* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 3. Electric Flux Density, Gauss`s Law, and Divergence
Electroactive polymers wikipedia , lookup
Electrostatic generator wikipedia , lookup
History of electrochemistry wikipedia , lookup
Electromotive force wikipedia , lookup
Static electricity wikipedia , lookup
Lorentz force wikipedia , lookup
Maxwell's equations wikipedia , lookup
Electric current wikipedia , lookup
Electricity wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Electric charge wikipedia , lookup
Chapter 3. Electric Flux Density, Gauss’s Law, and Divergence 3.1 Electric Flux Density Michael Faraday’s experiment 1) 내부의 구에는 알고 있는 양(+)의 charge 가 충전됨 2) 내부 및 외부의 구 사이에는 2 cm 두께의 dielectric material 로 채워져 있음 3) 외부의 구는 접지면과 연결함으로써 충분히 방전됨 4) dielectric 봉으로 외부의 구를 접지면에서 떼어놓자 외부의 구에 음(-)의 charge 가 유기됨 5) 외부의 구에 전도된 총 전하량은 내부의 구가 가지고 있는 양 과 같았고 두개의 구 사이에 끼워져 있는 material 과 material 두께와 상관없음 6) Faraday conclusion: There was some sort of “displacement” from the inner sphere to the outer which was independent of the medium 7) Displacement flux or Electric flux: [psi] 1 • =Q (외부 구에 전달된 전하량이 Q 이므로 Electric flux 는 내부 구 의 전하량과 동일) • At the surface of the inner sphere, coulombs of electric flux are produced by the charge Q(=) coulombs distributed uniformly over a surface having an area of 4πa2 [m2]. • Electric Flux Density ( D ): The density of the flux at this surface • Electric flux densities : D D r a r b Q ar 4a 2 @ surface of inner sphere Q ar 4b 2 @ surface of outer sphere Q D ar 4r 2 @ a r b • Let the inner sphere make smaller and smaller, still retaining a charge of Q, it becomes a point charge. • Electric Flux Density Q D ar 4r 2 (Q lines of flux) are symmetrically directed outward from the point and pass through an imaginary spherical surface of area 4r2. 2 • Compare E Q 4 0 r 2 D 0 E ar @0<rb (free space only) v dv E vol 4 0 R 2 ar • (from Ch.2) • Similar manner v dv D ar vol 4R 2 [Ex.] z L 8 [nC/m] D (임의의 가상 원통면을 관통하여 밖으로 나가는 electric flux) y x E 143.8 8 10 9 L a a a [V/m] 2 0 2 8.854 10 12 E 47 . 9 a 3 m @ , [ V/m ] L 8 10 9 1.273 10 9 D a a a [C/m 2 ] 2 2 2 @ 3m , D 0.424a [nC/m ] 3 3.2 Gauss’s Law • “The electric flux passing through only closed surface is equal to the total charge enclosed by that surface.” (Faraday 의 실험을 구체적인 문구로 표현) • S : Incremental (surface) element of surface at P S Sa N DS : Angle with S (3.1 절에서는 구를 고려하였지만 일반적인 폐 공간을 고려) : Flux crossing on S DS ,normal S DS cosS DS S S 의 수직방향성분 고려 Electric flux density 의 S 방향성분 (Tangential 방향 성분의 vector 들의 합은 “0” 무시 가능) 4 • Total flux passing through the closed surface : d closed surface DS dS : Closed surface integral 실제로 이루어진 closed surface 의 단위 면적 및 그 normal 벡터 성분 내부로부터 밖(radial 방 향)으로 향하는 flux where dS dxdy , ddz , r 2 sin dd , etc. • s DS dS charge enclosed Q Several point charges case : Q Qn : Q Line charge case • S L dL Q S dS Surface charge case : Volume charge case : Q S vol v dv DS dS v dv vol ( Gauss’s Law 에 의하여 폐곡면을 빠져나가는 electric flux density 와 폐 곡면 내부의 전하량이 같으므로) 5 [Ex.] Check the results of Faraday’s experimental E Q ar 4 0 r 2 Q D 0E ar 4r 2 At the surface of the sphere, Q DS a 2 r 4a dS r 2 sin dd a 2 sin dd Q Q 2 DS dS ( a ) ( a sin d d a ) sin d d r r 4 a 2 4 2 Q sin d d Total charge DS dS 0 0 4 2 0 Q Q cos 0 d 4 2 6 2 Q 0 3.3 Application of Gauss Law: Some Symmetrical Charge Distributions Q S DS dS D (전하분포가 알려져 있을 때 S 를 구하기 위해 Gauss 법칙을 어떻게 적용할 것인가?) • The solution is easy if 1) DS is everywhere either normal or tangential to the closed surface, so that DS dS becomes either DS dS or zero, respectively. D d S 2) On that portion of the closed surface for which is not zero S and DS = constant. [Ex.] DS is everywhere normal to the surface. Q D dS DS dS DS dS s sphere DS 2 0 0 r 2 sin d d Ds 4 r 2 DS DS Q 4 r 2 7 2 0 2r 2 d • Since r may have any value and D S is directed radial outward Q D ar 4r 2 E Q 4 0 r 2 ar [Ex.] • D D a ( a 방향으로만 radiate ) Q DS dS DS dS 0 dS 0 dS cyl sides DS dS DS L 2 z 0 0 sides top ddz DS 2L DS D Q 2 L L 2 E L 2 0 Q LL D L a 2 L a E 2 0 8 bottom • Charge distribution the outer surface of the inner conductor: s • Total electric flux by coaxial cylindrical conductor which is of length L and radius ρ, where a < ρ < b : Q DS 2L • Total change on a length L of the inner conductor : Q L 2 z 0 0 DS S addz 2aL S DS 2L a S (임의의 공간면을 지나는 electric a D S a ( a b) flux density) where s: surface charge density at =a The previous result might be expressed in terms of line charge per unit length. L 2aL S 2a S (inner conductor 의 단위길이 당 (L=1m) 전하량) S L 2a 9 a S D a a L 2a a L a 2 • Since every line of electric flux starting from the charge on the inner cylinder must terminate on a negative charge on the inner surface of the outer cylinder Qouter cyl 2 aL S .inner cyl 2 bL S .outer cyl a b S .outer cyl S .inner cyl • At ρ > b, 0 DS 2L (The total charge enclosed would be zero.) Ds 0 • At ρ < a, 0 D s 2L (The total charge enclosed would be zero.) Ds 0 [Ex.]L=50 cm, inner=1 mm(=a), outer=4 mm(=b), o (in intermediate space) Total charge on the inner conductor: 30 nC S .inner 30 10 9 9.55 [μC/m 2 ] 3 2aL 2 10 0.5 Qinner . cyl 10 Internal fields : D a s 10 3 9.55 10 6 9.55 [nC/m 2 ] 9.55 10 9 / 1079 E [V/m] 0 8.854 10 12 D E D 0 (1 4 mm) ( 1, 4 mm) 3.4 Application of Gauss’s Law: Differential Volume Element Fig. 3.6 A differential-sized gaussian surface about the point P is used to investigate the space rate of change of D in the neighborhood of P D0 Dx 0a x D y 0a y Dz 0a z Q S DS dS front back left right top bottom • Since the surface element is very small, D is essentially constant over this portion of the entire closed surface. 