Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CHAPTER 73 MEAN AND ROOT MEAN SQUARE VALUES EXERCISE 286 Page 778 1. Determine the mean value of (a) y = 3 x from x = 0 to x = 4 (b) y = sin 2θ from θ = 0 to θ = π 4 (c) y = 4et from t = 1 to t = 4 4 4 1 1 4 1 4 1/2 1 3 x3/2 1 34 (a) Mean= value, y = = = = y x x x x x x d 3 d 3 d 0 4 − 0 ∫0 4 ∫0 4 ∫0 4 3 / 2 0 2 = ( ) ( ) 1 1 3 1 = 43 = 2 (8) = 4 2 2 2 π /4 π /4 1 4 π /4 4 cos 2θ 2 π (b) Mean value, y = = − = − cos 2 − cos 0 y d θ sin 2θ d θ = ∫0 ∫ 0 π 2 0 π π π 4 −0 4 =– (c) Mean value, = y 2 π ( 0 − 1) = 2 π or 0.637 1 4 1 4 t 1 4 4 1 t 4 4 e= e − e = 69.17 y= dx 4 e= dt ∫ ∫ 1 4 −1 1 3 1 3 3 2. Calculate the mean value of y = 2x2 + 5 in the range x = 1 to x = 4 by (a) the mid-ordinate rule and (b) integration. (a) A sketch of y = 2 x 2 + 5 is shown below. 1146 © 2014, John Bird Using 6 intervals each of width 0.5 gives mid-ordinates at x = 1.25, 1.75, 2.25, 2.75, 3.25 and 3.75, as shown in the diagram x 1.25 1.75 2.25 2.75 3.25 3.75 y = 2 x 2 + 5 8.125 11.125 15.125 20.125 26.125 33.125 Area under curve between x = 1 and x = 4 using the mid-ordinate rule with 6 intervals ≈ (width of interval)(sum of mid-ordinates) ≈ (0.5)( 8.125 + 11.125 + 15.125 + 20.125 + 26.125 + 33.125) ≈ (0.5)(113.75) = 56.875 and mean value = area under curve 56.875 56.875 = 18.96 = = length of base 4 −1 3 4 1 4 1 4 2 1 2 x3 1 128 2 (b) By integration, = = + = + + 20 − + 5 y y x x x x d 2 5 d 5 = ∫ ∫ 1 1 4 −1 3 3 3 3 1 3 3 = 1 ( 57 ) = 19 3 This is the precise answer and could be obtained by an approximate method as long as sufficient intervals were taken 3. The speed v of a vehicle is given by: v = (4t + 3) m/s, where t is the time in seconds. Determine the average value of the speed from t = 0 to t = 3 s. Average speed, = v 3 1 3 1 2 1 1 4 t + 3 d = t 2 t + 3 t = ( ) [(18 + 9) − (0)=] ( 27 ) = 9 m/s ∫ 0 0 3−0 3 3 3 4. Find the mean value of the curve y = 6 + x – x2 which lies above the x-axis by using an approximate method. Check the result using integration. 6 + x – x2 = (3 – x)(2 + x) and when y = 0 (i.e. the x-axis), then (3 – x)(2 + x) = 0 from which, x = 3 and x = –2 Hence the curve y = 6 + x – x2 cuts the x-axis at x = –2 and at x = 3 and at x = 0, y = 6 1147 © 2014, John Bird A sketch of y = 6 + x – x2 is shown below. 