Download Chem 226 — Problem Set #10

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Asymmetric induction wikipedia , lookup

Haloalkane wikipedia , lookup

Hydroformylation wikipedia , lookup

Alcohol wikipedia , lookup

Phenols wikipedia , lookup

Wolff rearrangement wikipedia , lookup

Sulfuric acid wikipedia , lookup

Petasis reaction wikipedia , lookup

Strychnine total synthesis wikipedia , lookup

Nucleophilic acyl substitution wikipedia , lookup

Transcript
Chem 226 — Problem Set #10 —
“Fundamentals of Organic Chemistry,” 4th edition, John McMurry.
Chapter 10
1.
Give IUPAC names for compounds (a) - (e).
Br
CH3
(a) CH3CHCH2COOH
(b) CH3CHCH2 CH2 COOH
4-bromopentanoic acid
COOH
3-methylbutanoic acid
(c) CH3CH
CHCH2CH2COOH
(d) CH3 CH2 CHCH2 CH2CH3
4-hexenoic acid
2-ethylpentanoic acid
COOH
H
(e)
(1S,2S)-2-methylcyclohexanecarboxylic acid
H
2.
CH3
Give IUPAC names for the following structures.
CH3
CH3
O
(a) CH3CHCH2CH2CCl
5-methylpentanoyl chloride
O
(c) CH2
CHCH2CH2CNH2
4-pentenamide
(b) CH3CH2CHCN
2-methylbutanenitrile
CH2CH3
(d) CH3CH2CHCN
2-ethylbutanenitrile
(e)
O
C
C(CH3 )3
(f) H3C
COCl
C C
O
H3C
CH3
cyclopentyl 2,2-dimethylpropanoate 2,3-dimethylbutanoyl chloride
O
(g)
C
O
O
C
benzoic anhydride
5.
(h)
O
C
OCH(CH3 )2
isopropyl cyclopentanecarboxylate
Draw structures for the products of the following reactions.
O
C
(a) benzoic acid + NaOCH 3
O
Na
O
(b) (CH3)3CCOOH + KOH
6.
K
(CH3 )3CC
+ HOCH3
+ H2 O
O
Rank the following compounds in order of increasing acidity: sulfuric acid, methanol, phenol,
p-nitrophenol, acetic acid.
Sulfuric acid is a very strong acid. Carboxylic acids are usually stronger acids than phenols and phenols
are stronger acids than alcohols. Electron withdrawing groups, like nitro, will increase the acidity of
phenols and carboxylic acids because they stabilize the phenoxide and carboxylate anions that are
produced as the acid gives up its proton.
methanol < phenol < p-nitrophenol < acetic acid < sulfuric acid
7.
Rank the following compounds in order of increasing acidity.
(a) CH3CH2COOH, BrCH2COOH, BrCH2CH2COOH
(b) benzoic acid, ethanol, p-cyanobenzoic acid
(a) CH3CH2COOH < BrCH2CH2COOH < BrCH2COOH
(b) ethanol < benzoic acid < p-cyanobenzoic acid
In (a) the issue is that bromine is more electronegative than carbon; hence 3-bromopropanoic acid and
bromoacetic acid are more acidic than propanoic acid. Since the bromine is closer to the carboxyl
group in bromoacetic acid than it is in 3-bromopropanoic acid it has a greater effect in the bromoacetic
acid.
8.
Predict the products of the following reactions.
O
Br
(a)
1. Mg, ether
2. CO2
3. H3O+
CH3
(b) CH3CHCH2CH2Br
C OH
1. NaCN
2. NaOH, H2O
3. H3 O+
CH3
O
CH3CHCH2CH2C OH
Carboxylation of Grignard reagents and hydrolysis of nitriles are common ways of preparing carboxylic
acids. Note that the products each have one more carbon than the starting materials. In (a) CO2
provides the additional carbon; in (b) it is the CN- group.
9.
Show the steps in the conversion of iodomethane to acetic acid by the nitrile hydrolysis route. Would a
similar route work for the conversion of iodobenzene to benzoic acid? Explain.
I thought the question a little ambiguous in terms of how much is wanted with regard to the “steps in the
conversion.” Does he want the synthetic steps, or all of the steps in the mechanisms of the two
synthetic steps? To find out, I looked in the Solutions Manual written by Susan McMurry, the author’s
