Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 140 Lecture 23 RECALL cosx y cos x cos y sin x sin y cosx y cos x cos y sin x sin y Adding these gives cosx y cosx y 2 cos x cos y Subtracting gives cosx y cosx y 2 sin x sin y Similarly sinx y sin x cos y cos x sin y sinx y sin x cos y cos x sin y Adding these gives sinx y sinx y 2 sin x cos y Dividing by 2 gives PRODUCT-TO-SUM FORMULAS sin x sin y 12 [cosx y cosx y ] cos x cos y 12 [cosx y cosx y ] sin x cos y 12 [sinx y sinx y ] cos y sin x sin x sin y 12 [cosx y cosx y ] sin y sin x cos x cos y 12 [cosx y cosx y ] cos y cos x sin x cos y __ 1 [ ] 2 sinx__ y sinx y In the last formula, x is the argument of sin, y is the argument of cos. `cos a sin b ? `sin b sin a ? Careful. cos y sin x __ sin x sin y 12 [cosx y cosx y ] cos x cos y 12 [cosx y cosx y ] sin x cos y 12 [sinx y sinx y ] cos y sin x Write as a sum or difference of trigonometric functions. `sin 2 cos `cos 6 4 . . . . sin 2 sin x sin y 12 [cosx y cosx y ] cos x cos y 12 [cosx y cosx y ] sin x cos y 12 [sinx y sinx y ] cos y sin x Write as a sum or difference of trigonometric functions. `cos x cos 2x `sinx ysinx y . . Solving trigonometric equations cos x cosx, if x is one solution, -x is another solution. sin x sin x if x is one solution, p- x is another. `sin 12 . Find all solutions. y= 1/2 p-p/6=5p/6 p/6 Two simplest solutions: q = p/6, q = p - p/6 = 5p/6. sin(q) has period 2p, tadding multiples of 2p to a solution is also a solution. General solution: two sets q = p/6 + 2pn, q = 5p/6 + 2pn b `cos 12 . Find all solutions. To solve sin 34 , the simplest solution on the right is sin1 34 , the solution on the left is sin1 34 . To solve cos 34 , the simplest solution above the x-axis is cos 1 34 , the solution below cos 1 34 . CONVENTION. n is an arbitrary, possibly negative, integer. For sin, cos, add 2pn to the (usually two) simplest solutions. For tan, add pn to the one simplest solution. Find all solutions. `tan x 1 `tan x 1 3 ... /6 n For sin, cos, add 2pn to the (usually two) simplest solutions. For tan, add pn to the one simplest solution. Find all solutions. `cos x 3 `sin 2x 1 `cos 2x 1 . . ... /4 n For sin, cos, add 2pn to the (usually two) simplest solutions For tan, add pn to the one simplest solution. cos cos, if is one solution, - is another solution. sin sin if is one solution, p- is another. sin(p/6) = 1/ 2 p/2 sin(p/4) = 1/ 2 sin(p/3) = l3̄/2 cos(p/6) = 3 /2 cos(p/4) = 1/ 2 cos(p/3) = 1/2 p-q q 0 p -q tan(p/6) = 1/l3̄ tan(p/4) = 1 tan(p/3) = l3̄ Remember these values. -p/2 Find all solutions. Three sets. `2 cos 2 x cos x 1 ``2 sin 2 x sin x 1 . . . . . . . Find all solutions. Recall: sin 2 x cos 2 x 1 `2 cos 2 x sin x 1 0 Rewrite entirely in sin or entirely in cos. Find all solutions. Recall: sin 2 x cos 2 x 1 `sin 2 x cos x 1 0 ``cos 2 x sin x 1 0 . . . . . . `2 tan 2 x 3 tan x sec x 2 sec 2 x 0 b sin, cos and tan are not 1-1. The x-axis is a horizontal line which crosses their graphs more than once. They are 1-1 when restricted to the green intervals. sin -p/2 p/2 cos p 0 tan -p/2 For sin, For cos, For tan, p/2 the restricted interval is [-p/2, p/2]. the restricted interval is [0, p]. the restricted interval is (-p/2, p/2). Inverse trigonometric functions sin -1(x) = the q i [-p/2, p/2] such that sin(q) = x, cos -1(x) = the q i [0, p] such that cos(q) = x, tan -1(x) = the q i (-p/2, p/2) such that tan(q) = x. sin-1(x) and cos -1(x) have domain [-1, 1]. tan -1(x) has domain (-5, 5). NOTATION arcsin(x) = sin -1(x) arccos(x) = cos -1(x) arctan(x) = tan -1(x) WARNING. sin -1(x) = 1/sin(x). sin -1(x) = arcsin x = the inverse (sin(x)) bb -1 1 = sin x = the reciprocal