Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale patterns of species richness Ecology 84, 3105-3117. Heine, K. (1988) Late Quaternary glacial chronology of the Mexican volcanoes. Die Geowissenschaften, 7, 197-205. Hewitt, G.M. (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247-276. Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London, B, 359, 183-195. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755. Hughes, L. (2003) Climate change and Australia: trends, projections and research directions. Austral Ecology, 28, 423-443 Isaac, J.L. (2009) Effects of climate change on life history: implications for extinction risk in mammals. Endangered Species Research, 7, 115-123. Janzen, D.H. (1967) Why mountain passes are higher in the tropics. American Naturalist, 101, 233-249. Jetz, W., Rahbek, C. & Colwell, R.K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters, 7, 1180-1191. Johnson, C.A. & Harrison, C.G.A. (1990) Neotectonics in central México. Physics of the Earth and Planetary Interiors, 64, 187-210. Knowles, L.L. (2000) Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution, 54, 1337–1348. Kozak, K.H. & Wiens, J.J. (2006) Does niche conservatism promote speciation? a case study in North American salamanders. Evolution, 60, 2604-2621. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 24 of 56 Page 25 of 56 Parra-Olea et al., Page 25 Kozak, K.H. & Wiens, J.J. (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society of London Series B, 274, 2995-3003. Kuhner, M.K. (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics, 22, 768-770. Lobo, J.M. & Halffter, G. (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Annals of the Entomological Society of America, 93, 115-126. Lozano-García, S., Sosa-Nájera, S., Sugiura, Y. & Caballero, M. (2005) 23,000 yr of vegetation history of the Upper Lerma, a tropical high-altitude basin in central México. Quaternary Research, 64, 70-82. Luna, I., Morrone, J. & Espinosa, D. (2007) Biodiversidad de la faja volcánica transmexicana. Universidad Nacional Autónoma de México, México, D. F. Lynch, J.F., Wake, D.B. & Yang, S.Y. (1983) Genic and morphological differentiation in Mexican Pseudoeurycea (Caudata: Plethodontidae) with a description of a new species. Copeia, 1983, 884-894. Martínez-Solano, I., Jockusch, E.L. & Wake, D.B. (2007) Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuatus (Caudata: Plethodontidae) in western North America. Molecular Ecology, 16, 4335-4355. Martínez-Solano, I. & Lawson, R. (2009) Escape to Alcatraz: evolutionary history of slender salamanders (Batrachoseps) on the islands of San Francisco Bay. BMC Evolutionary Biology, 9, 1-14. McCain, C.M. (2005 ) Elevational gradients in diversity of small mammals. Ecology 86, 366372. McCain, C.M. (2007) Area and mammalian elevational diversity. Ecology 88, 76-86. McCormack, J.E., Peterson, A.T., Bonaccorso, E. & Smith, T.B. (2008) Speciation in the highlands of México: genetic and phenotypic divergence in the Mexican Jay (Aphelocoma ultramarina). Molecular Ecology, 17, 2505-2521. McDonald, J.A. (1993) Phytogeography and history of the alpine-subalpine flora of northeastern México. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 681-706. Oxford University Press, Oxford. Mena, J.L. & Vázquez-Domínguez, E. (2005) Species turnover on elevational gradients in small rodents. Global Ecology and Bigeography, 14, 539-547. Millar, C.J. (1998) Early evolution of pines. Ecology and biogeography of Pinus (ed. by D.M. Richardson), pp. 69-91. Cambridge University Press, Cambridge. Miller, R.R. & Smith, M.L. (1986) Origin and geography of fishes of central México. The zoogeography of North American freshwater fishes (ed. by C.W. Hocutt and E.O. Wiley), pp. 487-517. John Wiley and Sons, New York. Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., Harrison, S.P., Hurlbert, A.H., Knowlton, N., Lessios, H.A., McCain, C.M., McCune, A.R., McDade, L.A., McPeek, M.A., Near, T.J., Price, T.D., Ricklefs, R.E., Roy, K., Sax, D.F., Schluter, D., Sobel, J.M. & Turelli, M. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315-331. Mittermeier, R.A., Robles Gil, P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & Da Fonseca, G.A.B. (2005) Hotspots revisited: Earth´s biologically r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 26 richest and most endangered terrestrial ecoregions. Conservation International, Washington D.C. Moritz, C., Schneider, C.J. & Wake, D.B. (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology, 41, 273-291. Morrone, J. (2005) Hacia una sintesis biogeográfica de México. Revista Mexicana de Biodiversidad, 76, 207-252. Morrone, J. & Márquez, J. (2003) Aproximación a un atlas biogeográfico mexicano: Componentes bióticos principales y provincias biogeográficas. Una perspectiva latinoamericana de la biogeografía (ed. by J. Morrone and J. Llorente), pp. 1-4. Las Prensas de Ciencias, UNAM, México, D.F. Mueller, R.L. (2006) Evolutionary rates, divergence rates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology, 55, 289-300. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. Nei, M. (1987) Molecular evolutionary genetics. Columbia University Press, New York. Nixon, G.T., Demant, A., Amstrong, R.L. & Harakal, J.E. (1987) K-Ar and geologic data bearing on the age and evolution of the Trans-Mexican Volcanic Belt. Geofisica Internacional, 26, 109-158. Nixon, K.C. (1993) The genus Quercus in México. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 447-458. Oxford University Press, Oxford. Oomen, M.A. & Shanker, K. (2005) Elevational species richness patterns emerge from multiple mechanisms in Himalayan woody plants. Ecology 86, 3039-3047. Osete, M.L., Ruiz-Martínez, V.C., Caballero, C., Galindo, C., Urrutia-Fucugauchi, J. & Harling, D.H. (2000) Southward migration of continental volcanic activity in the Sierra de Las Cruces, México: palaeomagnetic and radiometric evidence. Tectonophysics 318, 201-215. Parra-Olea, G. (2003) Phylogenetic relationships of the genus Chiropterotriton (Caudata: Plethodontidae) based on 16S ribosomal mtDNA. Canadian Journal of Zoology, 81, 2048-2060. Parra-Olea, G., García-París, M., Papenfuss, T. & Wake, D.B. (2005a) Systematics of the Pseudoeurycea bellii (Caudata: Plethodontidae) species complex. Herpetologica 61, 145258. Parra-Olea, G., Martínez-Meyer, E. & Pérez Ponce De León, G. (2005b) Forecasting climate change effects on salamander distribution in the highlands of Central México. Biotropica 37, 202-208. Pasquaré, G., Garduño, V.H., Tibaldi, A. & Ferrari, L. (1988) Stress pattern evolution in the central sector of the mexican volcanic belt. Tectonophysics, 146, 352-364. Perry, J.P. (1991) The pines of México and Central America. Timber Press, Portland. Popp, M., Gizaw, A., Nemomissa, S., Suda, J. & Brochmann, C. (2008) Colonization and diversification in the African 'sky islands' by Eurasian Lychnis L. (Caryophyllaceae). Journal of Biogeography, 35, 1016-1029. Posada, D. (2006) COLLAPSE v1.2: describing haplotypes from sequence alignments. URL http://darwin.uvigo.es/software/collapse.html Posada, D. (2008) JMODELTEST: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 26 of 56 Page 27 of 56 Parra-Olea et al., Page 27 Rahbek, C. (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205. Rahbek, C. & Graves, C.R. (2001) Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, USA, 98, 4534-4539. Ramamoorthy, T., Bye, R., Lot, A. & Fa, J. (1993) Biological diversity of México: origins and distribution. Oxford University Press, Oxford. Rambaut, A. & Drummond, A.J. (2007) Tracer v1.4. URL http://beast.bio.ed.ac.uk/Tracer. Ricklefs, R.E. (2006 ) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87, S3-S13. Rozas, J., Sánchez-Delbarrio, J.C., Messeguer, X. & Rozas, R. (2003) DnaSP, DNA polymorphism analyses by coalescent and other methods. Bioinformatics, 19, 2496-2497. Schneider, S. & Excoffier, L. (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates very among sites: Application to human mitochondrial DNA. Genetics, 152, 1079-1089. Smith, C.I. & Farrell, B.D. (2005) Phylogeography of the longhorn cactus beetle Moneilema appressum LeConte (Coleoptera : Cerambycidae): was the differentiation of the Madrean sky islands driven by Pleistocene climate changes? Molecular Ecology, 14, 3049-3065. Smith, S.A., De Oca, A.N.M., Reeder, T.W. & Wiens, J.J. (2007) A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: Why so few species in lowland tropical rainforests? Evolution, 61, 1188-1207. Spielman, D., Brook, B.W. & Frankham, R. (2004) Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences, USA, 101, 15261-15264. Stevens, R.D. (2006) Historical processes enhance patterns of diversity along latitudinal gradients. Proceedings of the Royal Society of London Series B, 273, 2283-2289. Styles, B.T. (1993) Genus Pinus: A mexican purview. Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 397-420. Oxford University Press, Oxford. Tajima, F. (1983) Evolutionary relationships of DNA sequences in finite populations. Genetics, 105, 437-460. Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-602. Tamayo, L.T. & West, R.C. (1964) The hydrology of Middle America. Handbook of Middle America Indians (ed. by R. Wauchope), pp. 84-121. University of Texas Press, Austin, TX. Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III: Cladogram estimation. Genetics, 132, 619-633. Tennessen, J.A. & Zamudio, K.R. (2008) Genetic differentiation among mountain island populations of the striped plateau lizard, Sceloporus virgatus (Squamata: Phrynosomatidae). Copeia, 2008, 558-564. Turner, B.L. & Nesom, G.L. (1993) Biogeography, diversity, and endangered of threatened status of the mexican Asteraceae Biological diversity of México: origins and distribution (ed. by T. Ramamoorthy, R. Bye, A. Lot and J. Fa), pp. 559-575. Oxford University Press, Oxford. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 28 Vázquez-Selem, L. & Heine, K. (2004) Late quaternary glaciation of México. Quaternary glaciations- extent and chronology, part III (ed. by J. Ehlers and P.L. Gibbars), pp. 233242. Elsevier, Amsterdam. Wake, D.B. & Lynch, J.F. (1976) The distribution, ecology, and evolutionary history of plethodontid salamanders in tropical America. Natural History Museum of Los Angeles County Science Bulletin, 25, 1-65. Webb, I. & Bartlein, P. (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annual Review of Ecology and Systematics, 23, 141-173. Wiens, J.J. (2007) Global patterns of diversification and species richness in amphibians. American Naturalist, 170, S86-S106. Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19, 639-644. Wiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A. & Reeder, T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. American Naturalist, 168, 579-596. Wiens, J.J., Parra-Olea, G., García-París, M. & Wake, D.B. (2007) Phylogenetic history explains elevational biodiversity patterns in tropical salamanders. Proceedings of the Royal Society of London Series B, 274, 919-928. Willi, Y., Van Buskirk, J., Schmid, B. & Fischer, M. (2007) Genetic isolation of fragmented populations is exacerbated by drift and selection. Journal of Evolutionary Biology, 20, 534-542. Wüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Salomão, M.G. & Thorpe, R.S. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 1095–1108. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 28 of 56 Page 29 of 56 Parra-Olea et al., Page 29 SUPPORTING INFORMATION Additional supporting information may be found in the online version of this article: Appendix S1 Collection localities, sample sizes, haplotypes, and voucher specimens for Pseudoeurycea leprosa samples included in this study. Appendix S2 Divergence time estimates for major nodes and coalescence times for differentiation among haplotypes within mitochondrial clades of Pseudoeurycea leprosa. Appendix S3 Geographic measures between pairs of mountain ranges. BIOSKETCH r Fo -Olea is interested in the historical diversification and conservation of tropical herpetofauna. She is currently a faculty member at the Instituto de Biologia, Universidad Autónoma de México, and Pe her lab focuses on population genetics, phylogeography, and systematic studies of reptiles and amphibians endemic to México. er Author contributions: G.P-O. developed the research question; G.P-O and K.Z. acquired funding to support fieldwork and laboratory data collection; J.C.W. completed all field sampling for the Re project; J.C.W. and G.V-A. collected the DNA sequence data; all authors contributed to analyses of sequence data; G. P-O. and K.Z. led writing of the paper with important contributions from others. ew vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 30 FIGURE LEGENDS Figure 1 Distribution of the 26 sampled populations of Pseudoeurycea leprosa across the TransVolcanic Belt (TVB) of México. Ovals group localities by mountain ranges. Locality symbols represent the regional clades to which samples from each population belong: triangles = Northeastern haplotypes (NE I and NE II), diamond = Tres Mogotes, white circles = Central TVB haplotypes, and black circles = Southeast clade. Figure 2 Bayesian phylogeny of Pseudoeurycea leprosa haplotypes from 26 populations throughout the Trans-Volcanic Belt of México. Tip numbers refer to haplotype numbers in the Appendix S1. Numbers above branches are posterior probabilities from Bayesian Inference. r Fo Older, refugial clades are demarcated by black bars, and clades showing genetic signature of recent expansion are highlighted in gray; symbols after each clade name are concordant with those identifying populations in Fig 1. Haplotype 11 in the Central TVB clade was also collected Pe in the SE clade (identified by the circle after the haplotype name). Numbers in shaded boxes correspond to estimates of diversification times (and confidence intervals) inferred from BEAST er analyses for individual nodes (Appendix S2). Figure 3 TCS haplotype network of genetic relationships among Pseudoeurycea leprosa Re populations. Haplotypes are connected assuming a 95% threshold. The size of each haplotype symbol is proportional to its frequency and black dots represent mutational steps separating vi observed haplotypes. Circles represent haplotypes from the Central TVB mountain ranges and the SE clade; colors group haplotypes by mountain ranges. Triangles represent haplotypes from ew 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 30 of 56 NE clades, and the single diamond corresponds to the haplotype obtained in the isolated population of Tres Mogotes. Figure 4 Bayesian skyline plots, and pairwise mismatch distributions for all populations of Pseudoeurycea leprosa included in the study, and two representative clades (NE I clade and Central TVB clade). The Bayesian skyline plots show evidence of large increases in population size for the species as a whole. For mismatch analyses, the black lines/symbols represent the observed frequency of pairwise differences among haplotypes, gray lines/symbols are the distribution expected if the population has undergone historical demographic expansion. The distribution of polymorphism in populations of the Central TVB clade indicates population Page 31 of 56 Parra-Olea et al., Page 31 expansion; corresponding results of the goodness of fit and neutrality tests are reported in the text and in Table 2. Figure 5. Historical migration and timing of diversification in Pseudoeurycea leprosa populations. Ovals group populations by mountain ranges, and discontinuous lines group the different clades, with the exception of NE II clade (which includes one haplotype from Tlatlauquitepec) and the SE clade (which includes one haplotype from Vigas, and the common haplotype 11). The lower panel summarizes immigration rates among mountain ranges estimated by LAMARC. Higher and lower immigration rates between populations are identified with arrows of different colors. r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 32 Table 1 Measures of genetic diversity (+/- SD), Tajima’s D, and Fu’s FS statistics for Pseudoeurycea leprosa estimated by collection locality and by mountain system. Tlaxco and Tres Mogotes samples are excluded because of low sample sizes for those two mountain ranges. Nh er Pe D -0.01975 0 0 -0.69681 0 0 0.03217 -1.8689* 0.63863 -1.20064 -1.76429** -0.30187 -1.05482 -1.31009 -0.93302 -0.8165 -1.23716 0 0.39254 0.90413 1.45884 0 -1.13254 0 0 FS 1.0185 — — -0.62348 — — -1.41904 -1.58788 0.24158 -2.05648 -2.82924** -2.8578* -0.18197 0.76178 -0.00275 0.09021 -0.9218 — 2.81526 1.32573 1.68758 — 2.08813 — — Re Mountain systems Nevado de Toluca Sierra de las Cruces PopocatepetlIztaccihuatl Malinche Orizaba Perote Tres Mogotes