Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture 10 Ch26. Ohm’s Law University Physics: Waves and Electricity Dr.-Ing. Erwin Sitompul http://zitompul.wordpress.com Homework 8 A rectangular block of iron has dimensions 1.2 cm 1.2 cm 15 cm. The temperature of the surrounding air is 20°C. A potential difference is to be applied to the block between parallel sides. (a) What is the resistance of the block if the two parallel sides are the square ends (with dimensions 1.2 cm 1.2 cm)? (b) The temperature of the iron block increases up to 35°C due to the flowing current. What is the resistance of the block now? Erwin Sitompul University Physics: Wave and Electricity 10/2 Solution of Homework 8 15 1.2 cm) (a) A (1.2 cm)(1.2 2 1.44 cm 1.44 104 m2 L 15 cm 0.15 m iron 10 108 m L A (10 108 ) R iron (0.15) (1.44 104 ) 1.042 104 104.2 Erwin Sitompul (b) 5 103 (C)1 iron iron,0 1 iron (T T0 ) (10 108 ) 1 (5 103 )(35 20) (10 108 )(1.075) 10.75 108 m L A (10.75 108 ) R iron (0.15) (1.44 104 ) 1.120 104 112 University Physics: Wave and Electricity 10/3 Ohm’s Law As we just discussed, a resistor is a conductor with a specified resistance. It has that same resistance no matter what the magnitude and direction (polarity) of the applied potential difference are. Other conducting devices, however, might have resistance that change with the applied potential difference. First, we must define how to assign polarity to a terminal and how to describe current direction. • The terminal with higher potential is given a positive sign, while the terminal with lower potential is given a negative sign. • The current will flow from higher potential to lower potential. This is taken as direction of positive current. Erwin Sitompul University Physics: Wave and Electricity 10/4 Ohm’s Law The i-V plot of a 1000 Ω resistor is shown next. The slope of the line (i/V) is the same for all V. This means that the resistance of the device is independent of the magnitude and polarity of V. The i-V plot of a pn junction diode is shown next. The relation between i and V is not linear. The slope of the line (i/V) varies throughout V. This means that the resistance of the device depends on the magnitude and the polarity of V. Erwin Sitompul University Physics: Wave and Electricity 10/5 Ohm’s Law Ohm’s law: A conducting device obeys Ohm’s law when the resistance of the device is independent of the magnitude and polarity of the applied potential difference. Otherwise, it does not obey Ohm’s law. • Resistors obey the Ohm’s law. • Diodes do not obey the Ohm’s law. Erwin Sitompul University Physics: Wave and Electricity 10/6 Power in Electric Circuits The figure below shows a circuit consisting of a battery, connected by wires to an unspecified conducting device. The wires are assumed to have negligible resistance. The unspecified device might be a resistor, a rechargeable battery, a motor, or some other electrical device. The rate at which energy is transferred from the battery to the unspecified device is given by: • Rate of electrical energy transfer P Vi 1 watt 1 W 1 V A 1 volt ampere W Pt • Electrical energy transfer or electrical work 1 joule 1 J 1 W s 1 watt s ...kWh Erwin Sitompul University Physics: Wave and Electricity 10/7 Power in Electric Circuits The principle of conservation of energy tells us that the decrease in electric potential energy from a to b is accompanied by a transfer of energy to some other form. If the unspecified device is a motor, the energy is transferred as work done on the load. If the device is a rechargeable battery that is being charged, the energy is transferred to stored chemical energy in the storage battery. If the device is a resistor, the energy is transferred to internal thermal energy, tending to increase the resistor’s temperature. P i2 R Erwin Sitompul V2 P R • Resistive dissipation (energy lost) University Physics: Wave and Electricity 10/8 Checkpoint A potential difference V is connected across a device with resistance R, causing current i through the device. Rank the following variations according to the change in the rate at which electrical energy is converted to thermal energy due to the resistance, greatest change first: (a) V is doubled with R unchanged (b) i is doubled with R unchanged (c) R is doubled with V unchanged (a) and (b) tie, (d), (c) (d) R is doubled with i unchanged V2 2 P0 i R R (2V ) 2 V2 4 Pa 4P0 R R Pb (2i) 2 R 4i 2 R 4P0 V2 V2 0.5 Pc 0.5P0 R 2R Pd i 2 (2 R) 2i 2 R 2P0 Erwin Sitompul University Physics: Wave and Electricity 10/9 Example You are given a length of uniform heating wire made of a nickel-chromium-iron alloy called Nichrome. It has a resistance R of 72 Ω. At what rate is energy dissipated in each of the following situations? (1) A potential difference of 120 V is applied across the full length of the wire. (2) The wire is cut in half, and a potential difference of 120 V is applied across the length of each half. V 2 (120)2 200 W P1 R 72 • The power dissipated by the wire cut in half is four times the power dissipated by the 2 2 2 2 full wire. V V V (120) 800 W • Advantage: The heating time P2 1 1 4 4 R 2R R 72 reduced to one-fourth. 2 • Disadvantage: The current is doubled, may destroy the wire Erwin Sitompul University Physics: Wave and Electricity 10/10 Electricity Rates Daily electricity consumption of a household (tariff group R-2) • Air conditioner, 850 W, 8 hour 6.80 kWh • Lights, 8 x 25 W, 12 hours 2.40 kWh • Television, 180 W, 18 hours 3.24 kWh 12.44 kWh Rp11,000 Erwin Sitompul University Physics: Wave and Electricity 10/11 Lecture 10 Ch27. Circuit Theory University Physics: Waves and Electricity Dr.