Download Performance, Cost and Amdahl`s Law

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Compliance and ethics program wikipedia , lookup

Transcript
Laboratorio de
Tecnologías de Información
Performance, Cost and
Amdahl’s Law
Arquitectura de Computadoras
Arturo Díaz Pérez
Centro de Investigación y de Estudios Avanzados del IPN
Laboratorio de Tecnologías de Información
[email protected]
Arquitectura de Computadoras
Performance- 1
Performance
Laboratorio de
Tecnologías de Información
♦ Purchasing perspective
■ given a collection of machines, which has the
» best performance ?
» least cost ?
» best performance / cost ?
♦ Design perspective
■ faced with design options, which has the
» best performance improvement ?
» least cost ?
» best performance / cost ?
♦ Both require
■ basis for comparison
■ metric for evaluation
♦ Our goal is to understand cost & performance implications of
architectural choices
Arquitectura de Computadoras
Performance- 2
Two notions of “performance”
Laboratorio de
Tecnologías de Información
Plane
DC to Paris
Speed
Passengers
Throughput
(pmph)
Boeing 747
6.5 hours
610 mph
470
286,700
Concorde
3 hours
1350 mph
132
178,200
Which has higher performance?
° Time to do the task (Execution Time)
– execution time, response time, latency
° Tasks per day, hour, week, sec, ns. .. (Performance)
– throughput, bandwidth
Response time and throughput often are in opposition
Arquitectura de Computadoras
Performance- 3
What is Performance ?
Laboratorio de
Tecnologías de Información
♦ KEY: A measure of Speed (Rate)
■ Car: miles driven per hour
■ Car wash: cars washed per day
■ Auto plant: cars built per year
♦ Two metrics:
■ Latency (response or execution time)
» time to start to finish of a task
■ Throughput (bandwidth)
» rate of task completion
= rate of task initiation
= 1 / (time between task completions)
♦ Deterministic vs. average
Arquitectura de Computadoras
Performance- 4
Definitions
Laboratorio de
Tecnologías de Información
♦ Performance is in units of things-per-second
■ bigger is better
♦ If we are primarily concerned with response time
■ performance(x) =
1
execution_time(x)
" X is n times faster than Y" means
Performance(X)
n
Arquitectura de Computadoras
=
---------------------Performance(Y)
Performance- 5
Example
Laboratorio de
Tecnologías de Información
♦ Time of Concorde vs. Boeing 747?
Concord is 1350 mph / 610 mph
= 2.2 times faster
= 6.5 hours / 3 hours
♦ Throughput of Concorde vs. Boeing 747 ?
Concord is 178,200 pmph / 286,700 pmph
Boeing is 286,700 pmph / 178,200 pmph
= 0.62 “times faster”
= 1.60 “times faster”
♦ Boeing is 1.6 times (“60%”) faster in terms of throughput
♦ Concord is 2.2 times (“120%”) faster in terms of flying
time
We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction throughput important!
Arquitectura de Computadoras
Performance- 6
Relative Performance
Laboratorio de
Tecnologías de Información
♦ Definition: X is n % faster than Y if
execution rateX execution timeY
n
=
= 1+
100
execution rateY execution timeX
♦ Example: X = 1 minute, Y = 2 minutes
2 minute
100
= 1+
1 minute
100
Thus, X is 100 % faster than Y
♦ Example: Car wash that starts one car per minute and
holds four cars.