3 3 1 1 3 1 x 2 x3 2 Mean value, = = + − = + − y y x x x x x d 6 d 6 3 − −2 ∫ − 2 5 ∫ −2 5 2 3 −2 ( ) = 1 8 (18 + 4.5 − 9 ) − −12 + 2 + 5 3 = 1 (13.5 ) − ( −7.3333) 5 = 4.17 5. The vertical height h km of a missile varies with the horizontal distance d km, and is given by h = 4d – d2. Determine the mean height of the missile from d = 0 to d = 4 km. 4 4 1 1 2 d3 1 64 2 Mean height, h= − = 4 d d d d 2d − = 32 − − (0) = 2.67 km ∫ 4−0 0 4 3 0 4 3 ( ) 6. The velocity v of a piston moving with simple harmonic motion at any time t is given by: v = c sin ωt, where c is a constant. Determine the mean velocity between t = 0 and t = π /ω π /ω 1 ω c cos ωt Mean velocity, v = − ∫0 ( c sin ωt ) d t = π π ω 0 −0 ω c π = − cos ω − (cos 0) π ω =− 1148 π ω c π (−1 − 1) = 2c π © 2014, John Bird EXERCISE 287 Page 779 1. Determine the r.m.s. values of: (a) y = 3x from x = 0 to x = 4 (b) y = t2 from t = 1 to t = 3 (a) R.m.s value = (c) y = 25 sin θ from θ = 0 to θ = 2π 4 1 y2 d x = ∫ 4 − 0 0 2 1 4 3x ) d x ( = ∫ 4 0 = (b) R.m.s value = 1 3 2 = ∫ y d x 3 −1 1 = 9 64 = 4 3 144 12 = 6.928 = 3 3 1 3 2 2 = ∫ t d x 2 1 1 3 4 = ∫1 t d x 2 1 243 1 − = 5 2 5 1 242 = 2 5 ( ) 9 x3 4 4 3 0 9 4 2 = ∫0 x d x 4 1 t 5 3 2 5 1 121 11 = 4.919 = 5 5 (c) R.m.s value = 2π 2 1 25sin = θ ) dθ ( ∫ 0 2π − 0 = 252 4π 252 2π 2 = sin θ d θ ∫ 2π 0 2π sin 2θ − = θ 2 0 252 2π ∫ (note that cos2 t = (a) R.m.s value = 0 1 (1 − cos 2θ ) d θ 2 252 − (0) ] [(2π − 0)= 4π 2. Calculate the r.m.s. values of: (a) y = sin 2θ from θ = 0 to θ = (b) y = 1 + sin t from t = 0 to t = 2π 2π 252 25 or 17.68 = 2 2 π 4 (c) y = 3 cos 2x from x = 0 to x = π 1 (1 + cos 2t), from Chapter 44). 2 π /4 π /4 1 sin 4θ 2 4 π /4 1 2 (1 − cos 4θ ) d θ = π ∫0 θ − ∫0 sin 2θ d θ = 2 4 0 π π −0 4 = 2 π − 0 − ( 0 ) = π 4 1149 1 = 2 1 or 0.707 2 © 2014, John Bird (b) R.m.s value = 2π 2 1 1 + sin t ) = dt ( ∫ 2π − 0 0 1 2π = 1 2π = 2π 1 3t sin 2t − 2 cos t − = 4 0 2π 2 = 3 1 = 1.225 ( 3π ) = 2 2π (c) R.m.s value = π 2 1 2x) d x ( 3cos= ∫ 0 π − 0 ∫ 2π 0 2π 9 2π 9 π 1 2π ∫ 2π 0 1 3 + 2sin t − cos 2t d t 2 2 1 ( 3π − 2 − 0 ) − ( 0 − 2 − 0 ) 2π ∫ π sin 4 x x + 4 = 0 [Note that cos 2x = 2 cos 2 x − 1 and 2 0 1 1 + 2sin t + 1 − cos 2 t = d t ( ) 2 = from which, cos 2 = 2x ∫ (1 + 2sin t + sin t ) d t π 0 2 = cos 2x d x 9 π 1 ∫ 2 (1 + cos 4 x ) d x π 0 9 ( 0 ) (π + 0 ) −= 2π 9 or 2.121 2 cos 4x = 2 cos 2 2 x − 1 1 (1 + cos 4 x ) ] 2 3. The distance p of points from the mean value of a frequency distribution are related to the variable q by the equation p = 1 + q. Determine the standard deviation (i.e. the