-Ing. Erwin Sitompul http://zitompul.wordpress.com Work, Energy, and Emf Charge carriers will only flow through a conductor if we establish a potential difference between its two ends. To produce a steady flow of charge, we need a “charge pump”, a device that maintains a potential difference between a pair of terminals by doing work and the charge carriers. Such a device is called an electromotive force device (emf device). Emf devices come in various kinds. All transform one source of energy into electrical energy. A common emf device is the battery, electric generator, solar cells, and fuel cells. Erwin Sitompul University Physics: Wave and Electricity 10/13 Work, Energy, and Emf b • The battery operates as a “pump” that moves positive charges from lower (–) to higher (+) electric potential. i – + a b a i Vb E iR Va Water Analogy Erwin Sitompul a b a University Physics: Wave and Electricity 10/14 Energy Transfers in the Circuit • A and B are two ideal rechargeable batteries, R is a resistance, and M is an electric motor that can lift an object. • EB > EA, so battery B determines the direction of current. • Battery B is charging battery A. It also provides energy to motor M and energy that is being dissipated by resistance R. Erwin Sitompul University Physics: Wave and Electricity 10/15 Single-Loop Circuit Circuit Loop Hiking Loop Suppose we start at any point in the circuit above and proceed in either direction. As we move, we add algebraically the potential differences that we encounter. When we return to our starting point, we must also have returned to our starting potential. Loop Rule The algebraic sum of the changes in potential encountered in a complete path of any loop of a circuit must be zero. Erwin Sitompul University Physics: Wave and Electricity 10/16 Single-Loop Circuit Resistance Rule For a move through a resistance in the direction of the current, the change in potential is –iR (downhill); in the opposite direction +iR (uphill) Emf Rule For a move through an ideal emf device in the direction of the emf arrow, the change in potential is +E; in the opposite direction –E. • Clockwise move, starting from a E iR 0 • Counterclockwise move, starting from a iR E 0 Erwin Sitompul University Physics: Wave and Electricity 10/17 Checkpoint The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of negligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? Rightward, the same as the direction of current E At points a, b, and c, rank (greatest first): (b) The magnitude of the current All the same (c) The electric potential b, then a and c tie Erwin Sitompul University Physics: Wave and Electricity 10/18 Ideal and Real Battery The figure below left shows a real battery, with internal resistance r, wired to an external resistor of resistance R. The internal resistance r of the battery is the electrical resistance of the materials that build the battery and thus unremovable. If we apply the loop rule clockwise beginning at point a, the changes in potential give us: E • For ideal battery, r = 0 E ir iR 0 i • In ideal battery, there is no Rr potential drop across the battery Erwin Sitompul University Physics: Wave and Electricity 10/19 Resistance in Series and in Parallel Req R1 R2 R3 n Req Ri i 1 Resistance in Series 1 1 1 1 Req R1 R2 R3 n 1 1 Req i 1 Ri Resistance in Parallel Erwin Sitompul University Physics: Wave and Electricity 10/20 Checkpoint Consider a circuit with an ideal battery and four identical light bulbs connected a shown in the figure. Initially, the switch S is open. Then, the switch is closed. What happens to light bulb A? • S open Req RA RB RD 3R E E E 0.333 iopen R Req 3R • S closed • The lamps have identical resistance of R • P = Vi = i2R (brightness) Req RA RB RC RD 2 12 R E E E iclosed 1 0.4 R Req 2 2 R iA,closed > iA,open Light bulb A becomes brighter when S is closed. Erwin Sitompul University Physics: Wave and Electricity 10/21 Potential Difference Between Two Points To find the potential between any two points in a circuit, we start at one point and go through the circuit to the other point, following any path. Along the way, the changes in potential we encounter must be added algebraically. The voltage difference is independent of the path chosen. Req R1 R2 R3 10 5 9 24 12 E 0.5 A i Req 24 Erwin Sitompul University Physics: Wave and Electricity 10/22 Potential Difference Between Two Points 0.5 A • Clockwise cw • Counterclockwise ccw • a b, cw Va 12 Vb Va Vb 12 Vab 12 V • a b, ccw • b d, cw Vb iR1 iR2 Vd Vb Vd i( R1 R2 ) Vb Vd 0.5(10 5) Vbd 7.5 V Erwin Sitompul • b d, ccw Va iR3 iR2 iR1 Vb Va Vb iR3 iR2 iR1 Va Vb 0.5(9 5 10) Vab 12 V Vb E iR3 Vd Vb Vd E iR3 Vb Vd 12 (0.5)(9) Vbd 7.5 V University Physics: Wave and Electricity 10/23 Potential Difference Across a Battery The value given to E indicates the difference between the positive terminal and negative term of a battery. E1 6 V + – b a Va Vb 6 V ≡ Vb Va 8 V ≡ E2 8 V – + a b E 3 2 V + – a Erwin Sitompul Va Vb 2 V b Vb Va 2 V University Physics: Wave and Electricity 10/24 Ammeter and Voltmeter An instrument used to measure current is called an ammeter. It should be connected serially, means the current to be measured must pass through the meter. An instrument used to measure potential difference is called a voltmeter. To find the potential difference between any two points, the voltmeter should be connected in parallel, means the voltmeter terminals are connected between those points. Erwin Sitompul University Physics: Wave and Electricity 10/25 Homework 9 (a) Find the equivalent resistance between points a and b in the circuit diagram below. (b) Calculate the current in each resistor if a potential difference of 34 V is applied between points a and b. Erwin Sitompul University Physics: Wave and Electricity 10/26 Homework 9 New A circuit containing five resistors connected to a battery with a 12 V emf is shown below. (a) What is the potential difference across the 5 Ω resistor? (b) What is the current flowing through the 12 Ω resistor? Erwin Sitompul University Physics: Wave and Electricity 10/27