■ Latency = four minutes per car
■ Throughput = one car per minute
■ Throughput > 1/Latency due to overlap
Arquitectura■
de Computadoras
Key idea: pipelining
Performance- 7
Basis of Evaluation
Cons
Pros
• representative
• portable
• widely used
• improvements
useful in reality
• easy to run, early in
design cycle
• identify peak
capability and
potential bottlenecks
Arquitectura de Computadoras
Laboratorio de
Tecnologías de Información
Actual Target Workload
• very specific
• non-portable
• difficult to run, or
measure
• hard to identify cause
Full Application Benchmarks
•less representative
Small “Kernel” Benchmarks
• easy to “fool”
Microbenchmarks
• “peak” may be a long
way from application
performance
Performance- 8
Metrics of performance
Laboratorio de
Tecnologías de Información
Answers per month
Application
Useful Operations per second
Programming
Language
Compiler
ISA
(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s
Datapath
Control
Megabytes per second
Function Units
Transistors Wires Pins
Cycles per second (clock rate)
Each metric has a place and a purpose, and each can be misused
Arquitectura de Computadoras
Performance- 9
Aspects of CPU Performance
CPU
CPUtime
time
== Seconds
Seconds
Program
Program
Laboratorio de
Tecnologías de Información
==Instructions
xx Seconds
Instructions xx Cycles
Cycles
Seconds
Program
Instruction
Cycle
Program
Instruction
Cycle
instr count
CPI
clock rate
Program
Compiler
Instr. Set
Organization
Technology
Arquitectura de Computadoras
Performance- 10
Aspects of CPU Performance
CPU
CPUtime
time
== Seconds
Seconds
Program
Program
Program
Laboratorio de
Tecnologías de Información
==Instructions
xx Seconds
Instructions xx Cycles
Cycles
Seconds
Program
Instruction
Cycle
Program
Instruction
Cycle
instr count
X
CPI
clock rate
Compiler
X
X
Instr. Set
X
X
X
X
X
Organization
Technology
Arquitectura de Computadoras
X
Performance- 11
CPI: “Average cycles per instruction”
Laboratorio de
Tecnologías de Información
♦ CPI
= Instruction Count / (CPU Time * Clock Rate)
= Instruction Count / Cycles
♦ CPU Time = Cycle Time *
♦ CPU Time =
n
∑ CPI i * I i
i =1
n
∑ CPI i * Fi
i =1
♦ where
Fi =
Ii
Instruction Count
♦ Invest resources where time is spent !
Arquitectura de Computadoras
Performance- 12
Controversial Example
CPU time =
Laboratorio de
Tecnologías de Información
Instruction
Cycles
Seconds
×
×
Program
Instruction
Cycle
♦ Some have argued:
■ CISC CPU Time = P x 8 x T = 8PT
■ RISC CPU Time = 2P x 2 x T = 4PT
■ RISC CPU Time = (CISC CPU Time)/2
♦ DISCLAIMER:
■ The truth is much, much more complex
Arquitectura de Computadoras
Performance- 13
Amdahl's Law
Speedup due to enhancement E:
ExTime w/o E
Speedup(E) = -------------------- =
ExTime w/ E
Laboratorio de
Tecnologías de Información
Performance w/ E
--------------------Performance w/o E
Suppose that enhancement E accelerates a fraction F of
the task
by a factor S and the remainder of the task is unaffected
then,
ExTime(with E) = ((1-F) + F/S) X ExTime(without E)
Speedup(with E) =
Arquitectura de Computadoras
1
(1-F) + F/S
Performance- 14
Amdahl’s Law
♦ Let
Laboratorio de
Tecnologías de Información
Speedup =
new rate old latency
=
old rate new latency
♦ Consider an enhancement x that speedups fraction fx of a
task by Sx
Speedupoverall =
=
old latency
new latency
[( 1 - f x ) + f x ] × old latency
( 1 − f x ) × old latency + (f x / S x ) × old latency
♦ Amdahl’s Law gives:
Arquitectura de Computadoras
Speedupoverall =
1
( 1 − f x ) + (f x / S x )
Performance- 15
Amdahl’s Law, cont.