wife. She provides the synthetic steps, so this is surely what he meant. (
NaCN
CH3I
H2O
CH3 CN
H2 SO4
heat
CH3COOH
The first step here is a nucleophilic substitution. In this case it is SN2, since the site of attack is a methyl
group. This first step would not be possible for iodobenzene. Aryl halides do not undergo SN2
reactions for steric reasons and do not undergo SN1 reactions for electronic reasons (phenyl
carbocations are quite unstable).
11.
Which compound in each of the following sets is more reactive in nucleophilic acyl substitution
reactions?
(a) CH3COCl
or CH3COOCH3
(b) (CH3 )2CHCONH2 or CH3CH2COOCH3
(c) CH3 COOCH3 or CH3 COOCOCH3
(d) CH3COOCH3
or
CH3 CHO
The answers are boxed. (a) Acid chlorides are more reactive than esters. This is because Cl is more
electronegative than O. A more complete explanation is available in the fine print of the Carboxylic
Acid Derivatives lecture notes. (b) Esters are more reactive than amides in these reactions. Also, the
amide is more sterically hindered than the ester. (c) Acid anhydrides are more reactive than esters in
these reactions. (d) Aldehydes undergo nucleophilic addition, not substitution.
13.
What products would you obtain by treating benzoic acid with the following reagents? Formulate the
reactions.
(a) SOCl2, (b) CH3OH, HCl, (c) LiAlH4, (d) NaOH
O
C6H5C OH
SOCl2
CH3 OH, HCl
LiAlH4
NaOH
O
C6H5C Cl
O
C6H5C OCH3
C6H5CH2
O
OH
C6H5C O - Na+
15.
If 5-hydroxypentanoic acid is treated with an acid catalyst, an intramolecular esterification reaction
occurs. What is the structure of the product?
OH
CH2CH2CH2CH2C
H3O+
OH
O
C
O
O
When an ester is formed from an alcohol functional group and a carboxylic acid group that are in the
same molecule, a ring forms. These ester rings are called lactones.
16.
How could you prepare the following esters using the reaction of a acid chloride with an alcohol?
(b) CH3COOCH2CH3
O
O
CH3C Cl
19.
HOCH2CH3
+
CH3COCH2CH3
Write the steps in the mechanism of the reaction between p-hydroxyaniline and acetic anhydride to
prepare acetaminophen.
O
O
O
CH3 C O CCH3
CH3 C O CCH3
O
O
CH3C +
O CCH3
NH2
NH2
HO
O
NH2
HO
HO
O
The NH2 group is more
nucleophilic than the OH.
See below.
CH3C
NH
HO
O
+ HO CCH3
With p-hydroxyaniline the question arises as to which of the two substituent groups is more
nucleophilic. The oxygen is more electronegative than the nitrogen, so we might expect it to hold its
electrons more tightly and, hence, be less nucleophilic. On the other hand, the oxygen has two
unshared pairs of electrons, while the nitrogen has only one. It might be worth noting that in water
phenol acts as an acid, not a base. On the other hand, amines, like ammonia from which they are
derived, are bases in aqueous solution. Bases are nucleophiles. Acids are electrophiles. So, we might
expect the NH2 group to be more nucleophilic than OH.
21.
Show the products of hydrolysis of the following esters.
(a) isopropyl acetate
H O
(CH3 )2COCCH3
H2O
O
+-
(CH3 )2COH + Na OCCH3
NaOH
H2O
H2SO4
O
(CH3)2COH + HOCCH3
If the hydrolysis is done under basic conditions (NaOH) the products will be the alcohol and the salt of
the carboxylic acid. On the other hand, if the reaction is carried out under acidic conditions (reverse of
Fisher esterification) the products will be the alcohol and the carboxylic acid. If the reaction is carried
out under basic conditions the salt of the carboxylic acid can be converted to the acid by adding a
