Download MCQs from here

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Spark-gap transmitter wikipedia , lookup

Integrated circuit wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Crystal radio wikipedia , lookup

Ohm's law wikipedia , lookup

CMOS wikipedia , lookup

Multimeter wikipedia , lookup

Power electronics wikipedia , lookup

Schmitt trigger wikipedia , lookup

Index of electronics articles wikipedia , lookup

Zobel network wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Operational amplifier wikipedia , lookup

Two-port network wikipedia , lookup

Regenerative circuit wikipedia , lookup

Current mirror wikipedia , lookup

Surge protector wikipedia , lookup

Current source wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

TRIAC wikipedia , lookup

Power MOSFET wikipedia , lookup

Rectiverter wikipedia , lookup

RLC circuit wikipedia , lookup

Transcript
Sinusoidal Steady State-MCQs
1. The value of current through the 1 Farad capacitor of figure is
0.5F
1
1
1F
2
2 sin 100 t
AC
1H
1
1
0.5F
(a) zero
(b) one
(c) two
(d) three
[GATE 1987: 2 Marks]
Sol.
The given circuit is a bridge circuit and can be redrawn as
2 sin 100 t
2+s
AC
a
1F
b
1+2/s
The product of the opposite arms are equal
๐‘ฝ๐’‚ = ๐‘ฝ๐’ƒ
๐‘ฝ๐’‚ =
๐‘ฝ๐’ƒ =
๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐ŸŽ๐’•
× ๐Ÿ = ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐ŸŽ๐’•
๐Ÿ
๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐ŸŽ๐’•
๐Ÿ
× (๐Ÿ + ) = ๐’”๐’Š๐’๐Ÿ๐ŸŽ๐ŸŽ๐’•
๐’”
๐Ÿ(๐Ÿ + ๐’” )
๐Ÿ
The current through 1F capacitor is zero
Option (a)
2. The half โ€“ power bandwidth of the resonant circuit of figure can be increased by:
R1
R2
C
L
(a) increasing R1
(b) decreasing R1
Sol.
(c) increasing R2
(d) decreasing R2
[GATE 1989: 2 Marks]
๐Ÿ
Bandwidth of the circuit โˆ ๐‘ธ
For increasing bandwidth, Q is to be decreased
๐Ž๐‘ณ
๐Ÿ
๐‘ธ=
=
