Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The human genome and the chromosomal basis of heredity • The genome • The chromosome Mitosis Meiosis • 3D Thierry Voet ([email protected]) Grown body = 100 trillion somatic cells DNA: *46 chromosomes • linear • ~3.1 x 109 bp : autosomes + X + Y • … genes? *Mitochondrial DNA • circular • 16.6 x 103 bp • 37 genes Number mtDNA-copies is cell type dependent + Only maternal inheritance ! Transposons • Retrotransposons (copy-and-paste) 20% 4.6% 4% 3% • Transposons (cut-and-paste | inactive) Model of L1- / Aluretrotransposition TPRT: Target-site primed reverse transcription Integration in TTTT|A (preference for AT-rich regions) 1/100 are full lengths (genome-wide average = 900bp) 80-100 full-lengths L1 (n=6000) not active Gene mutation for L1-insertion LINE-1 products used for retrotransposition of SINEs, mRNAs (-> processed pseudogenen) and retrogenes Processed pseudogenes: defect copy of a gene consisting only of exons (no introns, no promoter sequences) retrotransposition Retrogene: integration of cDNA at a promoter + selection Testis-specific expression of intron-less retrogenes (copies of genes from the X-chr) Basic unit of a chromosome ? DNA is not naked in the cell (nucleosome) Linker DNA (10 bp – 60 bp) DNA is not naked in the cell basic unit of chromosomes = nucleosome Linker DNA (10 bp – 60 bp) DNA is not naked in the cell H1 basic unit of chromosomes = nucleosome Linker DNA (10 bp – 60 bp) DNA is not naked in the cell H1 basic unit of chromosomes = nucleosome Linker DNA (10 bp – 60 bp) DNA is not naked in the cell H1 basic unit of chromosomes = nucleosome Linker DNA (10 bp – 60 bp) Chromatin (structural) modifications play key roles in DNA-related processes A. Histone modifications: Chromatin modifications are important for DNA-related 1. Histone-modifying enzymes (N/C-tail posttranslational modification) processes: -DNA-transcription (gene expression/repression) Histone code -DNA-repair -DNA-replication -DNA-compaction -chromosome segregation… 2. ATP-dependent chromatin-remodelling enzymes 3. Histone-variants B. DNA modification: DNA CpG methylation Chromosomes ensure transport and integrity of genetic information Sister chromatids Kinetochore Microtubules Functional domains Origins of replication - replication of the genetic information once per cell cycle Telomeres - protect against degradation, fusion and recombination - complete end replication - chromosome movements - subtelomeric gene expression Centromere - correct segregation (capture microtubules) - chromosome movements (1) Centromere A B Constitutive proteins are permanently associated with the centromere even during interphase, whereas facultative proteins are recruited only during mitosis to assemble the full kinetochore. Centromeric DNA: Alpha-satellite or alphoid DNA at normal human chromosomes Centromeric DNA: Alpha-satellite or alphoid DNA at normal human chromosomes Centromeric DNA: Alpha-satellite or alphoid DNA at normal human chromosomes One alphoid higher order repeat can be : - specific for one chromomosome - occurring on different chromosomes Different alphoid higher order repeats can be co-existing on the same chromosome Alpha-satellite DNA is not sufficient nor necessary for centromere function A. Pseudo-di-centric chromosomes B. Neo-centromeres without alpha-satellite DNA Centromere function is epigenetically regulated Centromere DNA elements Histone H3 variant CENP-A is the best candidate to carry the epigenetic centromere mark Localised centromeres Diffuse centromeres FEBS Letters 582 (2008) 1950–1959 CENP-A is found at active centromeres Current Opinion in Cell Biology 2008, 20:91–100 Achieving ordered chromatin structure at the centromere Current Opinion in Cell Biology 2008, 20:91–100 Molecular players of functional centromeres Chromosomes ensure transport and integrity of genetic information Sister chromatids Kinetochore Microtubules Functional domains Origins of replication - replication of the genetic information once per cell cycle Telomeres - protect against degradation, fusion and recombination - complete end replication - chromosome movements - subtelomeric gene expression Centromere - correct segregation (capture microtubules) - chromosome movements Nucleoprotein complex: (TTAGGG)2500 + shelterin TRF1 TRF2 Rap1 TIN2 TPP1 POT1 Telomeric Repeat-Binding Factor 1 Telomeric Repeat-Binding Factor 2 Telomeric Repeat Binding Factor 2, Interacting Protein TRF1-Interacting Nuclear Factor 2 TIN2 And POT1-Interacting Protein Protection Of Telomeres 1 Nucleoprotein complex: (TTAGGG)2500 + shelterin Chromosomes ensure transport and integrity of genetic information Sister chromatids Kinetochore Microtubules Functional domains Origins of replication - replication of the genetic information once per cell cycle Telomeres - protect against degradation, fusion and recombination - complete end replication - chromosome movements - subtelomeric gene expression Centromere - correct segregation (capture microtubules) - chromosome movements Origins of DNA-replication ORC (multiprotein origin of replication complex) Chromosomal segregation during mitosis Haploid cell: • n (# different chrs = 23; chromosome set) • C (DNA-content) = ~ 3.5 pg Diploid cell: • 2n • 2C Nulliploid cells / Polyploid cells interfaze Metaphase Prometaphase Anaphase Telophase Prophase Cytokinesis Interphase DNA tubulin Metaphase Prometaphase Anaphase Telophase Prophase Cytokinesis Interphase Metaphase Prometaphase Anaphase Telophase Prophase Cytokinesis Interphase Foutieve vasthechting van microtubuli aan kinetochoren komt tijdens de prometafase meer voor, maar moet geremedieerd worden alvorens anafase start Molecular glue between replicated DNA = cohesin complex Prophase Sister chromatids of a chromosome ‘molecular glue’ between replicated DNA-molecules (sister chromatids) Smc1: Structural maintenance of chromosomes protein 1 Smc3: Structural maintenance of chromosomes protein 3 Scc1: Sister chromatid cohesion protein 1 Scc3: Sister chromatid cohesion protein 3 Loss of sister chromatid cohesion during mitosis Prophase Metaphase ‘prophase cycle’ Sister chromatids of a chromosome Primary constriction ‘molecular glue’ between replicated DNA-molecules (sister chromatids) Smc1: Structural maintenance of chromosomes protein 1 Smc3: Structural maintenance of chromosomes protein 3 Scc1: Sister chromatid cohesion protein 1 Scc3: Sister chromatid cohesion protein 3 Prometaphase Metaphase Loss of sister chromatid cohesion during mitosis Prophase Metaphase ‘prophase cycle’ Sister chromatids of a chromosome Primary constriction ‘molecular glue’ between replicated DNA-molecules (sister chromatids) Smc1: Structural maintenance of chromosomes protein 1 Smc3: Structural maintenance of chromosomes protein 3 Scc1: Sister chromatid cohesion protein 1 Scc3: Sister chromatid cohesion protein 3 Loss of sister chromatid cohesion during mitosis Prophase Metaphase ‘prophase cycle’ Anaphase ‘separase’ ‘point of no return’ ‘molecular glue’ between replicated DNA-molecules (sister chromatids) Smc1: Structural maintenance of chromosomes protein 1 Smc3: Structural maintenance of chromosomes protein 3 Scc1: Sister chromatid cohesion protein 1 Scc3: Sister chromatid cohesion protein 3 Loss of sister chromatid cohesion during mitosis Pro(meta)phase Metaphase Cohesin complex Metaphase Anaphase Loss of sister chromatid cohesion during mitosis Pro(meta)phase Metaphase Metaphase Anaphase Loss of sister chromatid cohesion during mitosis Pro(meta)phase Metaphase Metaphase Anaphase Physical dislocation of Sgo-PP2A allows phosphorylation and separase-mediated cleavage of centromeric cohesin Chromosomal segregation during meiosis Meiosis: ‘to reduce’ Diploid somatic cell (2n) Chromosomes replicated once meiosis I: reductional division - separation of homologous autosomes - separation of sex chromosomes meiosis II: equational division Haploid gametes 4 x (n) separation of sister chromatids (~mitosis) Meiosis: ‘to reduce’ Diploid somatic cell (2n) Chromosomes replicated once Crossovers -> genetic diversity -> correct homologue segregation meiosis I: reductional division - separation of homologous autosomes - separation of sex chromosomes meiosis II: equational division Haploid gametes 4 x (n) separation of sister chromatids (~mitosis) Meiosis: ‘to reduce’ Diploid somatic cell (2n) Chromosomes replicated once Crossovers -> genetic diversity -> correct homologue segregation meiosis I: reductional division - separation of homologous autosomes - separation of sex chromosomes Random assortment: 223 = 8388608 meiosis II: equational division Haploid gametes 4 x (n) separation of sister chromatids (~mitosis) Tijdens profase I van meiose I worden chiasmata (genetische crossovers) gevormd. Profase I duurt bijgevolg lang en kan in verschillende stadia worden ingedeeld afhankelijk van de ‘nucleus architectuur’: homologe chromosomen aligneren, paren, gaan in synapsis en recombineren. Het DNA wordt hiertoe ondermeer opzettelijk beschadigd tijdens leptonema. De chromosomen zullen eveneens condenseren. 