Laboratorio de
Tecnologías de Información
♦ Example: fx = 95 % and Sx = 1.10
Speedup overall =
1
= 1.094
( 1 − 0.95 ) + ( 0.95 / 110
. )
♦ Example: fx = 5% and Sx = 10
Speedupoverall =
1
= 1.047
( 1 − 0.0.5 ) + ( 0.05 / 10 )
♦ Example: fx = 5% and Sx
Speedupoverall =
Arquitectura de Computadoras
→∞
1
= 1.052
( 1 − 0.05 ) + ( 0.05 / ∞ )
Performance- 16
Amdahl’s Law Corollary
Laboratorio de
Tecnologías de Información
Since Sx → ∞ implies
Speedup overall →
1
( 1 − f x ) + (f x / ∞ )
For real speedups:
Speedup overall <
1
(1 − f x )
Example:
Arquitectura de Computadoras
fx
1
(1 − f x )
1%
2%
5%
10 %
20 %
50 %
1.01
1.02
1.05
1.11
1.25
2.00
Performance- 17
Standard Example: Load/Store
Machine
Operation
ALU Ops
Loads
Stores
Branches
Frequency
43 %
21 %
12 %
24 %
Laboratorio de
Tecnologías de Información
Cycle Count
1
1
2
2
♦ Suppose we could make stores execute in 1 cycle, by slowing down
the cycle time by 15 %
■ Should we make this optimization ?
♦ Old CPI = 0.43 + 0.21 + (0.12 + 0.24)x2 = 1.36
♦ New CPI = 0.43 + 0.21 + 0.12 + 0.24x2 = 1.24
New CPU time P × New CPI × 115
. T
=
= 1.05
Old CPU time
P × Old CPI × T
♦ Conclusion: Don’t make the change
Arquitectura de Computadoras
Performance- 18
Example (RISC processor)
Base Machine (Reg / Reg)
Op
Freq Cycles CPI(i)
ALU
50%
1
.5
Load
20%
5
1.0
Store
10%
3
.3
Branch
20%
2
.4
2.2
Laboratorio de
Tecnologías de Información
% Time
23%
45%
14%
18%
Typical Mix
How much faster would the machine be if a better data cache
reduce the average load time to 2 cycles?
How does this compare with using branch prediction to shave a
cycle off the branch time?
What if two ALU instructions could be executed at once?
Arquitectura de Computadoras
Performance- 19
Evaluating Instruction Sets?
Laboratorio de
Tecnologías de Información
Design-time metrics:
° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?
Static Metrics:
° How many bytes does the program occupy in memory?
Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute the program?
CPI
° How many clocks are required per instruction?
° How "lean" a clock is practical?
Best Metric: Time to execute the program!
Inst. Count
Cycle Time
NOTE: this depends on instructions set, processor organization, and
techniques.
Arquitectura compilation
de Computadoras
Performance- 20
Corollary: Make The Common Case
Fast
Laboratorio de
Tecnologías de Información
♦ All instructions require an instruction fetch, only a fraction
require a data fetch/store.
⇒ Optimize instructions access over data access
♦ Programs exhibit locality
spatial locality
Arquitectura de Computadoras
temporal locality
Performance- 21
Corollary: Make The Common Case
Fast
Laboratorio de
Tecnologías de Información
♦ Access to small memories is faster
⇒ provide a storage hierarchy such that the most frequent accesses
are the smallest (closest) memories
Memory
Regs.
Disk/Tape
Cache
Arquitectura de Computadoras
Performance- 22
Marketing Metrics
Laboratorio de
Tecnologías de Información
♦ Clock Frequency
■ 3 Ghz better than 2 Ghz?
♦ Only relevant for comparing processors from the same family
■ The same architecture
■ The same ISA
♦ Machine with different instruction sets ?
■ Intel Pentium vs PowerPC
♦ Program with different instruction mixes ?