stronger acid. Hydrochloric and sulfuric acids are commonly used for this purpose.
22.
Why do you suppose saponification of esters is not reversible? In other words, why doesn’t treatment
of a carboxylic acid with an alkoxide ion give an ester?
If a carboxylic acid is treated with alkoxide ion, a strong base, it will be deprotonated.
RCOOH
+
R'O - +Na
RCOO - Na+
+ R'OH
This happens very quickly. Assuming that another mole of alkoxide
ion is available (the first mole is used up deprotonating the acid) let’s O
see what happens if it attacks the carboxylate anion. This is shown RC O
to the right. Forming a dianion is possible although the proximity of
the two negative charges is likely to not be very favorable.
OR'
O
RC
OR'
O
What can the dianion do? Basically (pardon the pun), two things could happen.
O
RC
Ê
O
OR'
O
O
RC + O-2
or
OR'
RC
O
OR'
Ë
O
RC
O
+ OR'
Which is more likely, route Ê or route Ë ? Route Ê produces O-2, which is not a stable anion. Even if
it were stable enough to form, it would have to be a very powerful nucleophile. Owing to this, route Ê
would be reversible and the tetrahedral dianion on the left would be reformed. Route Ë , on the other
hand leads back to alkoxide and carboxylate anions. This is much more likely since the products here
are reasonable ones. So we can conclude that, although alkoxide anion may possibly attack the
carboxylate anion, the bottom line is that the carboxylate anion and alkoxide anion would reform,
making the reaction unproductive.
24.
What product would you expect from the reaction of a cyclic ester such a butyrolactone with LiAlH4?
O
C
OH
CH OH
O
Lactones are reduced by lithium aluminum hydride in the same way that other esters are. The carbonyl
group becomes an alcohol as does the “OR” group of the ester. So, a diol is produced whereas in
other esters two separate alcohol molecules are produced.
28.
What nitrile would you react with what Grignard reagent to prepare the following ketones?
(c) acetophenone (methyl phenyl ketone)
A ketone has two R groups attached to a carbonyl carbon. If we look at the generic reaction between
Grignard reagents and nitriles in McMurry, we can see that one of these R groups comes from the
Grignard reagent and the other comes from the nitrile. Furthermore, the carbon in the nitrile group
becomes the carbonyl carbon of the ketone. Knowing this we can come up with two possible routes.
C N
H3C C N
CH3MgBr
MgBr
H3O +
H3O +
30.
Kevlar, a nylon polymer used in bulletproof vests, is made by reaction of 1,4-benzenedicarboxylic acid
with 1,4-benzenediamine. Show the structure of Kevlar.
Amide formed between
carboxylic acid and amine.
O
O H
H
C
C N
N
n
From diacid.
34.
From diamine.
Acetic acid boils at 118o C, but its ethyl ester boils at 77o C. Why is the boiling point of the acid so
much higher, even though it has a lower molecular weight?
The acid is an associated liquid. That is to say, molecules of the acid hydrogen bond to each other in
the liquid. This hydrogen bonding has to be completely or at least partially broken down for the acetic
acid to boil. This requires thermal energy, hence the high temperature for the boiling point. Ethyl
acetate is not an associated liquid. Hydrogen bonds do not have to be broken for it to boil.
The molecular weight argument is a bit of a red herring here. When acetic acid boils, some of the
molecules go into the vapor phase as hydrogen bonded dimers. The molecular weight of one of these