π (SD) 0.0022 +/-0.0017 0.0000 +/-0.0000 0.0000 +/-0.0000 0.0006 +/-0.0006 0.0000 +/-0.0000 0.0000 +/-0.0000 0.0058 +/-0.0035 0.0006 +/-0.0006 0.0014 +/-0.0011 0.0012 +/-0.0009 0.0014 +/-0.0010 0.0020 +/-0.0017 0.0003 +/-0.0005 0.0007 +/-0.0007 0.0004 +/-0.0006 0.0005 +/-0.0007 0.0008 +/-0.0008 0.0000 +/-0.0000 0.0051 +/-0.0031 0.0181 +/-0.0093 0.0017 +/-0.0015 0.0000 +/-0.0000 0.0093 +/-0.0058 0.0000 +/-0.0000 0.0000 +/-0.0000 ew 3 1 1 3 1 1 8 4 4 6 7 5 2 2 2 2 3 1 4 14 2 1 4 1 1 h (SD) 0.4643 +/- 0.2000 0.0000 +/- 0.0000 0.0000 +/- 0.0000 0.4044 +/-0.1304 0.0000 +/- 0.0000 0.0000 +/-0.0000 0.9231 +/-0.0500 0.2215 +/-0.1063 0.7138 +/-0.0358 0.5032 +/-0.0935 0.5988 +/-0.0799 0.9048 +/-0.1033 0.2500 +/-0.1802 0.2500 +/-0.1802 0.3333 +/-0.2152 0.4000 +/-0.2373 0.5238 +/-0.2086 1.0000 +/-0.0000 0.6484 +/-0.1163 0.9011 +/-0.0360 0.6000 +/-0.1753 1.0000 +/-0.0000 0.7143 +/-0.1809 1.0000 +/-0.0000 0.0000 +/-0.0000 vi Localities Nevado de Toluca Zempoala Santa Marta Texcalyacac Ajusco Desierto de los Leones Llano Grande Rio Frio Popocateptl Atzompa Calpan Nanacamilpa Malinche Malinche Malinche Malinche Texmalaquilla Texmolae Xometla Vigas González Ortega Tezuitlán Tlatlauquitepec Tlaxco Tres Mogotes r Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 32 of 56 3 7 0.4643 +/-0.2000 0.8122 +/-0.0372 0.0022 +/-0.0017 0.0041 +/-0.0025 -0.01975 -0.28474 1.0185 1.11531 34 5 25 4 1 0.9110 +/-0.0116 0.8348 +/-0.0365 0.8182 +/-0.0586 0.9440 +/-0.0186 0.0000 +/-0.0000 0.0037 +/-0.0022 0.0005 +/-0.0006 0.0043 +/-0.0026 0.0184 +/-0.0094 0.0000 +/-0.0000 -1.60172** -2.00406** -0.12932 0.66513 0 -24.9135* -9.39137* -0.71725 -1.67796 — Nh, number of haplotypes; π nucleotide diversity; h, haplotype diversity. *P<0.01, ** P<0.05. Page 33 of 56 Parra-Olea et al., Page 33 Table 2 Average number of nucleotide substitutions per site, DXY (above the diagonal) and average number of pairwise differences, PiXY (below the diagonal) between mountain ranges. Tlaxco and Tres Mogotes samples are excluded because of low sample sizes for those two mountain ranges. PiXY / DXY Sierra de las PopocatepetlCruces Iztaccihuatl Malinche Orizaba Perote Tlatlauquitepec — 0.005 0.004 0.006 0.009 0.027 0.028 3.638 — 0.004 0.005 0.010 0.026 0.028 4.284 3.770 — 0.003 0.009 0.027 0.028 3.042 9.125 19.972 21.161 2.659 8.428 18.572 20.169 1.638 7.219 18.265 19.794 — 6.461 17.554 18.862 0.010 — 17.408 19.662 0.029 0.026 — 18.222 0.027 0.028 0.029 — er Pe Nevado de Toluca Sierra de las Cruces PopocatepetlIztaccihuatl Malinche Orizaba Perote Tlatlauquitepec Nevado de Toluca r Fo ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Page 34 of 56 Parra-Olea et al., Page 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Table 3 Effective population sizes (Θ) and asymmetric migration rates inferred in LAMARC for Pseudoeurycea leprosa. MPE (maximum probable estimate) in italics and 95% CIs are in brackets. In bold, those estimated values with ESS lower than 300. Above the diagonal, migration rates into all populations shown in bold. Below the diagonal, migration rates into the population shown in italics. M Nevado de Toluca Ajusco Atzompa Gonzalez Ortega Llano Grande Malinche - E Malinche - W Popocatepetl Tlatlauquitepec Vigas Xometla Tlatlauquitepec Vigas Xometla 88.14 0.74 0.05 (0.01-729.65) (0.01-578.05) (0.01-141.54) (0.01-70.36) 2.02 (0.012196.09) 114.07 135.65 70.99 0.95 0.24 10.85 (0.01-196.27) (0.01-655.94) (0.01-690.81) (0.01-544.39) (0.01-137.79) (0.01-75.28) (0.01-213.70) 22.65 798.86 424.03 265.49 0.17 0.19 25.23 (0.01-183.19) rR (0.07-1036.36) (0.01-1074.11) (0.01-885.24) (0.01-118.30) (0.01-55.97) (0.01-318.74) 0.27 78.76 64.17 28.66 15.21 44.99 11.70 (0.01-129.19) (0.01-568.42) (0.01-628.35) (0.01-448.59) (0.01-176.54) (0.03-205.49) (0.01-254.94) 188.25 204.35 144.26 2.51 0.66 24.05 (0.01-543.13) * (0.01-807.92) (0.01-785.50) (0.01-664.00) (0.01-134.40) (0.01-52.45) (0.01-234.10) 333.46 3.70 25.75 * 389.20 234.74 0.09 0.09 47.82 (0.01-729.34) (0.67-903.92) (0.01-537.59) (0.01-201.89) (0.01-1035.15) (0.01-860.28) (0.01-131.30) (0.01-75.46) (0.01-334.09) 110.64 124.66 10.20 23.01 323.14 * 205.31 0.84 0.46 42.82 (0.01-494.81) (0.01-718.76) (0.01-622.76) (0.01-536.59) (0.01-179.14) (0.01-965.820) * (0.01-858.55) (0.01-130.60) (0.01-62.88) (0.01-295.64) 0.00057 83.67 153.55 159.61 12.74 35.17 408.43 448.52 * 2.38 0.71 28.49 (0.00009-0.002271) (0.01-537.58) (0.01-746.78) (0.01-718.06) (0.01-512.56) (0.01-203.22) (0.02-1051.68) (0.01-1103.91) * (0.01-133.38) (0.01-60.47) (0.01-308.04) 0.00349 57.02 113.18 30.33 109.65 0.27 87.06 90.22 28.28 * 39.40 24.77 (0.00083-0.016096) (0.01-472.70) (0.01-678.25) (0.01-305.24) (0.01-640.58) (0.01-127.88) (0.01-581.27) (0.01-624.99) (0.01-429.74) * (0.02-227.49) (0.01-382.09) 0.01114 55.19 148.84 24.54 550.40 0.86 118.35 102.67 47.79 100.38 * 111.11 (0.00459-0.025106) (0.01-511.29) (0.01-795.57) (0.01-319.48) (0.02-1047.54) (0.01-122.93) (0.01-706.66) (0.01-686.77) (0.01-519.59) (0.01-523.05) * (0.02-618.66) 0.00212 38.39 112.08 99.11 59.64 22.65 360.63 402.13 155.43 8.55 32.89 * (0.00050-0.005794) (0.01-448.79) (0.01-712.57) (0.01-571.88) (0.01-634.66) (0.01-153.43) (0.01-1001.69) (0.01-1049.42) (0.01-706.81) (0.01-237.51) (0.01-173.48) * Θ MPE (95% CI) Nevado de Toluca Ajusco Atzompa Gonzalez Ortega Llano Grande Malinche- E 0.00082 * 474.14 52.27 3.96 19.36 133.00 126.02 (0.00017-0.003141) * (0.02-1064.63) (0.012-382.28) (0.01-512.95) (0.01-176.66) (0.01-698.10) 0.00001 238.31 * 39.31 16.43 32.61 (0.00001-0.000556) (0.02-837.32) * (0.01-347.47) (0.01-536.42) 0.00179 39.78 107.71 * 0.03 (0.00044-0.006185) (0.01-523.99) (0.01-701.63) * (0.01-493.38) 0.00034 30.52 102.36 11.48 * (0.00004-0.002554) (0.01-432.23) (0.012-679.84) (0.01-290.46) * 0.00406 99.15 264.20 80.61 3.93 (0.00168-0.011851) (0.01-574.62) (0.01-867.67) (0.01-440.68) 0.00038 59.25 144.10 (0.00002-0.002465) (0.01-531.59) 0.00033 52.01 (0.00002-0.001868) Fo rP ee * ev * Malinche-W Popocatepetl iew Page 35 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Parra-Olea et al., Page 35 Fo rP ee rR ev iew Journal of Biogeography Parra-Olea et al., Page 36 r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 36 of 56 Page 37 of 56 Parra-Olea et al., Page 37 r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Parra-Olea et al., Page 38 r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 38 of 56 Page 39 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Parra-Olea et al., Page 39 Fo rP ee rR ev iew Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 40 of 56 Appendix S1 Pseudoeurycea leprosa samples included in this study. For each haplotype identified in our sample, we list the mountain range, and population of origin, the number of individuals with that haplotype (N), the clade to which it belongs, GPS coordinates/elevation where those individuals were collected, and the voucher specimens. The population ID numbers correspond to those in Figure 1. Voucher specimens acronims are as follows: IBH: Coleccion Nacional de Anfibios y Reptiles, Instituto de Biología, Universidad Nacional Autónoma de México [GP and JCW are unaccessioned specimens from IBH]; MVZ: Museum of Vertebrate Zoology, University of California, Berkeley; ENCB: Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional; MZFC: Museo de Zoología de la Facultad de Ciencias, UNAM [AMH, LECHA and ISZ are unaccessioned specimens from MZFC]. Mountain chain Population Fo rP Clade Nevado de Toluca Nevado de Toluca Pop ID 1 Nevado de Toluca Nevado de Toluca 1 Central Nevado de Toluca Nevado de Toluca Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Central 1 Central Texcalyacac 2 Central Texcalyacac 2 Texcalyacac Haplo N 1 6 19 11 37 N 99 50 53 W Elev (m) 3310 2 1 19 11 37 N 99 50 53 W 3310 IBH2241 ee Latitude Longitude Voucher IBH: 22393-22395, 22391, 22310, 22312 3 1 19 11 37 N 3310 IBH22413 13 19 07 14 N 99 30 00 W 3091 Central 5 1 19 07 14 N 99 30 00 W 3091 IBH: 18199, 223119, 18201-18209, 18211, 22318 IBH18200 2 Central 6 rR 99 50 53 W 4 3 19 07 14 N 99 30 00 W 3091 IBH: 18210, 18214, 18212 Desierto de los Leones Ajusco 3 Central 7 5 19 16 00 N 99 18 02 W 3300 IBH22428, 22425, 22410, GP795, GP796 4 Central 8 8 19 10 58 N 99 18 00 W 3500 Santa Marta 5 Central 9 3 19 03 41 N 99 19 17 W 3110 IBH: 22459, 22424, 2247, 22418, 22442, 22404, 22439, 22399 IBH: 22438, 22461, 22462 Zempoala 6 Central 10 5 19 03 12 N 99 18 35 W 3200 IBH: 22392, 22419, 22453, 22427, 22458 Nanacamilpa 7 Central 11 1 19 28 49 N 98 35 46 W 2800 JCW051 Nanacamilpa 7 Central 12 1 19 28 49 N 98 35 46 W 2800 JCW053 Nanacamilpa 7 Central 13 1 19 28 49 N 98 35 46 W 2800 JCW058 Nanacamilpa 7 Central 14 2 19 28 49 N 98 35 46 W 2800 JCW054, JCW060 ev iew Page 41 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Nanacamilpa 7 Central 15 2 19 28 49 N 98 35 46 W 2800 JCW052, JCW061 Río Frío 8 Central 16 1 19 21 58 N 98 41 41 W 3075 IBH22344 Río Frío 8 Central 17 23 19 21 58 N 98 41 41 W 3075 PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Río Frío PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Popocatepetl- 8 Central 18 1 19 21 58 N 98 41 41 W 3075 IBH: 22451, 22412, 22398, 22445, 22456, 22455, 22444, 22409, 22354, 22360, 22366, 22352, 22363, 22290, 22296, 22289. JCW386-392. ENCB17783 IBH 22426 8 Central 19 1 19 21 58 N 98 41 41 W 3075 IBH 22446 9 Central 17 3 19 20 20 N 98 43 14 W 3200 IBH 22293, 22283, 22279 Llano Grande 9 Central Llano Grande 9 Central Llano Grande 9 Central ee Llano Grande 9 Llano Grande Río Frío Llano Grande Fo rP 20 1 19 20 20 N 98 43 14 W 3200 ENCB17773 21 2 19 20 20 N 98 43 14 W 3200 ENCB17774, ENCB17775 22 2 19 20 20 N 98 43 14 W 3200 Central 23 2 19 20 20 N 98 43 14 W 3200 9 Central 24 1 19 20 20 N 98 43 14 W 3200 ENCB17779, ENCB17782 ENCB17777 ENCB17780 ENCB17772 Llano Grande 9 Central 25 1 19 20 20 N 98 43 14 W 3200 ENCB17781 Llano Grande 9 Central 26 1 19 20 20 N 98 43 14 W 3200 IBH22276 Atzompa 10 Central 11 25 19 10 50 N 98 33 35 W 3050 Atzompa 10 Central 20 1 19 10 50 N 98 33 35 W 3050 IBH: 22286, 22337, 22320-6, 22330, 22319, 22313-14, 22338-40, 22335, 22331-33, 22389, 22328, 22317, 22315, JCW404 22385 Atzompa 10 Central 27 1 19 10 50 N 98 33 35 W 3050 IBH22431 Atzompa 10 Central 28 5 19 10 50 N 98 33 35 W 3050 IBH: 22433, 22436, 2244, 22435, 22336 Atzompa 10 Central 29 3 19 10 50 N 98 33 35 W 3050 IBH: 22429, 22432, 22430 Atzompa 10 Central 30 1 19 10 50 N 98 33 35 W 3050 IBH22434 rR ev iew Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 42 of 56 Iztaccihuatl PopocatepetlIztaccihuatl Calpán 11 Central 11 19 19 07 53 N 98 35 30 W 3100 PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Malinche Calpán 11 Central 31 1 19 07 53 N 98 35 30 W 3100 IBH: 22368, 18226-27, 18217-19, 18221-22 22361, 22358, 22356, 22362, 22367, 22364, 22357, JCW105-108 IBH18220 Calpán 11 Central 32 1 19 07 53 N 98 35 30 W 3100 JCW109 Calpán Fo 11 Central 33 1 19 07 53 N 98 35 30 W 3100 IBH18224 11 Central 34 1 19 07 53 N 98 35 30 W 3100 JCW104 11 Central 35 8 19 07 53 N 98 35 30 W 3100 Calpán 11 Central Popocatepetl 12 Central Popocatepetl 12 Central Popocatepetl 12 Popocatepetl Calpán Calpán rP 36 1 19 07 53 N 98 35 30 W 3100 IBH: 22386, 22365, 22347, 22346, 22351, 22351, 22359, 22342, 