๐‘น๐Ÿ ๐Ž๐‘ช๐‘น๐Ÿ
If R1 โ†’ 0, R2โ†’โˆž, the circuit has only L & C elements and has high selectivity.
๐‘น๐Ÿ โ†‘, ๐‘น๐Ÿ โ†“, ๐‘ธ โ†“ ๐‘ฉ๐‘พ โ†‘
Option (a) & (d)
3. The resonant frequency of the series circuit shown in figure is
M=1H
2H
(a)
(b)
1
๐ป
4๐œ‹โˆš3 ๐‘
1
๐ป
4๐œ‹ ๐‘
2H
2F
(c)
(d)
1
2๐œ‹โˆš10
1
4๐œ‹โˆš2
๐ป๐‘
๐ป๐‘
[GATE 1990: 2 Marks]
Sol.
The coils are connected in a series opposing way. As the current is entering the
dot of coil L1 and leaving the dot of coil L2
๐‘ณ๐’†๐’’ = ๐‘ณ๐Ÿ + ๐‘ณ๐Ÿ โˆ’ ๐Ÿ๐‘ด
=๐Ÿ+๐Ÿโˆ’๐Ÿ
= ๐Ÿ๐‘ฏ
At resonance XL = XC
๐Ž ๐‘ณ๐’†๐’’ =
๐Ž=
๐Ÿ
โˆš๐‘ณ๐’†๐’’ ๐‘ช
=
๐Ÿ
๐Ž๐‘ช
๐Ÿ
โˆš๐Ÿ × ๐Ÿ
๐’‡=
=
๐Ÿ
๐’“๐’‚๐’…/๐’”๐’†๐’„
๐Ÿ
๐Ÿ
๐‘ฏ๐’›
๐Ÿ’๐…
Option (b)
4. In the series circuit shown in figure, for series resonance, the value of the coupling
coefficient k will be
K
18
-j12
j2
(a) 0.25
(b) 0.5
j8
(c) 0.999
(d) 1.0
[GATE 1993: 1 Mark]
Sol.
The coils are connected in series additive manner as the current is entering the
dot in both coils
๐‘ณ๐’†๐’’ = ๐‘ณ๐Ÿ + ๐‘ณ๐Ÿ + ๐Ÿ๐‘ด
๐‘ด = ๐‘ฒโˆš๐‘ณ๐Ÿ ๐‘ณ๐Ÿ = ๐‘ฒโˆš๐’‹๐Ÿ. ๐’‹๐Ÿ– = ๐‘ฒ๐’‹๐Ÿ’
At resonance |๐‘ฟ๐‘ณ | = |๐‘ฟ๐‘ช |
๐‘ฟ๐‘ณ = ๐‘ฟ๐‘ณ๐Ÿ + ๐‘ฟ๐‘ณ๐Ÿ + ๐‘ฟ๐‘ด
= ๐’‹๐Ÿ + ๐’‹๐Ÿ– + ๐Ÿ๐‘ฒ๐’‹๐Ÿ’
๐’‹๐Ÿ๐ŸŽ + ๐Ÿ๐‘ฒ๐’‹๐Ÿ’
At resonance ๐‘ฟ๐‘ณ = ๐‘ฟ๐‘ช
๐’‹๐Ÿ๐ŸŽ + ๐Ÿ๐‘ฒ๐’‹๐Ÿ’ = ๐’‹๐Ÿ๐Ÿ
๐Ÿ๐‘ฒ๐’‹. ๐Ÿ’ = ๐’‹. ๐Ÿ
๐’‹๐‘ฒ. ๐Ÿ– = ๐’‹. ๐Ÿ
๐‘ฒ=
๐Ÿ ๐Ÿ
= = ๐ŸŽ. ๐Ÿ๐Ÿ“
๐Ÿ– ๐Ÿ’
Option (a)
5. In figure, A1, A2, and A3 are ideal ammeters. If A1 reads 5A, A2 reads 12A, then A3
should read
R
A1
A3
C
A2
AC
100 sin ฯ‰t
(a) 7 A
(b) 12 A
(c) 13 A
(d) 17 A
[GATE 1993: 2 Marks]
Sol.
Since the source is a.c.
๐‘ฐ๐Ÿ‘(๐’“๐’Ž๐’”) = โˆš๐‘ฐ๐Ÿ๐Ÿ (๐’“๐’Ž๐’”) + ๐‘ฐ๐Ÿ๐Ÿ (๐’“๐’Ž๐’”)
= โˆš๐Ÿ“๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ
= โˆš๐Ÿ๐Ÿ”๐Ÿ— = ๐Ÿ๐Ÿ‘๐‘จ
Option (c)
6. A series LCR circuit consisting of ๐‘… = 10 โ„ฆ, |๐‘‹๐ฟ | = 20 โ„ฆ ๐‘Ž๐‘›๐‘‘ |๐‘‹๐ถ | = 20 โ„ฆ is connected
across an a.c. supply of 200 V rms. The rms voltage across the capacitor is
