Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Laboratorio de Tecnologías de Información Performance, Cost and Amdahl’s Law Arquitectura de Computadoras Arturo Díaz Pérez Centro de Investigación y de Estudios Avanzados del IPN Laboratorio de Tecnologías de Información [email protected] Arquitectura de Computadoras Performance- 1 Performance Laboratorio de Tecnologías de Información ♦ Purchasing perspective ■ given a collection of machines, which has the » best performance ? » least cost ? » best performance / cost ? ♦ Design perspective ■ faced with design options, which has the » best performance improvement ? » least cost ? » best performance / cost ? ♦ Both require ■ basis for comparison ■ metric for evaluation ♦ Our goal is to understand cost & performance implications of architectural choices Arquitectura de Computadoras Performance- 2 Two notions of “performance” Laboratorio de Tecnologías de Información Plane DC to Paris Speed Passengers Throughput (pmph) Boeing 747 6.5 hours 610 mph 470 286,700 Concorde 3 hours 1350 mph 132 178,200 Which has higher performance? ° Time to do the task (Execution Time) – execution time, response time, latency ° Tasks per day, hour, week, sec, ns. .. (Performance) – throughput, bandwidth Response time and throughput often are in opposition Arquitectura de Computadoras Performance- 3 What is Performance ? Laboratorio de Tecnologías de Información ♦ KEY: A measure of Speed (Rate) ■ Car: miles driven per hour ■ Car wash: cars washed per day ■ Auto plant: cars built per year ♦ Two metrics: ■ Latency (response or execution time) » time to start to finish of a task ■ Throughput (bandwidth) » rate of task completion = rate of task initiation = 1 / (time between task completions) ♦ Deterministic vs. average Arquitectura de Computadoras Performance- 4 Definitions Laboratorio de Tecnologías de Información ♦ Performance is in units of things-per-second ■ bigger is better ♦ If we are primarily concerned with response time ■ performance(x) = 1 execution_time(x) " X is n times faster than Y" means Performance(X) n Arquitectura de Computadoras = ---------------------Performance(Y) Performance- 5 Example Laboratorio de Tecnologías de Información ♦ Time of Concorde vs. Boeing 747? Concord is 1350 mph / 610 mph = 2.2 times faster = 6.5 hours / 3 hours ♦ Throughput of Concorde vs. Boeing 747 ? Concord is 178,200 pmph / 286,700 pmph Boeing is 286,700 pmph / 178,200 pmph = 0.62 “times faster” = 1.60 “times faster” ♦ Boeing is 1.6 times (“60%”) faster in terms of throughput ♦ Concord is 2.2 times (“120%”) faster in terms of flying time We will focus primarily on execution time for a single job Lots of instructions in a program => Instruction throughput important! Arquitectura de Computadoras Performance- 6 Relative Performance Laboratorio de Tecnologías de Información ♦ Definition: X is n % faster than Y if execution rateX execution timeY n = = 1+ 100 execution rateY execution timeX ♦ Example: X = 1 minute, Y = 2 minutes 2 minute 100 = 1+ 1 minute 100 Thus, X is 100 % faster than Y ♦ Example: Car wash that starts one car per minute and holds four cars. ■ Latency = four minutes per car ■ Throughput = one car per minute ■ Throughput > 1/Latency due to overlap Arquitectura■ de Computadoras Key idea: pipelining Performance- 7 Basis of Evaluation Cons Pros • representative • portable • widely used • improvements useful in reality • easy to run, early in design cycle • identify peak capability and potential bottlenecks Arquitectura de Computadoras Laboratorio de Tecnologías de Información Actual Target Workload • very specific • non-portable • difficult to run, or measure • hard to identify cause Full Application Benchmarks •less representative Small “Kernel” Benchmarks • easy to “fool” Microbenchmarks • “peak” may be a long way from application performance Performance- 8 Metrics of performance Laboratorio de Tecnologías de Información Answers per month Application Useful Operations per second Programming Language Compiler ISA (millions) of Instructions per second – MIPS (millions) of (F.P.) operations per second – MFLOP/s Datapath Control Megabytes per second Function Units Transistors Wires Pins Cycles per second (clock rate) Each metric has a place and a purpose, and each can