♦ Dynamic frequency of instructions
♦ Uncorrelated to performance
Arquitectura de Computadoras
Performance- 23
Marketing Metrics
Laboratorio de
Tecnologías de Información
♦ MIPS= instruction Count /Time * 106
= Clock Rate / CPI * 106
■
■
■
■
machine with different instruction sets ?
program with different instruction mixes ?
dynamic frequency of instruction
uncorrelated to performance
♦ MFLOPS = FP Operations / Time * 106
■ machine dependent
■ often not where time is spent
Arquitectura de Computadoras
Normalized:
add, sub, compare, mult
divide, sqrt
exp, sin, ...
1
4
8
Performance- 24
Normalized MFLOPS
Laboratorio de
Tecnologías de Información
♦ Not all machines implement the same FP
operations
■ Cray-1 does not implement Divide
■ Motorola 68882 does SQRT, SIN, and COS
♦ Not all FP operations are the same
■ ADD is much faster than Divide
♦ Normalized MFLOPS
■ Assign a “canonical number of FP operations” to a
program
Normalized MFLOPS =
Arquitectura de Computadoras
Canonical FP operations
time × 10 6
Performance- 25
Metrics of performance
Laboratorio de
Tecnologías de Información
Answers per month
Application
Useful Operations per second
Programming
Language
Compiler
ISA
(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s
Datapath
Control
Megabytes per second
Function Units
Transistors Wires Pins
Cycles per second (clock rate)
Each metric has a place and a purpose, and each can be misused
Arquitectura de Computadoras
Performance- 26
Benchmarks
Laboratorio de
Tecnologías de Información
♦ Real Programs
■ Representative of real workload
■ The only accurate way to characterize performance
■ e.g., gcc, spice, ...
♦ Kernels
■ “Representative” program fragments
■ Time critical excerpts of real programs.
■ e.g., Livermore loops
♦ Toy Benchmarks
■ 10-100 lines
■ e. g. Sieve, Puzzle, Towers
♦ Synthetic Benchmarks
■ attempt to match average frequencies of real workloads
■ e.g. Whetstone, dhrystone
Arquitectura de Computadoras
Performance- 27
Benchmarking
Laboratorio de
Tecnologías de Información
♦ Reproducible results
■ must control outside factors
♦ Important factors
■
■
■
■
■
■
■
■
■
Arquitectura de Computadoras
Program input
Version of program
Version of compiler
Optimization level
Version of operating system
Amount of memory
Number and type of disks
Version of CPU
Cache configuration
Performance- 28
Benchmarking: SPEC
Laboratorio de
Tecnologías de Información
♦ Limitations of de facto Benchmarks
♦ Dhrystone
■ Synthetic integer benchmark
■ Heavy string emphasis
■ Optimization compilers cause MAJOR
problems
♦ Whetsone
■ Synthetic floating-point benchmark
■ Designed to thwart optimization
♦ Linpack
■ Floating-point kernel
■ DAXPY() = A(I) = B(I) + C * D(I)
Arquitectura de Computadoras
Performance- 29
SPEC95
Laboratorio de
Tecnologías de Información
♦ Standard Performance Evaluation Corporation
♦ Eighteen application benchmarks (with inputs) reflecting a
technical computing workload
♦ Eight integer
■ go, m88ksim, gcc, compress, li, ijpeg, perl, vortex
♦ Ten floating-point intensive
■ tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fppp,
wave5
♦ Must run with standard compiler flags
■ eliminate special undocumented incantations that may not even
generate working code for real programs
Arquitectura de Computadoras
Performance- 30
Benchmarking: SPEC200
Integer
Gzip
Vpr
Gcc
Mcf
Crafty
Parser
Eon
Perlbmk
Gap
Vortex
Bzip2
Laboratorio de
Tecnologías de Información
Floating Point
Compression
FPGA circuit placement
and routing
C programming language
compiler
Combinatorial
optimization
Game playing: chess
Word processing
Computer visualization
Perl programming
language
Group theory
Object oriented database
Compression
Arquitectura de Computadoras
Wupwise
Swim
Mgrid
Applu
Mesa
Galgel
Art
Equaqke
Facerec
Ammp
Lucas
Fma3d
Sixtrack
Apsi
Physics: quantum chromadinamics
Shallow water modelling
Multigrid solver: 3D potential field
Partial differential equations
3D Graphics library
Computational fluid dynamics
Image recognition neural networks
Seismic wave propagation
simulation
Image processing: face
recognition
Computational chemistry
Number theory/primality testing
Finite-element crash simulation
Nuclear physics accelerator design
Meteorology: pollutant distribution
Performance- 31
Summarizing Results: A CounterExample
Laboratorio de
Tecnologías de Información
A car goes 30 MPH for the first then miles and 90 MPH for the
second ten miles. What the car’s average speed over the twenty
miles?