(a) 200โˆ  โˆ’ 900 ๐‘‰
(c) 400โˆ  + 900 ๐‘‰
(b) 200โˆ  + 900 ๐‘‰
(d) 400โˆ  โˆ’ 900 ๐‘‰
[GATE 1994: 1 Mark]
Soln.
For a series LCR circuit
๐’ = ๐‘น + ๐’‹๐‘ฟ๐‘ณ โˆ’ ๐’‹๐‘ฟ๐‘ช
๐’”๐’Š๐’๐’„๐’† ๐‘ฟ๐‘ณ = ๐‘ฟ๐‘ช ,
๐‘ฝ
๐‘ฐ=๐‘น=
๐Ÿ๐ŸŽ๐ŸŽ
๐Ÿ๐ŸŽ
๐’=๐‘น
= ๐Ÿ๐ŸŽ๐‘จ
The voltage across the capacitor= ๐‘ฐ. (โˆ’๐’‹๐‘ฟ๐‘ช )
= ๐Ÿ๐ŸŽ. (โˆ’๐’‹๐Ÿ๐ŸŽ)
= โˆ’๐Ÿ’๐ŸŽ๐ŸŽ๐’‹
= ๐Ÿ’๐ŸŽ๐ŸŽโˆ  โˆ’ ๐Ÿ—๐ŸŽ๐ŸŽ ๐‘ฝ
Option (d)
7. A DC voltage source is connected across a series R-L-C circuit. Under steady state
conditions, the applied DC voltage drops entirely across the
(a) R only
(b) L only
Soln.
(c) C only
(d) R and L combination
[GATE 1995: 1 Mark]
Under steady state condition, inductor behaves as a short circuit and capacitor
as an open circuit.
The applied voltage drops entirely across the capacitor
R
Option (C)
L
C
8. Consider a DC voltage source connected to a series R-C circuit. When the steady state
reaches, the ratio of the energy stored in the capacitor to the total energy supplied by the
voltage source, is equal to
(a) 0.362
(c) 0.632
(b) 0.500
(d) 1.000
[GATE 1995: 1 Mark]
Soln.
The total energy supplied by the source
๐‘พ๐‘บ = ๐‘ฝ๐‘ฐ. ๐’•
๐’•
= ๐‘ฝ โˆซ ๐‘ฐ๐’…๐’• = ๐‘ฝ๐’’
๐ŸŽ
= ๐‘ฝ๐‘ช๐‘ฝ
= ๐‘ช๐‘ฝ๐Ÿ
Voltage across the uncharged capacitor
๐‘ฝ๐‘ช (๐’•) = ๐‘ฝ๐‘บ (๐Ÿ โˆ’ ๐’†
โˆ’๐’•โ„
๐‘น๐‘ช )
Power in the capacitor = ๐‘ฝ๐‘บ (๐Ÿ โˆ’ ๐’†
=
๐‘ฝ๐Ÿ๐‘บ
๐‘น
(๐’†
โˆ’๐’•โ„
๐‘น๐‘ช
โˆ’๐’•โ„
๐’…
๐‘น๐‘ช ) ๐‘ช
๐‘ฝ (๐Ÿ
๐’…๐’• ๐‘บ
โˆ’๐’†
โˆ’๐’†
โˆ’๐’•โ„
๐‘น๐‘ช )
โˆ’๐Ÿ๐’•โ„
๐‘น๐‘ช )
Energy stored in the capacitor at steady state
โˆž
โˆž
๐‘ฝ๐Ÿ๐‘บ
๐‘ฝ๐Ÿ๐‘บ
โˆ’๐’•โ„
โˆ’๐Ÿ๐’•
๐‘น๐‘ช
โˆซ๐’†
๐’…๐’• โˆ’
โˆซ ๐’† โ„๐‘น๐‘ช ๐’…๐’•
๐‘น
๐‘น
๐ŸŽ
=
๐‘ฝ๐Ÿ๐‘บ
๐‘น
[๐‘น๐‘ช โˆ’
๐ŸŽ
๐‘น๐‘ช
๐Ÿ
]
๐Ÿ
= ๐Ÿ ๐‘ช๐‘ฝ๐Ÿ๐‘บ
๐’†๐’๐’†๐’“๐’ˆ๐’š ๐’”๐’•๐’๐’“๐’†๐’… ๐’Š๐’ ๐’•๐’‰๐’†๐’„๐’‚๐’‘๐’‚๐’„๐’Š๐’•๐’๐’“
= ๐ŸŽ. ๐Ÿ“
๐’†๐’๐’†๐’“๐’ˆ๐’š ๐’”๐’–๐’‘๐’‘๐’๐’Š๐’†๐’… ๐’ƒ๐’š ๐’•๐’‰๐’† ๐’”๐’๐’–๐’“๐’„๐’†