22348 IBH22343 11 1 19 04 22 N 3200 JCW405 36 9 19 04 22 N 98 42 42 W 3200 Central 37 rR 98 42 42 W 7 19 04 22 N 98 42 42 W 3200 12 Central 38 9 19 04 22 N 98 42 42 W 3200 Malinche West 13 Central 11 7 19 15 28 N 98 05 42 W Malinche West 13 Central 39 1 19 15 28 N 98 05 42 W Malinche Malinche North 14 Central 11 4 19 16 37 N 98 02 40 W Malinche Malinche North 14 Central 40 1 19 16 37 N 98 02 40 W Malinche Malinche South 15 Central 11 5 19 11 14 N 98 01 19 W Malinche Malinche South 15 Central 41 1 19 11 14 N 98 01 19 W Malinche Malinche East 16 Central 11 7 19 13 48 N 97 58 30 W Malinche Malinche East 16 Central 42 1 19 13 48 N 97 58 30 W 29503050 29503050 29503050 29503050 29503050 29503050 29503050 29503050 IBH: 22457, 22454, 22460, 22448, 22387, 22349, 22350, 22355. JCW345. IBH: 22423, 22437, 22406, 22463, 22288, 22291. JCW406 IBH: 22281-2, 22277, 22284, 22369, 22345, 22370, 22341. JCW343 IBH: 22376, 22383, 22317, 22378, 22375. JCW39, JCW32 IBH22374 ee ev iew IBH: 22308, 22300, 22306, 22297 IBH22308 IBH: 22377, 22379, 22353, 22396, 22416 IBH22373 IBH: 22303-5, 22298, 22307, 22299, 22301 IBH22302 Page 43 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Tlaxco Tlaxco 17 NE I 43 1 19 41 45 N 98 04 33 W 2880 IBH22417 Tlatlauquitepec 18 NE II 44 1 19 42 47 N 97 32 24 W 2800 ISZ103 18 NE I 45 4 19 42 47 N 97 32 24 W 2800 IBH: 22275, 22271, AMH425, MZFC 20611 19 NE I 46 1 19 42 42 N 97 28 34 W 2800 JCW535 (IBH22267) 19 NE I 47 1 19 42 42 N 97 28 34 W 2800 JCW536 (IBH22256) Cofre de Perote Tlautlauquitepec A Tlautlauquitepec A Tlautlauquitepec B Tlautlauquitepec B Teziutlán 20 Polytomy 48 1 19 39 21 N 97 15 00 W Cofre de Perote Vigas 21 Southeast 49 1 19 37 51 N 97 05 26 W 2985 IBH22334 Cofre de Perote Vigas 21 Polytomy 50 1 19 37 51 N 97 05 26 W 2985 IBH22272 Cofre de Perote Vigas 21 NE II 51 1 19 37 51 N 97 05 26 W 2995 IBH22408 Cofre de Perote Vigas 21 NE II 52 3 19 37 51 N 97 05 26 W 2995 IBH: 22450, 22415, 22384) Cofre de Perote Vigas 21 NE II 53 1 19 37 51 N 97 05 26 W 2985 IBH22253 Cofre de Perote Vigas 21 NE II 54 3 19 37 51 N 97 05 26 W 2995 IBH: 22403, 22411, 2240 Cofre de Perote Vigas 21 NE II 55 1 19 37 51 N 97 05 26 W 2985 IBH22257 Cofre de Perote Vigas 21 Polytomy 56 1 19 37 51 N 97 05 26 W 2985 IBH22263 Cofre de Perote Vigas 21 Polytomy 57 1 19 37 51 N 97 05 26 W 2985 IBH22329 Cofre de Perote Vigas 21 Polytomy 58 1 19 37 51 N 97 05 26 W 3100 IBH22407 Cofre de Perote Vigas 21 Polytomy 48 4 19 37 51 N 97 05 26 W 3100 IBH: 22421-22, 22449, 22443 Cofre de Perote Vigas 21 Polytomy 59 8 19 37 51 N 97 05 26 W 2985 Cofre de Perote Vigas 21 Polytomy 60 3 19 37 51 N 97 05 26 W 2985 IBH: 22252, 22273, 22258, 22268, 22265, 22262, 22269, 22270 IBH: 22260, 22264, 22254 Cofre de Perote Vigas 21 Polytomy 61 1 19 37 51 N 97 05 26 W 2985 IBH22255 Cofre de Perote González Ortega 22 Polytomy 62 3 19 21 2 N 97 14 49 W 3000 IBH22274, 22261, 22251 Cofre de Perote González Ortega 22 Polytomy 63 2 19 21 2 N 97 14 49 W 3000 IBH: 22266, 22259 Pico de Orizaba Texmalaquilla 23 Southeast 64 1 18 56 31 N 97 17 24 W 2925 IBH22316 Pico de Orizaba Texmalaquilla 23 Southeast 65 5 18 56 31 N 97 17 24 W 2925 IBH: 22380, 22381, 22382, 22390, 22327 Pico de Orizaba Texmalaquilla 23 Southeast 66 1 18 56 31 N 97 17 24 W 2925 IBH22372 Tlatlauquitepec Tlatlauquitepec Tlatlauquitepec Fo rP ee rR ev MVZ138396 iew Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 44 of 56 Pico de Orizaba Texmola 24 Southeast 65 1 18 56 08 N 97 14 40 W 2640 MVZ136959 Pico de Orizaba Xometla 25 Central 11 3 18 58 30 N 97 11 26 W 3100 IBH: 22452, 22401, 2239 Pico de Orizaba Xometla 25 Southeast 67 2 18 58 30 N 97 11 26 W 3100 IBH22414, 22402 Pico de Orizaba Xometla 25 Southeast 68 1 18 58 30 N 97 11 26 W 3100 IBH22388 Pico de Orizaba Xometla 25 Southeast 69 8 18 58 30 N 97 11 26 W 3100 Tres Mogotes Tres Mogotes 26 Tres Mogotes 70 2 18 39 28 N 97 29 24 W 2600 22400, 22285, 22280, 22287, 22278, 22292, GP242, GP262 IBH22295, LECHA3344 Fo rP ee rR ev iew Page 45 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Appendix S1 Pseudoeurycea leprosa samples included in this study. For each haplotype identified in our sample, we list the mountain range, and population of origin, the number of individuals with that haplotype (N), the clade to which it belongs, GPS coordinates/elevation where those individuals were collected, and the voucher specimens. The population ID numbers correspond to those in Figure 1. Voucher specimens acronims are as follows: IBH: Coleccion Nacional de Anfibios y Reptiles, Instituto de Biología, Universidad Nacional Autónoma de México [GP and JCW are unaccessioned specimens from IBH]; MVZ: Museum of Vertebrate Zoology, University of California, Berkeley; ENCB: Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional; MZFC: Museo de Zoología de la Facultad de Ciencias, UNAM [AMH, LECHA and ISZ are unaccessioned specimens from MZFC]. Mountain chain Population Fo rP Clade Nevado de Toluca Nevado de Toluca Pop ID 1 Nevado de Toluca Nevado de Toluca 1 Central Nevado de Toluca Nevado de Toluca Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces Sierra de las Cruces PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Central 1 Central Texcalyacac 2 Central Texcalyacac 2 Texcalyacac Haplo N 1 6 19 11 37 N 99 50 53 W Elev (m) 3310 2 1 19 11 37 N 99 50 53 W 3310 IBH2241 ee Latitude Longitude Voucher IBH: 22393-22395, 22391, 22310, 22312 3 1 19 11 37 N 3310 IBH22413 13 19 07 14 N 99 30 00 W 3091 Central 5 1 19 07 14 N 99 30 00 W 3091 IBH: 18199, 223119, 18201-18209, 18211, 22318 IBH18200 2 Central 6 rR 99 50 53 W 4 3 19 07 14 N 