* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Monatomic ideal gas: partition functions and equation of state.
Survey
Document related concepts
Transcript
Peter Košovan [email protected] Dept. of Physical and Macromolecular Chemistry Statistical Thermodynamics, MC260P105, Lecture 3, 27.10.2014 If you find a mistake, kindly report it to the author :-) Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Monatomic ideal gas: partition functions and equation of state. http://www.natur.cuni.cz/chemie/fyzchem For non-interacting particles a, b, c, d, . . . we can decompose the system Hamiltonian to individual contributions: Ĥ ≈ Ĥ a + Ĥ b + Ĥ c + Ĥ d + . . . Consequently, the energy is a sum of individual particle energies E ≈ εa + εb + εc + εd + . . . • Complex multi-body problem approximated as a superposition of simpler one- and two-body problems. • Often encountered in Physics • Allows for systematic corrections • e. g. Separation of a single molecule Hamiltonian Ĥ ≈ Ĥtranslation + Ĥrotation + Ĥvibration + Ĥelectronic + Ĥnuclear + . . . Faculty of Science, Charles University in Prague Systems of non-interacting particles ε ≈ εtranslation + εrotation + εvibration + εelectronic + εnuclear + . . . P. Košovan Lecture 3: Monatomic ideal gas 1/24 Suppose we can decompose Hamiltonian to individual contributions. Non-interacting distinguishable particles a, b, c, . . . : X X a b c Q(N, V , T ) = e−βEj = e−β(εk +εl +εm +... ) j = X e −βεak k ,l,m,... X k e −βεbl X e −βεcm · · · = qa qb qc . . . m l where k , l, m, . . . are indices of quantum states of particles a, b, c, . . . Single-particle partition function: qi (V , T ) = X i e−βεj j P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Systems of non-interacting particles 2/24 • If all particles are the same but distinguishable, qa = qb = qc = q : Q(N, V , T ) = a X b c e−β(εk +εl +εm +... ) = qa qb qc · · · = q N (V , T ) k ,l,m,... • The N-body problem reduces to a one-body problem! P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Distinguishable vs. indistinguishable particles 3/24 • If all particles are the same but distinguishable, qa = qb = qc = q : Q(N, V , T ) = a X b c e−β(εk +εl +εm +... ) = qa qb qc · · · = q N (V , T ) k ,l,m,... • The N-body problem reduces to a one-body problem! • But identical particles are indistinguishable: Q(N, V , T ) = X e−β(εk +εl +εm +... ) k ,l,m,... • Permutation of k and l yields the same quantum state of the system. • Correct for double-counting: N! permutations. P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Distinguishable vs. indistinguishable particles 3/24 Indistinguishable particles P. Košovan Q(N, V , T ) = q N (V , T ) N! where q(V , T ) = Lecture 3: Monatomic ideal gas X j e−βεj Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem • For indistinguishable particles: 4/24 Indistinguishable particles Q(N, V , T ) = q N (V , T ) N! where q(V , T ) = X e−βεj j • We silently ignored multiply occupied states: εi = εj : P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem • For indistinguishable particles: 4/24 Indistinguishable particles Q(N, V , T ) = q N (V , T ) N! where q(V , T ) = X e−βεj j • We silently ignored multiply occupied states: εi = εj : • Bosons: ψ symmetric with respect to permutation P. Košovan ⇒ any number of particles can occupy a given quantum state. Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem • For indistinguishable particles: 4/24 Indistinguishable particles Q(N, V , T ) = q N (V , T ) N! where q(V , T ) = X e−βεj j • We silently ignored multiply occupied states: εi = εj : • Bosons: ψ symmetric with respect to permutation ⇒ any number of particles can occupy a given quantum state. • Fermions: ψ antisymmetric with respect to perumtation P. Košovan ⇒ two particles cannot occupy the same quantum state. Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem • For indistinguishable particles: 4/24 Indistinguishable particles Q(N, V , T ) = q N (V , T ) N! where q(V , T ) = X e−βεj j • We silently ignored multiply occupied states: εi = εj : • Bosons: ψ symmetric with respect to permutation ⇒ any number of particles can occupy a given quantum state. • Fermions: ψ antisymmetric with respect to perumtation ⇒ two particles cannot occupy the same quantum state. • We will see that except for low temperatures or high densities the number of states N N. • Then multiply occupied states are rare and the equation above is an Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem • For indistinguishable particles: excellent approximation P. Košovan Lecture 3: Monatomic ideal gas 4/24 Ĥψ = Eψ ny http://www.natur.cuni.cz/chemie/fyzchem Time-independent Schrödinger equation: Particle in a well of length a: Ĥ = − εn = h2 ∂ 2 2m ∂x 2 h2 n2 8ma2 0 1 2 3 4 5 6 7 nx Number of states with εnx ,ny ,nz < ε: n = 1, 2, . . . Particle in a 3d box of length a: εnx ,ny ,nz = P. Košovan 7 6 5 4 3 2 1 0 h2 (n2 + ny2 + nz2 ) 8ma2 x 1 4πR 3 Φ(ε) = 8 3 π 8ma2 ε 3/2 ... = 6 h2 Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Some useful results from quantum mechanics (QM) 5/24 Degeneracy of translational energy levels π 8ma2 ε 3/2 Φ(ε) = 6 h2 Number of levels between ε and (ε + ∆ε): π 8ma2 3/2 1/2 2 ω(ε, ∆ε) = Φ(ε + ∆ε) − Φ(ε) = ε ∆ε + O (∆ε) 4 h2 Let’s plug in some numbers: ε = 3kB T /2, T = 300 K, m = 10−22 g, a = 10 cm, ∆ε/ε = 0.01: ω(ε, ∆ε) ≈ O(1028 ) Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Density of energy levels from previous slide: Degeneracy of translational energy levels far exceeds number of particles at sufficiently low density and high temperature. P. Košovan Lecture 3: Monatomic ideal gas 6/24 http://www.natur.cuni.cz/chemie/fyzchem • Sometimes we have to explicitly account for multiple occupancy of quantum states • At low T and high density • Partition function in terms of molecular *Constrained sum: X N= nk energy levels (occupation numbers nk ): Q(N, V , T ) = X j e−βEj = X∗ e−β P i k εi ni {nk } Ej = X k • Evaluation of the restricted sum is awkward. • Convenient solution: grandcanonical ensemble (GCE). P. Košovan Lecture 3: Monatomic ideal gas εk nk Faculty of Science, Charles University in Prague Fermi-Dirac and Bose-Einstein statistics 7/24 Fermi-Dirac and Bose-Einstein statistics http://www.natur.cuni.cz/chemie/fyzchem Ξ(µ, V , T ) = ∞ X λ = eβµ eβµN Q(N, V , T ) N=0 µ = kB T ln λ Rearrangements (* is the restricted sum from the previous slide): ∞ X P ∞ P P X X X∗ ∗ λ i ni e−β i εi ni Ξ(µ, V , T ) = λN e−β i εi ni = = N=0 ∞ X N=0 {nk } {nk } X ∗ Y N=0 {nk } λe−βεk nk k Crucial step (now each nk ranges over all possible values): n1max Ξ(µ, V , T ) = P. Košovan max 2 X nX ··· Y λe−βεk n k n1 =0 n2 =0 k Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Absolute activity: Formulation in GCE: 8/24 Fermi-Dirac and Bose-Einstein statistics http://www.natur.cuni.cz/chemie/fyzchem n1max n2max Ξ(µ, V , T ) = X X ··· Y n1 =0 n2 =0 = n1max X nk k max λe −βε1 2 n1 nX n1 =0 = λe−βεk n2 n2 =0 nkmax YX λe−βε2 λe−βεk nk k nk =0 Last equation is a general result. Special cases: Fermions, nkmax = 1: Y ΞFD = 1 + λe−βεk k P. Košovan Bosons, nkmax = ∞: ∞ nk YX ΞBE = λe−βεk Faculty of Science, Charles University in Prague We continue rearranging k nk =0 Lecture 3: Monatomic ideal gas 9/24 Fermi-Dirac and Bose-Einstein statistics http://www.natur.cuni.cz/chemie/fyzchem j=0 x ΞBE = j = (1 − x)−1 for x < 1 to rewrite BE formula ∞ YX k nk =0 λe−βεk nk = Y 1 − λe−βεk −1 for λe−βεk < 1 k and cast both FD and BE formula in the same form ±1 Y Ξ FD = 1 ± λe−βεk for λe−βεk < 1 BE k • These are the only exact distributions in