Download Condensed Phase Ethanol Conversion to Higher Alcohols Tyler L

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

3D optical data storage wikipedia , lookup

Vapor-compression refrigeration wikipedia , lookup

Liquid–liquid extraction wikipedia , lookup

Transition state theory wikipedia , lookup

SahysMod wikipedia , lookup

Thermodynamics wikipedia , lookup

Phase transition wikipedia , lookup

Azeotrope wikipedia , lookup

Chemical thermodynamics wikipedia , lookup

Chemical equilibrium wikipedia , lookup

Equilibrium chemistry wikipedia , lookup

Alcohol wikipedia , lookup

Determination of equilibrium constants wikipedia , lookup

Vapor–liquid equilibrium wikipedia , lookup

Ethanol wikipedia , lookup

Common ethanol fuel mixtures wikipedia , lookup

Transcript
Condensed Phase Ethanol Conversion to Higher Alcohols
Tyler L. Jordison, Carl T. Lira, and Dennis J. Miller
Department of Chemical Engineering and Materials Science
Michigan State University
Email: [email protected]
Phone: (517) 353-3928
Supporting Information
Figure S1. Experimental ethanol vapor pressure from the Parr 300ml reactor.1
A. Rationale for Choice of SR-Polar EOS
The Peng-Robinson-Wong-Sandler (PRWS), predictive Soave-Redlich-Kwong (PSRK),
and Schwartzentruber--Renon (SR-Polar) equations of state were chosen for initial model
screening. These equations of state are known for accurate prediction of vapor pressures because
they incorporate the acentric (ω) factor with the critical point (Tc, Pc).2 For the PRWS, three
alpha functions were tested: the standard PR alpha, Boston-Mathias, and Schwartzentruber. The
PRWS and PSRK equations of state had the lowest average error in prediction of vapor pressures
(2.1%) of the three EOS (Table S1). However, the Schwartzentruber-Renon- (SR)-Polar EOS
was chosen because it offers the advantage of a temperature dependent molar volume translation
parameter, while still giving excellent agreement of ethanol vapor pressure with experimental
data (Figure S2). The SR-Polar EOS is also recommended for highly non-ideal systems at high
temperatures and pressures. This is needed since predictions of liquid phase density for pure
components with an equation of state deviate from experimental data at the near critical region.2
Figure S2. Experimental ethanol vapor pressure data compared with vapor pressures predicted by the Peng
Robinson and SR Polar equations of state.3
Table S1. Error in vapor pressure calculated by PRWS, PSRK, and SR-Polar equations of state. PRWS-α1 denotes
standard PR, PRWS-α2 denotes Boston Mathias, and PRWS-α3 denotes Schwartszentruber.3
Ethanol
1-Butanol
1-Hexanol
Water
Average Abs % error
PRWS-α1
1.3
15.5
35.9
4.9
14.4
PRWS-α2
1.1
0.8
6.2
0.4
2.1
PRWS-α3
12.5
0.9
5.7
0.4
4.9
PSRK SR-Polar
0.9
0.9
1.0
0.8
5.9
7.2
0.4
0.5
2.1
2.4
B. Parameters for SR-Polar EOS and comparison with literature data
Table S2. Binary parameters for the ethanol Guerbet system
Binary
Ethanol/CO2*
Ethanol/1-Butanol
Ethanol/Water
1-Butanol/CO2
1-Butanol/Water
Ethanol/CH4*
Water/CO2
ka,ij0
-0.100
0.047
-0.004
0.078
0.131
-2.362
-0.261
ka,ij1
ka,ij2
lij0
lij2
-15.249
-33.871
-81.051
0.211 58.836
0.0047
0.0006
Abs. Avg. Err. % (T. range)
40.3 (304 K-453 K)
1.0 (323 K-403 K)
3.3 (298 K-473 K)
24.9 (313 K-430 K)
1.5 (323 K-403 K)
38.4 (398 K-498 K)
20.6 (383 K-523 K)
* The ethanol/CH4 and ethanol/CO2 binary parameters were adjusted to our experimental data. The avg. error % was
18% with fitted Aspen NIST data for ethanol/CH4, but increased to 38% with parameter adjustment. The avg. error
% was 6.5% with fitted Aspen NIST data for ethanol/CO2, but increased to 40% with parameter adjustment.
Table S3. Volume translation constants are listed for alcohols, water, methane, and CO2. The (*) indicates
translation constant was fit to binary with ethanol and not pure component data.3
Component
c0i (m3/kmol)
c1i (m3/kmol)
c2i (m3/kmol)
Avg. Abs Error (%)
Ethanol
1-Butanol