Wrong answer:
Avg Speed =
30 MPH + 90 MPH
= 60 MPH
2
Correct answer:
Avg Speed =
=
=
Arquitectura de Computadoras
total distance
total time
10 miles + 10 miles
(10 miles / 30 MPH) + (10 miles / 90 MPH)
20 miles
= 45 MPH
(1 / 3) hour + (1 / 9 ) hour
Performance- 32
Summarizing Results: Averages
Laboratorio de
Tecnologías de Información
Use the ARITHMETIC mean for times (cycles per instruction):
1 n
∑ timei
n i =1
Use the HARMONIC mean for rates (MIPS, MFLOPS):
⎛ 1 n 1 ⎞−1
⎜ ∑
⎟
⎝ n i =1 ratei ⎠
Use the GEOMETRIC mean for ratios (normalized numbers):
⎛ 1 n 1 ⎞1 / n
⎜ ∏
⎟
⎝ n i =1 ratei ⎠
Better yet: don’t average normalized numbers
Arquitectura de Computadoras
Performance- 33
Summarizing Results: A Measure of
Time
Laboratorio de
Tecnologías de Información
♦ Property 1:
A single-number performance measure for a set of
benchmarks expressed in units of time should be directly
proportional to the total (weighted) time consumed by the
benchmarks.
♦ Property 2:
A single-number performance measure for a set of
benchmarks expressed as a rate should be indirectly
proportional to the total (weighted) time consumed by the
benchmarks.
Arquitectura de Computadoras
Performance- 34
Summarizing Results: Which Mean ?
Laboratorio de
Tecnologías de Información
Ti = Execution time for Benchmark i
Fi = FP Operations for Benchmark i
Ri = Fi / Ti = Rate of Benchmark i
Average Time:
A − mean =
1 n
∑T
n i =1 i
A − mean =
1 n
∑R
n i =1 i
Average Rate:
Violates Property 2: Not proportional to inverse of time. Use Harmonic
mean:
⎛ 1 n 1 ⎞−1 ⎛ 1 n Fi ⎞−1
H − mean = ⎜ ∑ ⎟ = ⎜ ∑ ⎟
⎝ n i =1 Ri ⎠
⎝ n i =1 Ti ⎠
Arquitectura de Computadoras
Performance- 35
Homework 2
Laboratorio de
Tecnologías de Información
♦ Choose a program to evaluate performance of a PC
■ It can be for Linux or Windows
♦ Choose performance metrics for:
■ Speed of CPU
■ Speed of Main memory
■ Speed of graphics applications
■ Speed of hard disk
♦ Run performance program in two different computers
■ Your assigned PC at the lab
■ Your home computer
♦ Compare results for two computers and stand if one is faster than the
other according each metrics
♦ Three pages long report
■ Describe the performance program (one page)
■ Describe performance tests and metrics (one page)
■ Describe characteristics of both computers, compare results and make
conclusions (one page)
Arquitectura de Computadoras
Performance- 36
Homework 2
Computer A
Laboratorio de
Tecnologías de Información
Computer B
Comparison
CPU speed
Memory speed
Graphics speed
HD speed
Due date: September 19th, 2008.
Arquitectura de Computadoras
Performance- 37