Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1 EXPERIMENT30A1:MEASUREMENTS LearningOutcomes Uponcompletionofthislab,thestudentwillbeableto: 1) Usevariouscommonlaboratorymeasurementtoolssuchasgraduated cylinders,volumetricflask,burettes,electronicbalance,and thermometer. 2) Differentiatebetweenprecisionandaccuracy. 3) Constructgraphicalrepresentationsofdata. Introduction Alllaboratoryworkinvolvessomeformofmeasurement-volume,mass, temperature,pressureetc.Everymeasurementhassomedegreeofuncertaintydue toinherentlimitationsoftheinstrumentsusedforthemeasurements.Itistherefore importanttounderstandthesignificanceofeachdigitinthemeasuredvalue. Multiplemeasurementsareoftennecessaryinordertoimprovethechancesof obtainingaccuratemeasurements. Accuracyreferstotheclosenessofthemeasuredvaluetothetrueoracceptedvalue ofthemeasurement.Thetermprecisionisusedtorefertotheclosenessofmultiple measurementstoeachother.Thebestsetofdatawillideallybebothaccurateas wellasprecise.Ifthetruevalueofaparticularmeasurementisknown,thenan estimateoftheaccuracyofthedatacanbeobtainedbycalculatingthepercenterror inthedata. ⎛ Experimental Value - True Value ⎞ PercentError= ⎜ ⎟ × 100 ⎝ ⎠ True Value Percenterrormaybepositiveornegative.Apositivevalueofpercenterrorimplies thattheexperimentalvalueislargerthanthetruevalue.Likewise,anegativevalue € ofpercenterrorimpliesthattheexperimentalvalueissmallerthanthetruevalue. Alternately,itisalsoacceptabletosimplyindicatetheabsolutevalueofpercent error,inwhichcasethevalueisanindicationofthedeviationfromthetruevalue.In allcasesasmallerpercenterrorsignifiesamoreaccuratedataset. Acommonexampleofprecisionandaccuracyisgivenbelow: 2 EXAMPLESOFACCURACYANDPRECISION !! ! !! !! !!! !! NOTPRECISEANDNOTACCURATEPRECISEBUTNOTACCURATE ! ! ! ! ! ! !!! !!! ACCURATEBUTNOTEPRECISEPRECISEANDACCURATE Errorsinmeasurementarebroadlyascribedtotwocategories:systematicand randomerrors.Systematicerroristheresultofimproperhandlingoftheinstrument oradefectiveinstrument.Randomerrorisaresultofvariedfactorsthataredifficult toisolate(changesinenvironmentalconditionsinthelaboratory,voltage fluctuations,parallaxetc).Whileitispossibletominimizeoreveneliminate systematicerrorthroughinstrumentcalibrationandthoroughreviewofthe instrument’soperationsmanual,itisimpossibletoeliminaterandomerror. 3 Uncertaintyisthetermassociatedwiththemarginoferrorinanymeasurement. Eachinstrument(e.g.,ruler,beaker,thermometer,balance,etc.)usedinthe laboratoryhasaprecisionthatdeterminestheuncertaintyofmeasurements,dueto randomerror,takenwiththatinstrument.Theprecisionofameasuringdeviceis usuallyexpressedintermsofa±valueindicatingthelimitationofthedevice.The commoninstrumentsusedinGeneralChemistrycanbedividedintotwotypes: thosethathaveagraduatedscaleandcanmakemeasurementsoverarangeof values(e.g.,ruler,thermometer,balance,graduatedcylinder,graduatedpipette, beaker)andthosethatmeasureasingle,fixedvolumeofaliquid(e.g.,volumetric flask,volumetricpipette). Thedistancebetweengraduationmarksonaruler,thermometer,buretteorother glasswaremaybesubdividedintoones,tenths,hundredsorotherdivisions dependingontheprecisionofthedevice.A50-mLgraduatedcylinder,forexample, hasgraduationmarksateach1mL.Sincetheexperimentercanestimatebetween thegraduationmarks,thevolumecanbemeasuredandrecordedtotheone-tenthof amL(0.1mL,Figure1a).Aburette,ontheotherhand,hasgraduationmarksateach one-tenthmL(0.1mL,Figure1b)orthehundredthplace(0.01mL,Figure1c). Therefore,anextradigittotherightisgainedwhentheburetteisused,makingthe burettemoreprecise.Ineachinstance,thelastdigit(underlinedandinitalics)isan estimate. 