1-Hexanol
Water
Methane*
CO2*
7.00E-03
7.00E-03
1.10E-02
5.00E-03
-1.20E-01
-3.00E-02
2.50E-03
2.60E-03
3.00E-03
7.97E-04
4.50E-02
3.00E-03
3.8
0.6
0.8
1.5
Figure S3. Predicted phase equilibria for ethanol-CH4 is shown with the regressed, temperature dependent kaEtOH13
CH4 and with the kaEtOH-CH4 adjusted to fit our validation experiments.
Ref
4-6
7
8,9
10-12
7
13
14
Figure S4. SR-Polar translated density predictions are compared with experimental data.3, 13
C. Temperature Programmed Desorption Profiles for CO2 and NH3
Figure S5. TPD profiles are shown for NH3 and CO2. The dashed lines separate site strength zones (weak, medium,
strong).
D. Reaction Equilibria
Gas-phase equilibrium constants are shown in Table S4 for reactions taking place in the
ethanol Guerbet system. The equilibrium constant for ethanol dehydrogenation is 0.08 at 230oC, and
the equilibrium constant for the Tischenko reaction is 830.
Table S4. Gas phase enthalpies and free energies of formation (298 K) and equilibrium constants at 503 K1
Reaction
Ethanol → Acetaldehyde + H2
2 Ethanol → 1-Butanol + H2O
Ethanol + 1-Butanol → 1-Hexanol +H2O
2 Acetaldehyde → Ethyl Acetate
2 Ethanol → Diethyl Ether + H2O
2 Ethanol →3 CH4 + CO2
∆Hor
∆G°r
KeV
(kJ/mol) (kJ/mol)
(298K)
(298K)
(503K)
60.67
-49.39
-70.44
-112.09
-38.88
-163.26
34.71
-43.38
-45.08
-62.12
-13.89
-210.47
8.21E-02
2.21E+04
2.90E+04
8.28E+02
8.09E+00
2.46E+26
E. Flow diagram for SR-Polar EOS Application to Batch Reactions
Figure S6. Flowsheet for SR-Polar model application to reaction data.
F. Supplementary References
(1)
Yaws, C. L.: Yaws' Critical Property Data for Chemical Engineers and Chemists.
Knovel, 2012.
(2)
Elliot, J. R.; Lira, C. T.: Introductory Chemical Engineering Thermodynamics;
2nd ed.; Prentice Hall: Upper Saddle River, NJ, 2009.
(3)
Inc, A. T.: Aspen Properties 8.2. Burlington, MA, 2013.
(4)
Knez, Z.; Skerget, M.; Ilic, L.; Luetge, C.: Vapor-liquid equilibrium of binary
CO2-organic solvent systems (ethanol, tetrahydrofuran, ortho-xylene, meta-xylene, para-xylene).
Journal of Supercritical Fluids 2008, 43, 383-389.
(5)
Takishima, S.; Saiki, K.; Arai, K.; Saito, S. J.: Phase equilibria for the carbon
dioxide-ethanol-water system. Chem. Eng. Jpn. 1986, 19, 48.
(6)
Zhu, H. G.; Tian, Y. L.; Chen, L.; Feng, J. J.; Fu, H. F.: Studies on vapor-liquid
phase equilibria for SCF CO2+CH3OH and SCF CO2+C2H5OH systems. Chemical Journal of
Chinese Universities-Chinese 2002, 23, 1588-1591.
(7)
Kharin, S. E.; Perelygin, V. M.; Remizov, G. P. I.; Zaved., V. U.: Liquid-vapor
Phase Equilibriums in Ethanol-n-butanol and Water - n-butanol systems. Khim. Khim. Tekhnol.
1969, 12, 424-428.
(8)
Niesen, V.; Palavra, A.; Kidnay, A. J.; Yesavage, V. F.: An Apparatus for VaporLiquid-Equilbrium at Elevated-Temperatures and Pressures and Selected Results for the Water
Ethanol and Methanol Ethanol Systems. Fluid Phase Equilibria 1986, 31, 283-298.
(9)
Nikolskaya, A. V.; Khim., Z. F.: 1946, 20, 421.
(10) Elizalde-Solis, O.; Galicia-Luna, L. A.; Camacho-Camacho, L. E.: High-pressure
vapor-liquid equilibria for CO2 plus alkanol systems and densities of n-dodecane and ntridecane. Fluid Phase Equilibria 2007, 259, 23-32.
(11) Silva-Oliver, G.; Galicia-Luna, L. A.: Vapor–liquid equilibria near critical point
and critical points for the CO2+1-butanol and CO2+2-butanol systems at temperatures from 324
to 432 K. Fluid Phase Equilibria 2001, 182, 145-156.
(12) Yun, Z.; Shi, M.; Shi, J.: High Pressure Vapor-Liquid Phase Equilibrium for
Carbon Dioxide-n-butanol and Carbon Dioxide-i-Butanol. Ranliao Huaxue Xuebao 1996, 24(1),
87-92.
(13) Brunner, E.; Hultenschmidt, W.: Fluid Mixtures at High-Pressures .8. Isothermal
Phase-Equilibria in the Binary - Mixtures - (Ethanol+Hydrogen or Methane or Ethane). Journal
of Chemical Thermodynamics 1990, 22, 73-84.
(14) Takenouchi, S.; Kennedy, G. C.: The Binary System H2O-CO2 at High
Temperatures and Pressures. Am. J. Sci. 1964, 262, 1055-1074.