Option (b)
9. The current, i(t), through a 10-โ„ฆ resistor in series with an inductance, is given by
i(t) = 3 + 4 sin (100 t + 450) + 4 sin (300 t + 600) amperes.
The RMS value of the current and the power dissipated in the circuit are:
(c) 5 A, 250 W, respectively
(d) 11 A, 1210 W respectively
(a) โˆš41A, 410 W, respectively
(b) โˆš35 A, 350 W, respectively
[GATE 1995: 1 Mark]
Soln.
๐’Š(๐’•) = ๐Ÿ‘ + ๐Ÿ’ ๐ฌ๐ข๐ง(๐Ÿ๐ŸŽ๐ŸŽ๐’• + ๐Ÿ’๐Ÿ“๐ŸŽ ) + ๐Ÿ’ ๐ฌ๐ข๐ง(๐Ÿ‘๐ŸŽ๐ŸŽ๐’• + ๐Ÿ”๐ŸŽ๐ŸŽ )
๐Ÿ’
๐Ÿ
๐Ÿ’
๐Ÿ
๐‘ฐ๐’“๐’Ž๐’” = โˆš๐Ÿ‘๐Ÿ + ( ) + ( ) = ๐Ÿ“ ๐’‚๐’Ž๐’‘๐’”
โˆš๐Ÿ
โˆš๐Ÿ
Power dissipated = ๐‘ฐ๐Ÿ๐’“๐’Ž๐’” ๐‘น
= (๐Ÿ“)๐Ÿ × ๐Ÿ๐ŸŽ
= ๐Ÿ๐Ÿ“๐ŸŽ ๐’˜๐’‚๐’•๐’•๐’”
Option (c)
10. In the circuit of Figure assume that the diodes are ideal and the meter is an average
indicating ammeter. The ammeter will read
A
+
D2
4 sin (ฯ‰t)
Volts
10 k
10 k
(a) 0.4 โˆš2 mA
(b) 0.4 mA
(c)
(d)
0.8
๐œ‹
0.4
๐œ‹
๐‘š๐ด
๐‘š๐ด
[GATE 1996: 1 Mark]
Soln.
For positive half cycle of input D1 is conducting and D2 is off
The current through ammeter is the average value of positive half sine wave i.e.
๐‘ฐ๐’‚๐’—๐’ˆ =
๐‘ฝ๐’Ž ๐Ÿ
๐Ÿ’
๐ŸŽ. ๐Ÿ’
× =
=
๐’Ž๐‘จ
๐Ÿ‘
๐… ๐‘น ๐… × ๐Ÿ๐ŸŽ × ๐Ÿ๐ŸŽ
๐…
Option (d)
11. A series RLC circuit has a resonance frequency of 1 KHz and a quality factor Q = 100. If
each of R, L and C is doubled from its original value, the new Q of the circuit is
(a) 25
(b) 50
(c) 100
(d) 200
[GATE 2003: 1 Mark]
Soln.
๐‘ธ=
=
๐Ž๐‘ณ
๐‘ณ
= ๐Ÿ๐…๐’‡๐’
๐‘น
๐‘น
๐Ÿ๐…
๐‘ณ ๐Ÿ ๐‘ณ
= โˆš
๐Ÿ๐…โˆš๐‘ณ๐‘ช ๐‘น ๐‘น ๐‘ช
When R, L and C are doubled ๐‘ธโ€ฒ =
๐‘ธ
๐Ÿ
Option (b)
12. An input voltage ๐‘ฃ(๐‘ก) = 10โˆš2 cos(๐‘ก + 100 ) + 10โˆš5 cos(2๐‘ก + 100 ) V is applied to a
series combinationof R = 1 โ„ฆ and an inductance L = 1H. The resulting steady state
current i(t) in ampere is
(a) 10 cos(๐‘ก + 550 ) + 10 cos(2๐‘ก + 100 + ๐‘ก๐‘Ž๐‘›โˆ’1 2)
3
(b) 10 cos(๐‘ก + 550 ) + 10โˆš2 cos(2๐‘ก + 55)