be misused Arquitectura de Computadoras Performance- 9 Aspects of CPU Performance CPU CPUtime time == Seconds Seconds Program Program Laboratorio de Tecnologías de Información ==Instructions xx Seconds Instructions xx Cycles Cycles Seconds Program Instruction Cycle Program Instruction Cycle instr count CPI clock rate Program Compiler Instr. Set Organization Technology Arquitectura de Computadoras Performance- 10 Aspects of CPU Performance CPU CPUtime time == Seconds Seconds Program Program Program Laboratorio de Tecnologías de Información ==Instructions xx Seconds Instructions xx Cycles Cycles Seconds Program Instruction Cycle Program Instruction Cycle instr count X CPI clock rate Compiler X X Instr. Set X X X X X Organization Technology Arquitectura de Computadoras X Performance- 11 CPI: “Average cycles per instruction” Laboratorio de Tecnologías de Información ♦ CPI = Instruction Count / (CPU Time * Clock Rate) = Instruction Count / Cycles ♦ CPU Time = Cycle Time * ♦ CPU Time = n ∑ CPI i * I i i =1 n ∑ CPI i * Fi i =1 ♦ where Fi = Ii Instruction Count ♦ Invest resources where time is spent ! Arquitectura de Computadoras Performance- 12 Controversial Example CPU time = Laboratorio de Tecnologías de Información Instruction Cycles Seconds × × Program Instruction Cycle ♦ Some have argued: ■ CISC CPU Time = P x 8 x T = 8PT ■ RISC CPU Time = 2P x 2 x T = 4PT ■ RISC CPU Time = (CISC CPU Time)/2 ♦ DISCLAIMER: ■ The truth is much, much more complex Arquitectura de Computadoras Performance- 13 Amdahl's Law Speedup due to enhancement E: ExTime w/o E Speedup(E) = -------------------- = ExTime w/ E Laboratorio de Tecnologías de Información Performance w/ E --------------------Performance w/o E Suppose that enhancement E accelerates a fraction F of the task by a factor S and the remainder of the task is unaffected then, ExTime(with E) = ((1-F) + F/S) X ExTime(without E) Speedup(with E) = Arquitectura de Computadoras 1 (1-F) + F/S Performance- 14 Amdahl’s Law ♦ Let Laboratorio de Tecnologías de Información Speedup = new rate old latency = old rate new latency ♦ Consider an enhancement x that speedups fraction fx of a task by Sx Speedupoverall = = old latency new latency [( 1 - f x ) + f x ] × old latency ( 1 − f x ) × old latency + (f x / S x ) × old latency ♦ Amdahl’s Law gives: Arquitectura de Computadoras Speedupoverall = 1 ( 1 − f x ) + (f x / S x ) Performance- 15 Amdahl’s Law, cont. Laboratorio de Tecnologías de Información ♦ Example: fx = 95 % and Sx = 1.10 Speedup overall = 1 = 1.094 ( 1 − 0.95 ) + ( 0.95 / 110 . ) ♦ Example: fx = 5% and Sx = 10 Speedupoverall = 1 = 1.047 ( 1 − 0.0.5 ) + ( 0.05 / 10 ) ♦ Example: fx = 5% and Sx Speedupoverall = Arquitectura de Computadoras →∞ 1 = 1.052 ( 1 − 0.05 ) + ( 0.05 / ∞ ) Performance- 16 Amdahl’s Law Corollary Laboratorio de Tecnologías de Información Since Sx → ∞ implies Speedup overall → 1 ( 1 − f x ) + (f x / ∞ ) For real speedups: Speedup overall < 1 (1 − f x ) Example: Arquitectura de Computadoras fx 1 (1 − f x ) 1% 2% 5% 10 % 20 % 50 % 1.01 1.02 1.05 1.11 1.25 2.00 Performance- 17 Standard Example: Load/Store Machine Operation ALU Ops Loads Stores Branches Frequency 43 % 21 % 12 % 24 % Laboratorio de Tecnologías de Información Cycle Count 1 1 2 2 ♦ Suppose we could make stores execute in 1 cycle, by slowing down the cycle time by 15 % ■ Should we make this optimization ? ♦ Old CPI = 0.43 + 0.21 + (0.12 + 0.24)x2 = 1.36 ♦ New CPI = 0.43 + 0.21 + 0.12 + 0.24x2 = 1.24 New CPU time P × New CPI × 115 . T = = 1.05 Old CPU time P × Old CPI × T ♦ Conclusion: Don’t make the change Arquitectura de Computadoras Performance- 18 Example (RISC processor) Base Machine (Reg / Reg) Op Freq Cycles CPI(i) ALU 50% 1 .5 Load 20% 5 1.0 Store 10% 3 .3 Branch 20% 2 .4 2.2 Laboratorio de Tecnologías de Información % Time 23% 45% 14% 18% Typical Mix How much faster would the machine be if a better data cache reduce the average load time to 2 cycles? How does this compare with using branch prediction to shave a cycle off the branch time? What if two ALU instructions could be executed at once? Arquitectura de Computadoras Performance- 19 Evaluating Instruction Sets? Laboratorio de Tecnologías de Información Design-time metrics: ° Can it be implemented, in how long, at what cost? ° Can