11 front D front S front D front yza x D x. front yz ( D front Dx , front a x D y , front a y Dz , front a z ) Dx , front Dxo x Dx 2 x = Dxo front ( Dxo x rate of change Dx with x 2 x Dx )yz 2 x • Consider the integral over the back surface, back Dback Sback Dback (yzax ) Dx , back yz Dx.back Dxo back x Dx 2 x ( Dxo x Dx )yz 2 x 12 front back Dx xyz x • By the same processes right top left bottom D y y xyz Dz xyz z Dx Dy Dz D )xyz dS ( S x y z D Dy Dz )v ( x x y z Q • Charge enclosed in volume Δv ( Dx Dy Dz ) z volume v y x D e - x sin ya x - e - x cos ya y 2 za z [C/m 2 ] [Ex.] Dx -x = - e sin y x D y y -x = e sin y 13 Dz =2 z Charge enclosed in volume Δv=2Δv 3.5 Divergence Dx D y Dz x y z D dS s v Q v • As a limit Dx D y Dz lim v0 x y z D dS S v Divergence of A div A lim lim v0 Q S v v A dS s The divergence of the vector flux density A is the overflow of flux 0 from a small closed surface per unit volume as the volume shrinks to zero. • General form D x D y Dz div D x y z (Cartesian) 1 1 D Dz div D ( D ) z (Cylindrical) 1 2 1 1 D div D 2 ( r Dr ) (sin D ) r sin r sin r r (Spherical) 14 x x D e sin y a e cos y a 2 z a [Ex.] x y x div D D y D x z D= + + x y z e x sin y e x sin y 2 2 D dS div D = lim • s 0 v /// : definition of divergence Dx D y Dz + + div D = x y z : The result of applying the definition to a differential volume element in Cartesian coordinates. D s dS Q s D dS Q v v • : Gauss’s law : Gauss’s law per unit volume • As the volume shrinks to zero lim v 0 D dS s v Q divD v v 0 v lim : The first of Maxwell’s four equations : The electric flux per unit volume leaving a vanishingly small volume unit is exactly equal to the volume charge density here. 15 [Ex.] Q D ar 4r 2 1 2 1 D 1 (sin D ) Since div D 2 (r Dr ) , r r r sin r sin div D 1 Q ( )0 r 2 r 4 v 0 @r≠0 (everywhere except at the origin where it is infinite) 3.6 The vector operator and the divergence theorem • : “del” operator ax a y az x y z ( ) ( D a a a D a D a D a x y z x x y y z z) z y x Dx D y Dz z x y • div D 16 • In other coordinate systems, 1 1 D D z ( D ) D z (Cylindrical coordinates) 1 2 1 1 D (r Dr ) (sin D ) D 2 r r r sin r sin (Spherical coordinates) • D dS Q s Q v dv vol D v D dS Q v dv D dv s vol vol D dS D dv : Divergence theorem s vol “The integral of the normal component of any vector field over a closed surface is equal to the integral of the divergence of this vector field throughout the volume enclosed by the closed surface” ( 체적적분 면적분, 삼중적분 이중적분 ) 17 D 2 xya x x 2 a y [C/m 2 ] [Ex.] D dS z 0 0a z ( dxdya z ) 0 z 3 D dS s back front 3 0 3 0 3 0 3 0 2 0 D 1 0 2 0 1 0 x 0 D left right 3 2 (dydzax ) D y 0 0 0 x 1 3 1 (dxdza y ) D 0 ( Dx ) x 0 dydz ( Dy ) y 0 dxdz 3 0 3 0 2 0 1 0 0 (dydzax ) y 2 (dxdza y ) ( Dx ) x 1 dydz ( Dy ) y 2 dxdz Since ( D x ) x 0 0 , ( D y ) y 0 ( D y ) y 2 , s 3 2 3 D dS (2 y ) x 1 dydz [ y 2 ] 02 dz [4 z ] 30 12 0 0 0 18 Another solution D (2 xy ) ( x 2 ) 2 y x y Ddv vol 3 2 0 0 3 2 1 2 ydxdydz 0 0 0 2 ydydz 3 0 [ y ] dz [ 4 z ]30 12 2 2 0 직육면체 안에 12 [C]의 전하존재 19