(c) 10 cos(๐‘ก โˆ’ 350 ) + 10 cos(2๐‘ก + 100 โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 2)
3
(d) 10 cos(๐‘ก โˆ’ 350 ) + 10โˆš2 cos(2๐‘ก โˆ’ 35)
[GATE 2003: 2 Marks]
Soln.
๐‘ฝ(๐’•) = ๐Ÿ๐ŸŽโˆš๐Ÿ ๐œ๐จ๐ฌ(๐’• + ๐Ÿ๐ŸŽ๐ŸŽ ) + ๐Ÿ๐ŸŽโˆš๐Ÿ“ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
๐‘ฝ(๐’•) = ๐Ÿ๐ŸŽโˆš๐Ÿ ๐œ๐จ๐ฌ(๐’• + ๐Ÿ๐ŸŽ๐ŸŽ ) + ๐Ÿ๐ŸŽโˆš๐Ÿ“ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
๐Ž๐Ÿ = ๐Ÿ, ๐Ž๐Ÿ = ๐Ÿ
Steady state current ๐’Š(๐’•) = ๐’Š๐Ÿ (๐’•) + ๐’Š๐Ÿ (๐’•)
๐Ÿ๐ŸŽโˆš๐Ÿ ๐œ๐จ๐ฌ(๐’• + ๐Ÿ๐ŸŽ๐ŸŽ ) ๐Ÿ๐ŸŽโˆš๐Ÿ“ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
=
+
๐‘น + ๐’‹๐›š๐Ÿ ๐‘ณ
๐‘น + ๐’‹๐›š๐Ÿ ๐‘ณ
=
=
๐Ÿ๐ŸŽโˆš๐Ÿ ๐œ๐จ๐ฌ(๐’• + ๐Ÿ๐ŸŽ๐ŸŽ ) ๐Ÿ๐ŸŽโˆš๐Ÿ“ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
+
๐Ÿ+๐’‹
๐Ÿ + ๐Ÿ๐’‹
๐Ÿ๐ŸŽโˆš๐Ÿ ๐œ๐จ๐ฌ(๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
โˆš๐Ÿโˆ ๐Ÿ’๐Ÿ“๐ŸŽ
+
๐Ÿ๐ŸŽโˆš๐Ÿ“ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐ŸŽ )
โˆš๐Ÿ“โˆ  ๐ญ๐š๐งโˆ’๐Ÿ ๐Ÿ
= ๐Ÿ๐ŸŽ ๐œ๐จ๐ฌ(๐’• โˆ’ ๐Ÿ‘๐Ÿ“๐ŸŽ ) + ๐Ÿ๐ŸŽ ๐œ๐จ๐ฌ(๐Ÿ๐’• + ๐Ÿ๐ŸŽ๐Ÿ โˆ’ ๐ญ๐š๐งโˆ’๐Ÿ ๐Ÿ)
Option (C)
1
1
13. The circuit shown in the figure, with ๐‘… = 3 โ„ฆ, ๐ฟ = 4 ๐ป, ๐ถ = 3 F has input voltage V(t) =
Sin2t. The resulting current i(t) is
i(t)
V(t)
(a) 5 sin(2๐‘ก + 53. 10 )
(b) 5 sin(2๐‘ก โˆ’ 53. 10 )
R
L
C
(c) 25 sin(2๐‘ก + 53. 10 )
(d) 25 sin(2๐‘ก โˆ’ 53. 10 )
[GATE 2003: 1 Mark]
Soln.
Admittance
๐’€=
๐Ÿ
๐Ÿ
+
+ ๐’‹๐Ž๐‘ช
๐‘น ๐’‹๐Ž๐‘ณ
=๐Ÿ‘+
๐Ÿ’
+ ๐’‹๐Ÿ × ๐Ÿ‘
๐’‹๐Ÿ
= ๐Ÿ‘ โˆ’ ๐’‹๐Ÿ + ๐’‹๐Ÿ”
= ๐Ÿ‘ + ๐’‹๐Ÿ’
๐’Š(๐’•) = ๐‘ฝ(๐’•). ๐’š
= (๐Ÿ‘ + ๐Ÿ’๐’‹) ๐ฌ๐ข๐ง ๐Ÿ๐’•
= ๐Ÿ“ ๐ฌ๐ข๐ง ๐Ÿ๐’• โˆ  ๐ญ๐š๐งโˆ’๐Ÿ ( ๐Ÿ’/๐Ÿ‘)
= ๐Ÿ“ ๐ฌ๐ข๐ง(๐Ÿ๐’• + ๐Ÿ“๐Ÿ‘. ๐Ÿ๐ŸŽ )
Option (a)
14. For the circuit shown in the figure, the time constant RC = 1 ms. The input voltage is
๐‘‰๐‘– (๐‘ก) = โˆš2 sin 103 ๐‘ก. The output voltage V0 (t) is equal to
R
vi(t)
v0(t)
(a) sin(103 ๐‘ก โˆ’ 450 )
(b) sin(103 ๐‘ก + 450 )
Soln.
(c) sin(103 ๐‘ก โˆ’ 530 )
(d) sin(103 ๐‘ก + 530 )