it be programmed? Ease of compilation? Static Metrics: ° How many bytes does the program occupy in memory? Dynamic Metrics: ° How many instructions are executed? ° How many bytes does the processor fetch to execute the program? CPI ° How many clocks are required per instruction? ° How "lean" a clock is practical? Best Metric: Time to execute the program! Inst. Count Cycle Time NOTE: this depends on instructions set, processor organization, and techniques. Arquitectura compilation de Computadoras Performance- 20 Corollary: Make The Common Case Fast Laboratorio de Tecnologías de Información ♦ All instructions require an instruction fetch, only a fraction require a data fetch/store. ⇒ Optimize instructions access over data access ♦ Programs exhibit locality spatial locality Arquitectura de Computadoras temporal locality Performance- 21 Corollary: Make The Common Case Fast Laboratorio de Tecnologías de Información ♦ Access to small memories is faster ⇒ provide a storage hierarchy such that the most frequent accesses are the smallest (closest) memories Memory Regs. Disk/Tape Cache Arquitectura de Computadoras Performance- 22 Marketing Metrics Laboratorio de Tecnologías de Información ♦ Clock Frequency ■ 3 Ghz better than 2 Ghz? ♦ Only relevant for comparing processors from the same family ■ The same architecture ■ The same ISA ♦ Machine with different instruction sets ? ■ Intel Pentium vs PowerPC ♦ Program with different instruction mixes ? ♦ Dynamic frequency of instructions ♦ Uncorrelated to performance Arquitectura de Computadoras Performance- 23 Marketing Metrics Laboratorio de Tecnologías de Información ♦ MIPS= instruction Count /Time * 106 = Clock Rate / CPI * 106 ■ ■ ■ ■ machine with different instruction sets ? program with different instruction mixes ? dynamic frequency of instruction uncorrelated to performance ♦ MFLOPS = FP Operations / Time * 106 ■ machine dependent ■ often not where time is spent Arquitectura de Computadoras Normalized: add, sub, compare, mult divide, sqrt exp, sin, ... 1 4 8 Performance- 24 Normalized MFLOPS Laboratorio de Tecnologías de Información ♦ Not all machines implement the same FP operations ■ Cray-1 does not implement Divide ■ Motorola 68882 does SQRT, SIN, and COS ♦ Not all FP operations are the same ■ ADD is much faster than Divide ♦ Normalized MFLOPS ■ Assign a “canonical number of FP operations” to a program Normalized MFLOPS = Arquitectura de Computadoras Canonical FP operations time × 10 6 Performance- 25 Metrics of performance Laboratorio de Tecnologías de Información Answers per month Application Useful Operations per second Programming Language Compiler ISA (millions) of Instructions per second – MIPS (millions) of (F.P.) operations per second – MFLOP/s Datapath Control Megabytes per second Function Units Transistors Wires Pins Cycles per second (clock rate) Each metric has a place and a purpose, and each can be misused Arquitectura de Computadoras Performance- 26 Benchmarks Laboratorio de Tecnologías de Información ♦ Real Programs ■ Representative of real workload ■ The only accurate way to characterize performance ■ e.g., gcc, spice, ... ♦ Kernels ■ “Representative” program fragments ■ Time critical excerpts of real programs. ■ e.g., Livermore loops ♦ Toy Benchmarks ■ 10-100 lines ■ e. g. Sieve, Puzzle, Towers ♦ Synthetic Benchmarks ■ attempt to match average frequencies of real workloads ■ e.g. Whetstone, dhrystone Arquitectura de Computadoras Performance- 27 Benchmarking Laboratorio de Tecnologías de Información ♦ Reproducible results ■ must control outside factors ♦ Important factors ■ ■ ■ ■ ■ ■ ■ ■ ■ Arquitectura de Computadoras Program input Version of program Version of compiler Optimization level Version of operating system Amount of memory Number and type of disks Version of CPU Cache configuration Performance- 28 Benchmarking: SPEC Laboratorio de Tecnologías de Información ♦ Limitations of de facto Benchmarks ♦ Dhrystone ■ Synthetic integer benchmark ■ Heavy string emphasis ■ Optimization compilers cause MAJOR problems ♦ Whetsone ■ Synthetic floating-point benchmark ■ Designed to thwart optimization ♦ Linpack ■ Floating-point kernel ■ DAXPY() = A(I) = B(I) + C * D(I) Arquitectura de Computadoras Performance- 29 SPEC95 Laboratorio de