99 30 00 W 3091 IBH: 18210, 18214, 18212 Desierto de los Leones Ajusco 3 Central 7 5 19 16 00 N 99 18 02 W 3300 IBH22428, 22425, 22410, GP795, GP796 4 Central 8 8 19 10 58 N 99 18 00 W 3500 Santa Marta 5 Central 9 3 19 03 41 N 99 19 17 W 3110 IBH: 22459, 22424, 2247, 22418, 22442, 22404, 22439, 22399 IBH: 22438, 22461, 22462 Zempoala 6 Central 10 5 19 03 12 N 99 18 35 W 3200 IBH: 22392, 22419, 22453, 22427, 22458 Nanacamilpa 7 Central 11 1 19 28 49 N 98 35 46 W 2800 JCW051 Nanacamilpa 7 Central 12 1 19 28 49 N 98 35 46 W 2800 JCW053 Nanacamilpa 7 Central 13 1 19 28 49 N 98 35 46 W 2800 JCW058 Nanacamilpa 7 Central 14 2 19 28 49 N 98 35 46 W 2800 JCW054, JCW060 ev iew Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 46 of 56 PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Nanacamilpa 7 Central 15 2 19 28 49 N 98 35 46 W 2800 JCW052, JCW061 Río Frío 8 Central 16 1 19 21 58 N 98 41 41 W 3075 IBH22344 Río Frío 8 Central 17 23 19 21 58 N 98 41 41 W 3075 PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Río Frío PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Popocatepetl- 8 Central 18 1 19 21 58 N 98 41 41 W 3075 IBH: 22451, 22412, 22398, 22445, 22456, 22455, 22444, 22409, 22354, 22360, 22366, 22352, 22363, 22290, 22296, 22289. JCW386-392. ENCB17783 IBH 22426 8 Central 19 1 19 21 58 N 98 41 41 W 3075 IBH 22446 9 Central 17 3 19 20 20 N 98 43 14 W 3200 IBH 22293, 22283, 22279 Llano Grande 9 Central Llano Grande 9 Central Llano Grande 9 Central ee Llano Grande 9 Llano Grande Río Frío Llano Grande Fo rP 20 1 19 20 20 N 98 43 14 W 3200 ENCB17773 21 2 19 20 20 N 98 43 14 W 3200 ENCB17774, ENCB17775 22 2 19 20 20 N 98 43 14 W 3200 Central 23 2 19 20 20 N 98 43 14 W 3200 9 Central 24 1 19 20 20 N 98 43 14 W 3200 ENCB17779, ENCB17782 ENCB17777 ENCB17780 ENCB17772 Llano Grande 9 Central 25 1 19 20 20 N 98 43 14 W 3200 ENCB17781 Llano Grande 9 Central 26 1 19 20 20 N 98 43 14 W 3200 IBH22276 Atzompa 10 Central 11 25 19 10 50 N 98 33 35 W 3050 Atzompa 10 Central 20 1 19 10 50 N 98 33 35 W 3050 IBH: 22286, 22337, 22320-6, 22330, 22319, 22313-14, 22338-40, 22335, 22331-33, 22389, 22328, 22317, 22315, JCW404 22385 Atzompa 10 Central 27 1 19 10 50 N 98 33 35 W 3050 IBH22431 Atzompa 10 Central 28 5 19 10 50 N 98 33 35 W 3050 IBH: 22433, 22436, 2244, 22435, 22336 Atzompa 10 Central 29 3 19 10 50 N 98 33 35 W 3050 IBH: 22429, 22432, 22430 Atzompa 10 Central 30 1 19 10 50 N 98 33 35 W 3050 IBH22434 rR ev iew Page 47 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Iztaccihuatl PopocatepetlIztaccihuatl Calpán 11 Central 11 19 19 07 53 N 98 35 30 W 3100 PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl PopocatepetlIztaccihuatl Malinche Calpán 11 Central 31 1 19 07 53 N 98 35 30 W 3100 IBH: 22368, 18226-27, 18217-19, 18221-22 22361, 22358, 22356, 22362, 22367, 22364, 22357, JCW105-108 IBH18220 Calpán 11 Central 32 1 19 07 53 N 98 35 30 W 3100 JCW109 Calpán Fo 11 Central 33 1 19 07 53 N 98 35 30 W 3100 IBH18224 11 Central 34 1 19 07 53 N 98 35 30 W 3100 JCW104 11 Central 35 8 19 07 53 N 98 35 30 W 3100 Calpán 11 Central Popocatepetl 12 Central Popocatepetl 12 Central Popocatepetl 12 Popocatepetl Calpán Calpán rP 36 1 19 07 53 N 98 35 30 W 3100 IBH: 22386, 22365, 22347, 22346, 22351, 22351, 22359, 22342, 22348 IBH22343 11 1 19 04 22 N 3200 JCW405 36 9 19 04 22 N 98 42 42 W 3200 Central 37 rR 98 42 42 W 7 19 04 22 N 98 42 42 W 3200 12 Central 38 9 19 04 22 N 98 42 42 W 3200 Malinche West 13 Central 11 7 19 15 28 N 98 05 42 W Malinche West 13 Central 39 1 19 15 28 N 98 05 42 W Malinche Malinche North 14 Central 11 4 19 16 37 N 98 02 40 W Malinche Malinche North 14 Central 40 1 19 16 37 N 98 02 40 W Malinche Malinche South 15 Central 11 5 19 11 14 N 98 01 19 W Malinche Malinche South 15 Central 41 1 19 11 14 N 98 01 19 W Malinche Malinche East 16 Central 11 7 19 13 48 N 97 58 30 W Malinche Malinche East 16 Central 42 1 19 13 48 N 97 58 30 W 29503050 29503050 29503050 29503050 29503050 29503050 29503050 29503050 IBH: 22457, 22454, 22460, 22448, 22387, 22349, 22350, 22355. JCW345. IBH: 22423, 22437, 22406, 22463, 22288, 22291. JCW406 IBH: 22281-2, 22277, 22284, 22369, 22345, 22370, 22341. JCW343 IBH: 22376, 22383, 22317, 22378, 22375. JCW39, JCW32 IBH22374 ee ev iew IBH: 22308, 22300, 22306, 22297 IBH22308 IBH: 22377, 22379, 22353, 22396, 22416 IBH22373 IBH: 22303-5, 22298, 22307, 22299, 22301 IBH22302 Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 48 of 56 Tlaxco Tlaxco 17 NE I 43 1 19 41 45 N 98 04 33 W 2880 IBH22417 Tlatlauquitepec 18 NE II 44 1 19 42 47 N 97 32 24 W 2800 ISZ103 18 NE I 45 4 19 42 47 N 97 32 24 W 2800 IBH: 22275, 22271, AMH425, MZFC 20611 19 NE I 46 1 19 42 42 N 97 28 34 W 2800 JCW535 (IBH22267) 19 NE I 47 1 19 42 42 N 97 28 34 W 2800 JCW536 (IBH22256) Cofre de Perote Tlautlauquitepec A Tlautlauquitepec A Tlautlauquitepec B Tlautlauquitepec B Teziutlán 20 Polytomy 48 1 19 39 21 N 97 15 00 W Cofre de Perote Vigas 21 Southeast 49 1 19 37 51 N 97 05 26 W 2985 IBH22334 Cofre de Perote Vigas 21 Polytomy 50 1 19 37 51 N 97 05 26 W 2985 IBH22272 Cofre de Perote Vigas 21 NE II 51 1 19 37 51 N 97 05 26 W 2995 IBH22408 Cofre de Perote Vigas 21 NE II 52 3 19 37 51 N 97 05 26 W 2995 IBH: 22450, 22415, 22384) Cofre de Perote Vigas 21 NE II 53 1 19 37 51 N 97 05 26 W 2985 IBH22253 Cofre de Perote Vigas 21 NE II 54 3 19 37 51 N 97 05 26 W 2995 IBH: 22403, 22411, 2240 Cofre de Perote Vigas 21 NE II 55 1 19 37 51 N 97 05 26 W 2985 IBH22257 Cofre de Perote Vigas 21 Polytomy 56 1 19 37 51 N 97 05 26 W 2985 IBH22263 Cofre de Perote Vigas 21 Polytomy 57 1 19 37 51 N 97 05 26 W 2985 IBH22329 Cofre