[GATE 2004: 1 Mark]
๐‘ฝ๐Ÿ (๐’•) = โˆš๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐Ÿ‘ ๐’•
๐Ž = ๐Ÿ๐ŸŽ๐Ÿ‘ ๐’“๐’‚๐’…๐’Š๐’‚๐’๐’”/๐’”๐’†๐’„
๐‘น๐‘ช = ๐Ÿ๐’Ž ๐’”๐’†๐’„
๐‘ฝ๐ŸŽ (๐’•) =
๐‘ฝ๐Ÿ (๐’•)
๐Ÿ
(๐‘น + ๐’‹๐Ž๐’„)
×
๐Ÿ
๐’‹๐Ž๐’„
๐‘ฝ๐Ÿ (๐’•)
โˆš๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐Ÿ‘ ๐’•
=
=
๐’‹๐Ž๐‘น๐‘ช + ๐Ÿ ๐’‹๐Ÿ๐ŸŽ๐Ÿ‘ × ๐Ÿ๐ŸŽโˆ’๐Ÿ‘ + ๐Ÿ
=
โˆš๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐ŸŽ๐Ÿ‘ ๐’•
๐Ÿ+๐’‹
= ๐ฌ๐ข๐ง(๐Ÿ๐ŸŽ๐Ÿ‘ ๐’• โˆ’ ๐Ÿ’๐Ÿ“๐ŸŽ )
Option (a)
15. Consider the following statements S1 and S2
S1: At the resonant frequency the impedance of a series R-L-C circuit is zero
S2: In a parallel G-L-C circuit, increasing the conductance G results in increase in its Q
factor.
Which one of the following is correct?
(a) S1 is FALSE and S2 is TRUE
(b) Both S1 and S2 are TRUE
Soln.
(c) S1 is TRUE and S2 is FALSE
(d) Both S1 and S2 are FALSE
[GATE 2004: 2 Marks]
The impedance of a series RLC circuit at resonant frequency is
๐Ÿ
๐’ = ๐‘น + ๐’‹ (๐Ž๐‘ณ โˆ’ ๐Ž.๐‘ช)
๐Ÿ
๐Ž๐‘ณ = ๐Ž.๐‘ช
At resonance
So, Z = R purely resistive
In a parallel RLC circuit,
๐Ÿ
3dB bandwidth๐Ž๐Ÿ โˆ’ ๐Ž๐Ÿ = ๐‘น๐‘ช
๐‘ธ=
๐Ž๐’“
๐Ž๐’“
=
= ๐Ž๐‘น ๐‘น๐‘ช
๐Ž๐Ÿ โˆ’ ๐Ž๐Ÿ ๐Ÿโ„
๐‘น๐‘ช
๐Ž๐’“ is the resonant frequency.
As conductance ๐‘ฎ โ†‘ ๐‘น โ†“ ๐‘ธ โ†“ (As conductance G increases R reduces so Q reduces)
Option (d)
ZL = (7+4j)
20 00V
16. An AC source of RMS voltage 20 V with internal impedance ๐‘๐‘  = (1 + 2๐‘—)โ„ฆ feeds a
load of impedance ๐‘๐ฟ = (7 + 4๐‘—)โ„ฆ in the figure below. The reactive power consumed by
the load is
ZS = (1+2j)
DC
(a) 8 VAR
(b) 16 VAR
(c) 28 VAR
(d) 32 VAR
[GATE 2009: 2 Marks]
Soln.
The current I in the given circuit is
๐‘ฐ=
=
=
๐Ÿ๐ŸŽ
๐Ÿ๐ŸŽ
=
๐Ÿ– + ๐Ÿ”๐’‹ ๐Ÿ’ + ๐Ÿ‘๐’‹
๐Ÿ๐ŸŽ
โˆš๐Ÿ’๐Ÿ + ๐Ÿ‘๐Ÿ โˆ  ๐ญ๐š๐งโˆ’๐Ÿ ๐Ÿ‘/๐Ÿ’
๐Ÿ๐ŸŽ
= ๐Ÿโˆ  โˆ’ ๐Ÿ‘๐Ÿ”. ๐Ÿ–๐Ÿ•๐ŸŽ
๐Ÿ“โˆ ๐Ÿ‘๐Ÿ”. ๐Ÿ–๐Ÿ•
Reactive power = ๐‘ฐ๐Ÿ ๐‘ฟ๐‘ณ
= (๐Ÿ)๐Ÿ × ๐Ÿ’
= 16 VAR
Option (b)