Tecnologías de Información ♦ Standard Performance Evaluation Corporation ♦ Eighteen application benchmarks (with inputs) reflecting a technical computing workload ♦ Eight integer ■ go, m88ksim, gcc, compress, li, ijpeg, perl, vortex ♦ Ten floating-point intensive ■ tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fppp, wave5 ♦ Must run with standard compiler flags ■ eliminate special undocumented incantations that may not even generate working code for real programs Arquitectura de Computadoras Performance- 30 Benchmarking: SPEC200 Integer Gzip Vpr Gcc Mcf Crafty Parser Eon Perlbmk Gap Vortex Bzip2 Laboratorio de Tecnologías de Información Floating Point Compression FPGA circuit placement and routing C programming language compiler Combinatorial optimization Game playing: chess Word processing Computer visualization Perl programming language Group theory Object oriented database Compression Arquitectura de Computadoras Wupwise Swim Mgrid Applu Mesa Galgel Art Equaqke Facerec Ammp Lucas Fma3d Sixtrack Apsi Physics: quantum chromadinamics Shallow water modelling Multigrid solver: 3D potential field Partial differential equations 3D Graphics library Computational fluid dynamics Image recognition neural networks Seismic wave propagation simulation Image processing: face recognition Computational chemistry Number theory/primality testing Finite-element crash simulation Nuclear physics accelerator design Meteorology: pollutant distribution Performance- 31 Summarizing Results: A CounterExample Laboratorio de Tecnologías de Información A car goes 30 MPH for the first then miles and 90 MPH for the second ten miles. What the car’s average speed over the twenty miles? Wrong answer: Avg Speed = 30 MPH + 90 MPH = 60 MPH 2 Correct answer: Avg Speed = = = Arquitectura de Computadoras total distance total time 10 miles + 10 miles (10 miles / 30 MPH) + (10 miles / 90 MPH) 20 miles = 45 MPH (1 / 3) hour + (1 / 9 ) hour Performance- 32 Summarizing Results: Averages Laboratorio de Tecnologías de Información Use the ARITHMETIC mean for times (cycles per instruction): 1 n ∑ timei n i =1 Use the HARMONIC mean for rates (MIPS, MFLOPS): ⎛ 1 n 1 ⎞−1 ⎜ ∑ ⎟ ⎝ n i =1 ratei ⎠ Use the GEOMETRIC mean for ratios (normalized numbers): ⎛ 1 n 1 ⎞1 / n ⎜ ∏ ⎟ ⎝ n i =1 ratei ⎠ Better yet: don’t average normalized numbers Arquitectura de Computadoras Performance- 33 Summarizing Results: A Measure of Time Laboratorio de Tecnologías de Información ♦ Property 1: A single-number performance measure for a set of benchmarks expressed in units of time should be directly proportional to the total (weighted) time consumed by the benchmarks. ♦ Property 2: A single-number performance measure for a set of benchmarks expressed as a rate should be indirectly proportional to the total (weighted) time consumed by the benchmarks. Arquitectura de Computadoras Performance- 34 Summarizing Results: Which Mean ? Laboratorio de Tecnologías de Información Ti = Execution time for Benchmark i Fi = FP Operations for Benchmark i Ri = Fi / Ti = Rate of Benchmark i Average Time: A − mean = 1 n ∑T n i =1 i A − mean = 1 n ∑R n i =1 i Average Rate: Violates Property 2: Not proportional to inverse of time. Use Harmonic mean: ⎛ 1 n 1 ⎞−1 ⎛ 1 n Fi ⎞−1 H − mean = ⎜ ∑ ⎟ = ⎜ ∑ ⎟ ⎝ n i =1 Ri ⎠ ⎝ n i =1 Ti ⎠ Arquitectura de Computadoras Performance- 35 Homework 2 Laboratorio de Tecnologías de Información ♦ Choose a program to evaluate performance of a PC ■ It can be for Linux or Windows ♦ Choose performance metrics for: ■ Speed of CPU ■ Speed of Main memory ■ Speed of graphics applications ■ Speed of hard disk ♦ Run performance program in two different computers ■ Your assigned PC at the lab ■ Your home computer ♦ Compare results for two computers and stand if one is faster than the other according each metrics ♦ Three pages long report ■ Describe the performance program (one page) ■ Describe performance tests and metrics (one page) ■ Describe characteristics of both computers, compare results and make conclusions (one page) Arquitectura de Computadoras Performance- 36 Homework 2 Computer A Laboratorio de Tecnologías de Información Computer B Comparison CPU speed Memory speed Graphics speed HD speed Due date: September 19th, 2008. Arquitectura de Computadoras Performance- 37