statmech. • Low T and high density: FD or BE statistics apply, q(N, V , T ) has no meaning (symmetry requirements of the wave function) • High T and low density: both degenerate to Boltzmann statistics Faculty of Science, Charles University in Prague P∞ Use • Nobel prize in Physics 2001: experiment Bose-Einstein condensate. P. Košovan Lecture 3: Monatomic ideal gas 10/24 http://www.natur.cuni.cz/chemie/fyzchem Number of particles: N=N= X n k = kB T k ∂ ln Ξ ∂µ Number of particles in state k : V ,T X λe−βεk ∂ ln Ξ =λ = ∂λ V ,T 1 ± λe−βεk k Energy E and average energy per particle, ε: E = Nε = X k n k εk = X λεk e−βεk 1 ± λe−βεk k pV = kB T ln Ξ = ±kB T X ln 1 ± λe−βεk nk = λe−βεk 1 ± λe−βεk Faculty of Science, Charles University in Prague Thermodynamic quantities from FD and BE statistics k P. Košovan Lecture 3: Monatomic ideal gas 11/24 http://www.natur.cuni.cz/chemie/fyzchem For λ 1 (equivalent βµ 0): nk = λe−βεk 1 ± λe−βεk we can write approximate relations X X nk = λe−βεk , N = nk = λ e−βεk k k and using q(N, V , T ) = P k e−βεk nk e−βεk e−βεk = P −βε = k N q(N, V , T ) ke Faculty of Science, Charles University in Prague The limiting case of Boltzmann i. e. both FD and BE reduce to Boltzmann statistics. P. Košovan Lecture 3: Monatomic ideal gas 12/24 The limiting case of Boltzmann X λεk e−βεk X E= → λεj e−βεj , −βε 1 ± λe k k E ε= P j k P nk j → P εj e−βεj j e−βεj Using ln(1 + x) ≈ x for small x: X X pV = kB T ln Ξ → ±kB T ±λ e−βεj = λkB T e−βεj = λkB Tq j j so that βpV = ln Ξ = λq Ξ = eλq = ∞ X (λq)N N=0 P. Košovan N! = ∞ X λN Q(N, V , T ), where Q(N, V , T ) = N=0 Lecture 3: Monatomic ideal gas qN N! Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Similarly, for small λ we obtain: 13/24 http://www.natur.cuni.cz/chemie/fyzchem At high temperature and low pressure (Boltmzmann limit): Q(N, V , T ) = q N (V , T ) N! Further decomposition of q: q(V , T ) = qtr qel qnucl Nuclear partition function: qnucl = ωn1 + . . . Except for rare cases just a constant. P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Ideal monatomic gas 14/24 Ideal monatomic gas Q(N, V , T ) = q N (V , T ) Electronic partition function: qelec = ωe1 + ωe2 e−β∆ε1,2 + . . . N! Further decomposition of q: q(V , T ) = qtr qel qnucl • Zero energy at electronic ground state • Can be degenerate Nuclear partition function: • Higher excited states typically several eV qnucl = ωn1 + . . . • At 300 K 1eV ≈ 40 kB T Except for rare cases just a constant. P. Košovan • First two or three terms usually suffice Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem At high temperature and low pressure (Boltmzmann limit): 14/24 http://www.natur.cuni.cz/chemie/fyzchem Faculty of Science, Charles University in Prague Quantitative view of electronic levels P. Košovan Table from McQuarrie, Statistical Mechanics, University Science Books (2000) Lecture 3: Monatomic ideal gas 15/24 Quantitative view of electronic levels f2 = Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Fraction of electrons in second excited state: ωe2 e−β∆ε1,2 ωe1 + ωe2 e−β∆ε1,2 + . . . Table from McQuarrie, Statistical Mechanics, University Science Books (2000) Higher electronic states need to be considered at higher temperatures. P. Košovan Lecture 3: Monatomic ideal gas 16/24 Translational partition function h2 (n2 + ny2 + nz2 ), 8ma2 x εnx ,ny ,nz = qtr = ∞ X nx , ny , nz = 1, 2, . . . e−βεnx ,ny ,nz nx ,ny ,nz =1 ∞ X ∞ −βh2 nx2 X −βh2 nx2 = exp exp 8ma2 8ma2 nx =1 nx =1 nx =1 !3 !3 Z ∞ ∞ X −βh2 n2 −βh2 n2 = ≈ exp dn exp 8ma2 8ma2 n=0 −βh2 nx2 exp 8ma2 X ∞ n=1 Alternative approach qtr = ∞ X ε=0 P. Košovan ω(ε)e −βε Z ∞ ≈ ω(ε)e n=0 −βε Z π 8ma2 3/2 ∞ 1/2 −βε dε = ε e dε 4 h2 n=0 Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Translational energy levels: 17/24 We evaluate Z qtr = !3 −βh2 