1.Leptonema 2.Zygonema 3.Pachynema 4.Diplonema SC DSB Genetic crossover 5.Diakinesis Bouquet formation DSB Tijdens leptonema van profase I zullen meiotische cellen opzettelijk hun DNA beschadigen (creatie van dubbelstrengige DNA-breuken (DSB)) door middel van het SPO11 proteïne. De breuken zullen bij voorkeur hersteld worden door een intacte DNA-matrijs te gebruiken van het homoloog chromosoom. Sister chromatids of the maternal homologue Meiotic cohesin complex (SMC1β / SMC3 / REC8 / STAG3 SMC1α / SMC3 / REC8 / STAG3 SMC1β / SMC3 / RAD21 / SA1/2) DSB SPO11 Tijdens leptonema van profase I zullen meiotische cellen opzettelijk hun DNA beschadigen (creatie van dubbelstrengige DNA-breuken (DSB)) door middel van het SPO11 proteïne. De breuken zullen bij voorkeur hersteld worden door een intacte DNA-matrijs te gebruiken van het homoloog chromosoom. Sister chromatids of the maternal homologue Meiotic cohesin complex (SMC1β / SMC3 / REC8 / STAG3 SMC1α / SMC3 / REC8 / STAG3 SMC1β / SMC3 / RAD21 / SA1/2) DSB SPO11 meiosis Sister chromatids of the paternal homologue Homologous Recombination (generation of genetic crossovers) Spo11 RPA Rad51 Dmc1 Maternal chromatid Szostak model Paternal chromatid Recombination nodules Mlh1 Mlh3 Crossover ± Gene conversion >200 DSBs are generated <-> ~1 crossover per chromosome arm (~ sex) Homologous Recombination (non-crossovers) Spo11 Maternal chromatid Paternal chromatid Gene conversion Synthesis-dependent strand annealing Majority of >200 DSBs is repaired as a non-crossover Tussen leptonema en pachynema zullen deze dubbelstrengige breuken hersteld worden als crossovers en non-crossovers. De homologe chromosomen zullen hiertoe aligneren, paren en in synapsis gaan (vorming van synaptonemal complex tussen homologe chromosomen). Sister chromatids of the maternal homologue Synaptonemal complex Sister chromatids of the paternal homologue Meiotic cohesin complex (SMC1β / SMC3 / REC8 / STAG3 SMC1α / SMC3 / REC8 / STAG3 SMC1β / SMC3 / RAD21 / SA1/2) DSB SPO11 meiosis Axial/lateral element (SCP2 / SCP3) Transverse filaments (SCP1) Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (γH2AX (marker for DSB)– SCP3 - DNA staining) Leptonema Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Rad51 – SCP3 - DNA staining) Early leptonema Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Rad51 – SCP3 - DNA staining) Late leptonema - Early zygonema Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Rad51 – SCP3 - DNA staining) Late zygonema Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Rad51 – SCP3 - DNA staining) Early-Pachynema Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Mlh1 (merker voor genetische crossover) – SCP3 - DNA staining) Mid-Pachynema Cross-over interference h.PAR: 2.6Mb Xp/Yp 0.32Mb Xq/Yq Analysis of prophase I : DSB formation and repair process / Homologue pairing and synapsis (Rad51 – SCP3 - DNA staining) Diplonema Analysis of metaphase I : 20 bivalents in normal mouse meiosis (FISH Y – X – DNA staining) Chiasmata Homologous Recombination (generation of genetic crossovers) Spo11 RPA Rad51 Dmc1 Maternal chromatid Szostak model Paternal chromatid Mlh1 Mlh3 Crossover ± Gene conversion Homologous Recombination (generation of genetic crossovers) Maternal chromatid Maternal chromatid Replicated maternal homologue Szostak model Paternal chromatid Paternal chromatid Replicated paternal homologue Crossover ± Gene conversion Profase Premeiotische S-fase First meiotic division separase Cohesin rings at the chromosomal arms are opened, but remain intact at the centromeres Second meiotic division separase Cohesin rings at centromeres are opened Physical dislocation of Sgo-PP2A allows phosphorylation and separase-mediated cleavage of centromeric cohesin Differences between spermatogenesis and oogenesis Mitosis DNAsynthesis Meiosis I Meiosis II Continuous from puberty till death. 4 spermatids per primary spermatocyte. Discontinuous from fetal life till menopause. 1 definitive oocyte per primary oocyte possible. More genetic crossovers. Less “strict”. Recombination is not random across chromosomes and differs according to sex Physical map Genetic map Sex-averaged recombination rate: 1.22cM per Mb (0.88cM / Mb in male // 1.55 cM / Mb in female) <> PAR The human genome and the chromosomal basis of heredity • The genome • The chromosome Mitosis Meiosis • 3D Thierry Voet ([email protected]) Individual chromosomes occupy distinct chromosome territories in the interphase nucleus DAPI 18 19 Positioning of chromosomes in the nucleus is not exact, but also not random (centromeres in the G1-phase nucleus at the periphery; Non-overlapping territories; gene-poor <-> gene-rich)