40 4.0 50 5.0 FIGURE1A FIGURE1B FIGURE1C Reading:44.5units 4.45units 4.045units 4.0 4.1 4 Ascanbeseenfromfigures1a,1b,and1c,uncertaintyinthedataisrelatedtothe numberofsignificantdigitsinthedata.Thenumberofsignificantdigitsdependson theinstrumentusedformeasurement.Theinstrumentprovidingthemostnumber ofsignificantdigits(figure1c)isalsotheinstrumentwiththesmallestuncertainty. Twootherdevicesarecommonlyusedinthelaboratory:digitalthermometerand electronicbalance.Inbothofthesecases,allthedigitsdisplayedaretoberecorded andtheuncertaintyisassumedtobeinthelastdigitofthedisplay. DigitalThermometer ElectronicBalance Reading:91.9°F Reading:31.8116g 5 StatisticalTools Themostcommonstatisticaltoolsneededfordataanalysisaremeanandstandard deviation. Themeanoraveragevalueiscalculatedusingthefollowingformula: n ∑x Mean = x = i i=1 n Intheaboveformula: x isthemean,xiisadatapoint,andnisthenumberofdata points. € Instatisticsameasureofthedeviationofeachvalueinadatasetfromthemean € valueofthatdatasetisgivenbythestandarddeviation.Thestandarddeviation (S.D.)iscalculatedusingthefollowingformula: n ∑ (x S.D. = σ = i − x) 2 i=1 n −1 Intheaboveformula:σ isthestandarddeviation,xiisadatapoint, x isthemean, andnisthenumberofdatapoints. € Thesestatisticalvaluescanalsobecomputedbyenteringthedatainaspreadsheet € andusinganappropriateformula.Forinstance,whenusingMicrosoftExcel,the formulatocalculatethemeanis:“=AVERAGE(selectdata)”andtheformulato calculatethestandarddeviationis:“=STDEV(selectdata)”. GraphicalRepresentationofData Oftentimesonemightencounteradatasetwherethemeasuredquantitiesmaybe directlyproportionaltoeachother.Forinstance,inthisexperiment,thetwo measuredquantities-massandvolumearedirectlyproportionaltoeachotherand theratioofmasstovolumeisdefinedasthedensityofthatsubstance.Ifdata“x”is proportionaltodata“y”,thenwecansaythat: yαx ory=mxory=mx+b Insuchinstances,thevalueoftheslope,m,providesusefulinformation.Inthe exampleofthemass-volumerelationship,theslopewouldbethedensityofthe 6 substancewhenmassisplottedonthey-axisandvolumeisplottedonthex-axis.A simplemethodtoobtaintheslopeistoplotofagraphofvolumevs.mass.Once again,variousspreadsheetprogramssuchasMicrosoftExcelcanbeusedtoplota graphofthedatasetandobtainthebest-fitlinearregressionequationtofindthe slope. ExperimentalDesign 7 Inordertounderstandthedifferencesbetweenthevariouscommonlaboratory tools,inthisexperiment,youwillmeasurethedensityofwater.Densityisdefinedas themassofasubstanceperunitvolume.Densityiscalculatedusingtheformula: Mass Density = Volume Densityofliquidsiscommonlyexpressedinunitsofgrams/ml.Thetruevalueorthe acceptedvalueforthedensityofwateratroomtemperatureis1.00gram/ml. € ReagentsandSupplies 10-mland100-mlgraduatedcylinders,burette,25-mlvolumetricflask,andwater Procedure 8 PART1:MEASURETHEDENSITYOFWATERUSINGA10-MLGRADUATEDCYLINDER 1. Measurethemassofanempty10-mlgraduatedcylinder. 2. Addsometapwaterintothegraduatedcylindertoanywherebelowthe10mlmark. 3. Recordthevolumeofthewater. 4. Measureofthemassofthegraduatedcylinderwithwater. 5. Emptythewaterinthesink. 6. Repeatthestepstwomoretimes. 7. Calculatethedensityofwaterforeachtrial,theaveragedensity,thestandard deviation,andthepercenterror. PART2:MEASURETHEDENSITYOFWATERUSINGA100-MLGRADUATEDCYLINDER 1. Measurethemassofanempty100-mlgraduatedcylinder. 2. Addsometapwaterintothegraduatedcylindertoanywherebelowthe100mlmark. 3. Recordthevolumeofthewater. 4. Measureofthemassofthegraduatedcylinderwithwater. 5. Emptythewaterinthesink. 6. Repeatthestepstwomoretimes. 7. Calculatethedensityofwaterforeachtrial,theaveragedensity,thestandard deviation,andthepercenterror. PART3:MEASURETHEDENSITYOFWATERUSINGAVOLUMETRICFLASK 1. Measurethemassofanempty25-mlvolumetricflask. 2. Fillthevolumetricflaskwithwatertillthemark. 3. Recordthevolumeofthewater. 9 4. Measureofthemassofthevolumetricflaskwithwater. 5. Emptythewaterinthesink. 6. Repeatthestepstwomoretimes. 