n2 2πmkB T 3/2 V exp dn = 8ma2 h2 n=0 ∞ and introduce thermal de Broglie wavelength Λ 1/2 h2 V Λ= such that qtr = 3 2πmkB T Λ Translational energy and momentum per particle: 3 2 ∂ ln qtr εtr = kB T = kB T , |~p| = (3mkB T )1/2 , ∂T 2 P. Košovan Lecture 3: Monatomic ideal gas Λ≈ h |~p| Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Translational partition function 18/24 We evaluate Z qtr = !3 −βh2 n2 2πmkB T 3/2 V exp dn = 8ma2 h2 n=0 ∞ and introduce thermal de Broglie wavelength Λ 1/2 h2 V Λ= such that qtr = 3 2πmkB T Λ Translational energy and momentum per particle: 3 2 ∂ ln qtr εtr = kB T = kB T , |~p| = (3mkB T )1/2 , ∂T 2 Λ≈ h |~p| Boltzmann applies at Λ3 V , i. e. when quantum effects diminish. P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Translational partition function 18/24 http://www.natur.cuni.cz/chemie/fyzchem q(V , T ) = qtr qel qnu qtr = 2πmkB T h2 3/2 V = V λ3 qel = ωe1 + ωe2 e−β∆ε12 + . . . qnu = ωn1 + . . . • The above holds for particles without inernal structure (monatomic ideal gas) Faculty of Science, Charles University in Prague Summary – single-particle partitition function • Vibrational and rotational terms arise for composite particles (next lecture) P. Košovan Lecture 3: Monatomic ideal gas 19/24 A(N, V , T ) = −kB T ln Q = kB T ln N! − NkB T ln q(V , T ) " # 2πmkB T 3/2 Ve = −NkB T ln − NkB T ln ωe,1 + ωe,2 e−β∆ε1,2 2 N h E = kB T 2 ∂ ln Q ∂T = N,V Nωe,2 ∆ε1,2 3 NkB T + 2 qel In both above cases, the first term is dominant. ∂ ln Q NkB T p = kB T = ∂V V N,T Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Thermodynamic functions of an ideal monatomic gas Equation of state (EOS) of an ideal gas. P. Košovan Lecture 3: Monatomic ideal gas 20/24 Thermodynamic functions of an ideal monatomic gas http://www.natur.cuni.cz/chemie/fyzchem ∂ ln Q S = kB T ∂T + kB ln Q N,V " # 3 2πmkB T 3/2 Ve5/2 = NkB + NkB ln 2 N h2 + NkB ln ωe,1 + ωe,2 e −β∆ε1,2 + NkB ωe,1 + ωe,2 e−β∆ε1,2 qel Sackur-Tetrode equation: " # 3 2πmkB T 3/2 Ve5/2 S = NkB + NkB ln + Sel 2 N h2 P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Entropy: 21/24 Sackur-Tetrode equation: " # 2πmkB T 2/2 Ve5/2 3 + Sel S = NkB + NkB ln 2 N h2 Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Quantitative view of entropy Table from McQuarrie, Statistical Mechanics, University Science Books (2000) Higher electronic states have to be considered at higher temperatures. P. Košovan Lecture 3: Monatomic ideal gas 22/24 Chemical potential: ∂ ln Q q µ = −kB T = −kB T ln ∂N T ,V N " # 2πmkB T 3/2 V = −kB T ln − kB T ln qel qnu N h2 " # 2πmkB T 3/2 kB T p = −kB T ln − kB T ln qel qnu + kB T ln 2 p p h p = µ0 (T ) + kB T ln p where " µ0 (T ) = −kB T ln P. Košovan 2πmkB T h2 3/2 kB T p # − kB T ln qel qnu Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague http://www.natur.cuni.cz/chemie/fyzchem Thermodynamic functions of an ideal monatomic gas 23/24 http://www.natur.cuni.cz/chemie/fyzchem • Separation of different contributions to Ĥ, E, Q and q • Fermi-Dirac and Bose-Einstein statistics • Boltzmann as high-temperature and low-density limit • Thermal wavelength • EOS of an ideal gas from first principles (Boltzmann limit) P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Summary 24/24 http://www.natur.cuni.cz/chemie/fyzchem • Separation of different contributions to Ĥ, E, Q and q • Fermi-Dirac and Bose-Einstein statistics • Boltzmann as high-temperature and low-density limit • Thermal wavelength • EOS of an ideal gas from first principles (Boltzmann limit) What comes next • Polyatomic gas molecules – vibration and rotation • Condensed matter – dense gases and liquids (classical limit) • Distinguishable particles – crystals, magnets P. Košovan Lecture 3: Monatomic ideal gas Faculty of Science, Charles University in Prague Summary 24/24