dimers is greater than that of ethyl acetate.
37.
The following reactivity order has been found for the saponification of alkyl acetates by aqueous
NaOH: CH3COOCH3 > CH3COOCH2CH3 > CH3COOCH(CH3)2 > CH3COOC(CH3)3
How can you explain this reactivity order?
The slow step in the mechanism of saponification is the attack by hydroxide ion on the carbonyl carbon
of the ester, causing it to become tetrahedral. Crowding increases in this region of the molecule as the
bond angles of the carbon go from ~120o to ~109o. Bulky groups accentuate this effect; this is a steric
effect.
41.
Rank the following compounds in order of their reactivity toward nucleophilic acyl substitution.
(a) CH3COOCH3, (b) CH3COCl, (c) CH3CONH2, (d) CH3CO2COCH3
Most reactive first: (b) > (d) > (a) > (c). Reactivity order: acid chlorides > anhydrides > esters >
amides.
42.
How can you prepare acetophenone from the following starting materials? (More than one step may
be required.)
(a) benzonitrile, (b) bromobenzene, (c) methyl benzoate, (d) benzene
O
+
H3O
C N + CH3MgBr
(a)
(b)
Br
Mg
MgBr
dry ether
Also see question #28.
OH
C6 H5CCH3
CH3 CHO
K 2Cr2O7
C CH3
H3 O+
O
C6H5CCH3
H
O
(c)
C OCH3
1. LiAlH4
2. H3O
CH2 OH
+
PCC
OH
O
1. CH3MgBr
C H
2. H3O
CH3
C H
+
K2 Cr2O 7
O
C6 H5CCH3
O
(d)
+ CH3CCl
AlCl3
O
C 6H5 CCH3
Solutions (a) and (d) are pretty straightforward. Either you know the reactions or you don’t. Solutions
(b) and (c) are more complex since several steps are involved. In cases like these, where a one or two
step sequence does not leap to mind, the trick is to work backwards from the product and forward
from the reactant at the same time. You might approach (c) in this way, for example:
1. How can I make a ketone like acetophenone?
Ketones can be made by oxidation of secondary alcohols. I can make acetophenone by oxidation of
1-phenylethanol.
2. How can I make 1-phenylethanol?
There are several ways to make alcohols. Maybe a Grignard synthesis would be appropriate. In this
case I would need to react benzaldehyde with methyl magnesium bromide or phenyl magnesium
bromide with acetaldehyde. Can I get to benzaldehyde from methyl benzoate. Possibly. Can I get to
bromobenzene (to make phenyl magnesium bromide) from methyl benzoate? No. I don’t know any
reaction that will replace a carbon attached to a benzene ring with bromine.
3. To get to benzaldehyde from methyl benzoate I can reduce the ester to benzyl alcohol
(phenylmethanol) and then oxidize this primary alcohol to an aldehyde.
43.
How might you prepare the following products from butanoic acid? (More than one step may be
required.)
(a) 1-butanol, (b) butanal, (c) 1-bromobutane, (d) pentanenitrile, (e) 1-butene, (f) butylamine
CH3CH2CH2COOH
1. LiAlH4
+
2. H3O
(a)
PCC
CH3CH2CH2CH2 OH
CH2Cl2
PBr3
H3 O+
(c)
CH3CH2CH2CH2 Br
KCN
(d)
CH3CH2CH2CH2CN
Other solutions are possible. If in doubt, ask.
heat
(e)
CH3CH2 CH2
NH3
(f)
CH3 CH2 CH2CH2NH2
(b)
CH3CH2 CH2 CHO
CH2
61.
N,N-Diethyl-m-toluamide (DEET) is the active ingredient in many insect repellents. How might you
synthesize DEET from m-bromotoluene?
O
H3 C
Br
Mg
CO2
H3C
COH
dry
ether
SOCl2
O
O
H3 C
C N(CH2CH3)2
H3C
CCl
HN(CH2CH3)2
The trick here is replacing the bromine on the aromatic ring with a carbon. A Grignard reaction will do
this. You could elect to react the Grignard with carbon dioxide, as above, or with formaldehyde to give
the alcohol which could then be oxidized to the carboxylic acid.