7. Calculatethedensityofwaterforeachtrial,theaveragedensity,thestandard deviation,andthepercenterror. PART4:MEASURETHEDENSITYOFWATERUSINGABURETTE 1. Measurethemassofanemptybeaker(anysmallbeakerisacceptable). 2. Obtainaburettestand,aburetteclamp,andaburette,andclamptheburette tothestand(youmayuseamicro-buretteora25-mlburetteasperthe discretionofyourinstructor). 3. Filltheburettewithwatertosomelevellessthanthemaximumpossible. 4. Recordthe“InitialBuretteReading”. 5. Dispenseasmallvolumeofwaterintothebeaker(fromstep1); approximately0.2mlifyouareusingamicroburetteor2mlifyouareusing alargerburette. 6. Recordthe“FinalBuretteReading”. 7. Measurethemassofthebeakercontainingthewater. 8. Dispenseanadditionalamountofwaterintothebeaker(approximatelythe samevolumeasbefore). 9. Recordthenew“FinalBuretteReading”. 10. Measurethemassofthebeakercontainingtheadditionalwater. 11. Repeatsteps8-10fourmoretimes. 12. Plotofgraphofthisdataandobtainthedensityofwaterfromtheslopeof thebest-fitlinearregressionline.Calculatethepercenterrorinthedensityof water. 10 INSTRUCTIONSFORPLOTTINGAGRAPHANDOBTAININGTHEREGRESSIONEQUATION 1. Enterthedataintwocolumns,thex-datafirstandthenthey-data. 2. Selectthedataset(xandy). 3. Clickthe“Gallery”tabor“InsertChart”. 4. SelecttheXY-scatterplot. 5. Choosetheplottypewherethedatapointsarenotalreadyconnected. 6. Thegraphwillnowbedisplayed. 7. Clickonanyofthedatapointsonthegraph. 8. Clickonthe“ChartLayout”tabandselect“Addtrendline”underanalysis. 9. Clickonthetrendlineoptions. 10. Checktheboxes:“Displayequation”and“Displayr-squaredvalue”(maybe underoptions). 11. Iftheinterceptissupposedtobezero,besuretoalsochecktheboxthatsays: “setintercept=0”. 12. ClickOK.Theequationoftheline,andthecorrelationcoefficientwillbe displayedonthegraph. DataTable PART1:MEASURETHEDENSITYOFWATERUSINGA10-MLGRADUATEDCYLINDER Trial1 Trial2 Massofemptygraduatedcylinder(grams) Volumeofwater(ml) Massofgraduatedcylinder+water(grams) Massofwater(grams) Densityofwater(grams/ml) Averagedensityofwater= _________________________________ StandardDeviationofdensityofwater= _________________________________ Percenterrorindensityofwater= _________________________________ 11 Trial3 PART2:MEASURETHEDENSITYOFWATERUSINGA100-MLGRADUATEDCYLINDER Trial1 Trial2 Massofemptygraduatedcylinder(grams) Volumeofwater(ml) Massofgraduatedcylinder+water(grams) Massofwater(grams) Densityofwater(grams/ml) Averagedensityofwater= _________________________________ StandardDeviationofdensityofwater= _________________________________ Percenterrorindensityofwater= _________________________________ 12 Trial3 PART3:MEASURETHEDENSITYOFWATERUSINGAVOLUMETRICFLASK Trial1 Trial2 Massofvolumetricflask(grams) Volumeofwater(ml) Massofvolumetricflask+water(grams) Massofwater(grams) Densityofwater(grams/ml) Averagedensityofwater= _________________________________ StandardDeviationofdensityofwater= _________________________________ Percenterrorindensityofwater= _________________________________ 13 Trial3 PART4:MEASURETHEDENSITYOFWATERUSINGABURETTE MASS MassofEmpty Beaker(grams) 1.Massofbeaker+ 1.Massofwater water(grams) (grams) 2.Massofbeaker+ 2.Massofwater water(grams) (grams) 3.Massofbeaker+ 3.Massofwater water(grams) (grams) 4.Massofbeaker+ 4.Massofwater water(grams) (grams) 5.Massofbeaker+ 5.Massofwater water(grams) (grams) VOLUME InitialBurette Reading(ml) 1.FinalBurette 1.Volumeofwater Reading(ml) (ml) 2.FinalBurette 2.Volumeofwater Reading(ml) (ml) 3.FinalBurette 3.Volumeofwater Reading(ml) (ml) 4.FinalBurette 4.Volumeofwater Reading(ml) (ml) 5.FinalBurette 5.Volumeofwater Reading(ml) (ml) 14 Volume(x-axis)vs.Mass(y-axis) Volume(ml) Mass(grams) Equationofregressionline: _________________________________________ Densityofwater= _________________________________________ PercentErrorinDensity= _________________________________________ 15