r.m.s. value), q correct to 3 significant figures, for values from q = 1 to q = 3 2 1 3 1 + = q dq 3 − 1 ∫1 q Standard deviation = r.m.s. value = = 1 3 1 2 ∫1 2 + 2 + q dq 2 q 3 −1 q 3 1 q + 2q + = 3 1 2 −1 1 1 1 − + 6 − 9 − −1 + 2 + 3 2 2 = 1 (13.3333) = 2.58 2 4. A current, i = 30 sin 100πt amperes is applied across an electric circuit. Determine its mean and r.m.s. values, each correct to 4 significant figures, over the range t = 0 to t = 10 ms. 1150 © 2014, John Bird 10×10−3 10×10−3 1 30 Mean value = 30sin100π t = d t 100 − cos100π t ( ) −3 ∫ 10 ×10 − 0 0 100π 0 = − 100(30) cos(100π ×10 ×10−3 ) − cos 0 100π = − 30 π 30 60 π π [cos π − cos 0] =− [ −1 − 1] = = 19.10 A r.m.s. value = 10×10−3 1 302 sin 2 100π t d t = −3 ∫ 0 10 ×10 − 0 (100)(30) 2 ∫ 10×10−3 0 1 (1 − cos 200π t ) d t 2 1 (1 − cos 2 A) 2 since cos 2A = 1 – 2sin 2 A from which, sin 2= A 10×10−3 sin 200π t = t − 200 π 0 = (100)(30) 2 2 = (100)(30) 2 10 ×10−3 = 2 (100)(30) 2 sin 2π −3 10 ×10 − 2 200π − (0 − sin 0) 302 30 = 21.21 A = 2 2 5. A sinusoidal voltage has a peak value of 340 V. Calculate its mean and r.m.s. values, correct to 3 significant figures. For a sine wave, mean value = and r.m.s. value = 2 π 2 × peak value = × 340 = 216 V π 1 1 × peak value = × 340 = 240 V 2 2 6. Determine the form factor, correct to 3 significant figures, of a sinusoidal voltage of maximum value 100 volts, given that form factor = r.m.s.value average value For a sine wave, 1151 © 2014, John Bird average value = form factor = π × peak value= 2 π ×100 = 63.66 V 1 1 × peak value= ×100 = 70.71 V 2 2 r.m.s. value = and 2 r.m.s.value 70.71 = 1.11 = average value 63.66 7. A wave is defined by the equation: v = E1 sin ωt + E3 sin 3ωt where E1 , E3 and ω are constants. Determine the r.m.s. value of v over the interval 0 ≤ t ≤ 1 r.m.s. value = π −0 ω ∫ ∫ ∫ 0 π ω 0 π ω 0 sin 2 ωt d t = sin 2 3ωt d t = ∫ ( E sin ωt + E 0 1 3 sin 3ωt ) d(ωt ) 2 ω ωπ 2 2 E1 sin ωt + 2 E1 E3 sin ωt sin 3ωt + E32 sin 2 3ωt ) d(ωt ) ( ∫ 0 π = π ω π ω π ω ∫ π ω 1 − cos 2ωt dt = 2 0 ∫ π ω 0 π π t sin 2ωt ω π 2 − 4ω = 2ω − 0 − (0 − 0) = 2ω 0 1 − cos 6ωt dt = 2 π π t sin 6ωt ω π 2 − 12ω = 2ω − 0 − (0 − 0) = 2ω 0 π π 1 ω sin 3ωt sin ωt d t = ω − sin ωt sin 3ωt d t = ∫0 ∫0 2 ( cos 4ωt − cos 2ωt ) d t π 1 sin 4ωt sin 2ωt ω 1 0 = − − = − [ (0 − 0) − (0 − 0) ] = 2 4ω 2ω 0 2 Hence, r.m.s. value = E12 E32 ω π 2 π 2 + = + E E π 2ω 1 2ω 3 2 2 = E12 + E32 2 1152 © 2014, John Bird