de Perote Vigas 21 Polytomy 58 1 19 37 51 N 97 05 26 W 3100 IBH22407 Cofre de Perote Vigas 21 Polytomy 48 4 19 37 51 N 97 05 26 W 3100 IBH: 22421-22, 22449, 22443 Cofre de Perote Vigas 21 Polytomy 59 8 19 37 51 N 97 05 26 W 2985 Cofre de Perote Vigas 21 Polytomy 60 3 19 37 51 N 97 05 26 W 2985 IBH: 22252, 22273, 22258, 22268, 22265, 22262, 22269, 22270 IBH: 22260, 22264, 22254 Cofre de Perote Vigas 21 Polytomy 61 1 19 37 51 N 97 05 26 W 2985 IBH22255 Cofre de Perote González Ortega 22 Polytomy 62 3 19 21 2 N 97 14 49 W 3000 IBH22274, 22261, 22251 Cofre de Perote González Ortega 22 Polytomy 63 2 19 21 2 N 97 14 49 W 3000 IBH: 22266, 22259 Pico de Orizaba Texmalaquilla 23 Southeast 64 1 18 56 31 N 97 17 24 W 2925 IBH22316 Pico de Orizaba Texmalaquilla 23 Southeast 65 5 18 56 31 N 97 17 24 W 2925 IBH: 22380, 22381, 22382, 22390, 22327 Pico de Orizaba Texmalaquilla 23 Southeast 66 1 18 56 31 N 97 17 24 W 2925 IBH22372 Tlatlauquitepec Tlatlauquitepec Tlatlauquitepec Fo rP ee rR ev MVZ138396 iew Page 49 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Pico de Orizaba Texmola 24 Southeast 65 1 18 56 08 N 97 14 40 W 2640 MVZ136959 Pico de Orizaba Xometla 25 Central 11 3 18 58 30 N 97 11 26 W 3100 IBH: 22452, 22401, 2239 Pico de Orizaba Xometla 25 Southeast 67 2 18 58 30 N 97 11 26 W 3100 IBH22414, 22402 Pico de Orizaba Xometla 25 Southeast 68 1 18 58 30 N 97 11 26 W 3100 IBH22388 Pico de Orizaba Xometla 25 Southeast 69 8 18 58 30 N 97 11 26 W 3100 Tres Mogotes Tres Mogotes 26 Tres Mogotes 70 2 18 39 28 N 97 29 24 W 2600 22400, 22285, 22280, 22287, 22278, 22292, GP242, GP262 IBH22295, LECHA3344 Fo rP ee rR ev iew Journal of Biogeography r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 50 of 56 Page 51 of 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Journal of Biogeography Appendix S2 Divergence time estimates for major nodes and coalescence times for differentiation among haplotypes within mitochondrial clades of Pseudoeurycea leprosa. Mean time estimate values and 95% confidence intervals were inferred using three coalescent models in BEAST; estimated ages are reported in millions of years. Nodes 1-9 and clade names correspond to those in Figure 2. Clade 1 2 3 4 5 6 7 8 Clade Name C C+SE C+SE+NEII C+SE+NEI+NEII+Tres Mogotes NEII NEI SE All P. leprosa Fo C=Central, SE=Southeast, NE=Northeast. rP Skyline 0.79 (0.25-1.55) 1.46 (0.43-2.91) 3.29 (1.08-6.42) ee Exponential 0.81 (0.31-1.5) 1.30 (0.49-2.59) 2.74 (0.98-5.04) 3.70 (1.3-7.1) 1.21 (0.33-2.46) 0.94 (0.21-2.02) 0.51 (0.14-1.07) 3.80 (1.4-7.38) rR 3.29 (1.33-5.95) 1.07 (0.33-2.09) 0.85 (0.20-1.71) 0.462 (0.09-0.96) 3.29 (1.33-5.95) ev Expansion 0.83 (0.31-1.52) 1.30 (0.49-2.54) 2.77 (0.97-4.8) 3.20 (1.2-5.8) 1.06 (0.34-2.01) 0.86 (0.21-1.69) 0.50 (0.13-1.0) 3.25 (1.3-5.8) iew Journal of Biogeography 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 52 of 56 Appendix S2 Divergence time estimates for major nodes and coalescence times for differentiation among haplotypes within mitochondrial clades of Pseudoeurycea leprosa. Mean time estimate values and 95% confidence intervals were inferred using three coalescent models in BEAST; estimated ages are reported in millions of years. Nodes 1-9 and clade names correspond to those in Figure 2. Clade 1 2 3 4 5 6 7 8 Clade Name C C+SE C+SE+NEII C+SE+NEI+NEII+Tres Mogotes NEII NEI SE All P. leprosa Fo C=Central, SE=Southeast, NE=Northeast. rP Skyline 0.79 (0.25-1.55) 1.46 (0.43-2.91) 3.29 (1.08-6.42) ee Exponential 0.81 (0.31-1.5) 1.30 (0.49-2.59) 2.74 (0.98-5.04) 3.70 (1.3-7.1) 1.21 (0.33-2.46) 0.94 (0.21-2.02) 0.51 (0.14-1.07) 3.80 (1.4-7.38) rR 3.29 (1.33-5.95) 1.07 (0.33-2.09) 0.85 (0.20-1.71) 0.462 (0.09-0.96) 3.29 (1.33-5.95) ev Expansion 0.83 (0.31-1.52) 1.30 (0.49-2.54) 2.77 (0.97-4.8) 3.20 (1.2-5.8) 1.06 (0.34-2.01) 0.86 (0.21-1.69) 0.50 (0.13-1.0) 3.25 (1.3-5.8) iew Page 53 of 56 r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography Appendix S3 Geographic measures between pairs of mountain ranges: A) straight Euclidean distances (km), B) Euclidean distances along least-cost paths (km), and C) the cumulative cost along least-cost paths. Tlaxco and Tres Mogotes samples are excluded from the IBD analyses because of low sample sizes for those two mountain ranges. Nevad o de Toluca A Nevado de Toluca de Toluca Orizab a Perot e 57.80 — 96.10 107.49 71.63 — 73.93 89.82 — 48.14 — — Nevad o de Toluca Sierra de las Cruce — 71.51 166.14 174.01 130.82 Popocatepetl -Iztaccihuatl Malinch e Orizab a Perot e Tlatlauquitepe c — 76.69 175.05 176.16 133.43 — 97.80 117.81 73.73 — 71.18 87.78 — 49.75 — — 55.88 — 126.24 198.11 294.41 297.30 254.50 72.14 144.32 244.77 243.93 202.69 ew 66.11 132.57 224.09 236.66 194.07 vi 119.65 190.15 282.02 294.71 248.89 Re Nevado de Toluca Sierra de las Cruces PopocatepetlIztaccihuatl Malinche Orizaba Perote Tlatlauquitepe c Malinch e Tlatlauquitepe c — er B Popocatepetl -Iztaccihuatl Pe Sierra de las Cruces PopocatepetlIztaccihuatl Malinche Orizaba Perote Tlatlauquitepe c Sierra de las Cruce s r Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 54 of 56 Page 55 of 56 C Nevado de Toluca Sierra de las Cruces PopocatepetlIztaccihuatl Malinche Orizaba Perote Tlatlauquitepe c Nevad o de Toluca Sierra de las Cruce s Popocatepetl -Iztaccihuatl Malinch e Orizab a Perot e Tlatlau quitepe c — 126 286 252 193 — 154 180 112 — 91 148 — 89 — — 68 — 165 297 456 430 371 111 227 392 355 282 r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Journal of Biogeography Journal of Biogeography r Fo er Pe ew vi Re 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 56 of 56