Download File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of logarithms wikipedia , lookup

Positional notation wikipedia , lookup

Arithmetic wikipedia , lookup

Approximations of π wikipedia , lookup

Elementary mathematics wikipedia , lookup

Transcript
www.maxpapers.com
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education Advanced Subsidiary Level
9709/02
MATHEMATICS
Paper 2 Pure Mathematics 2 (P2)
May/June 2009
1 hour 15 minutes
*2961276321*
Additional Materials:
Answer Booklet/Paper
Graph Paper
List of Formulae (MF9)
READ THESE INSTRUCTIONS FIRST
If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in
degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 50.
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger
numbers of marks later in the paper.
This document consists of 3 printed pages and 1 blank page.
© UCLES 2009
[Turn over
www.maxpapers.com
2
1
Given that (1.25)x = (2.5)y , use logarithms to find the value of
2
Solve the inequality |3x + 2| < | x |.
x
correct to 3 significant figures. [3]
y
[4]
3
y
1
O
1
The diagram shows the curve y =
2
x
1
√ for values of x from 0 to 2.
1+ x
(i) Use the trapezium rule with two intervals to estimate the value of
ä
2
0
1
√ dx,
1+ x
giving your answer correct to 2 decimal places.
[3]
(ii) State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of
the true value of the integral in part (i).
[1]
4
The parametric equations of a curve are
where − 12 π < θ < 12 π . Express
5
6
x = 4 sin θ ,
y = 3 − 2 cos 2θ ,
dy
in terms of θ , simplifying your answer as far as possible.
dx
Solve the equation sec x = 4 − 2 tan2 x, giving all solutions in the interval 0◦ ≤ x ≤ 180◦ .
[5]
[6]
The polynomial x3 + ax2 + bx + 6, where a and b are constants, is denoted by p(x). It is given that
(x − 2) is a factor of p(x), and that when p(x) is divided by (x − 1) the remainder is 4.
(i) Find the values of a and b.
[5]
(ii) When a and b have these values, find the other two linear factors of p(x).
[3]
© UCLES 2009
9709/02/M/J/09
www.maxpapers.com
3
7
y
O
x
M
The diagram shows the curve y = xe2x and its minimum point M .
(i) Find the exact coordinates of M .
[5]
(ii) Show that the curve intersects the line y = 20 at the point whose x-coordinate is the root of the
equation
20
x = 12 ln .
[1]
x
(iii) Use the iterative formula
xn+1 = 12 ln
20
,
xn
with initial value x1 = 1.3, to calculate the root correct to 2 decimal places, giving the result of
each iteration to 4 decimal places.
[3]
8
(a) Find the equation of the tangent to the curve y = ln(3x − 2) at the point where x = 1.
(b)
(i) Find the value of the constant A such that
6x
A
≡2+
.
3x − 2
3x − 2
(ii) Hence show that ä
© UCLES 2009
[4]
6
2
6x
dx = 8 + 83 ln 2.
3x − 2
9709/02/M/J/09
[2]
[5]
www.maxpapers.com
4
BLANK PAGE
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.
University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of
Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
9709/02/M/J/09