Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
DR. YOU: TRIGONOMETRY FORMULAS SHEET: MATH 1112 Fundamental tan ๐ = Identities Half angle Formulas sin ๐ cos ๐ cot ๐ = cos ๐ sin ๐ cot ๐ = 1 tan ๐ csc ๐ = sin2 ๐ + cos 2 ๐ = 1 tan2 ๐ + 1 = sec 2 ๐ ๐ 1 โ cos ๐ sin ( ) = ±โ 2 2 ๐ 1 + cos ๐ cos ( ) = ±โ 2 2 1 sin ๐ sec ๐ = 1 cos ๐ cot 2 ๐ + 1 = csc 2 ๐ ๐ 1 โ cos ๐ tan ( ) = 2 sin ๐ ๐ Formulas ( the sign is determined by the quadrant of 2 ) 2 tan ๐ sin(2๐) = 2 sin ๐ cos ๐ tan(2๐) = 1 โ tan2 ๐ Sum and sin(๐ + ๐) = sin ๐ cos ๐ + cos ๐ sin ๐ difference sin(๐ โ ๐) = sin ๐ cos ๐ โ cos ๐ sin ๐ Formulas cos(๐ + ๐) = cos ๐ cos ๐ โ sin ๐ sin ๐ Double angle cos(2๐) = cos 2 ๐ โ sin2 ๐ cos(2๐) = 2 cos2 ๐ โ 1 cos(๐ โ ๐) = cos ๐ cos ๐ + sin ๐ sin ๐ Sum to product Formulas Product to Sum Formulas Solving ๐+๐ ๐โ๐ ) cos ( ) 2 2 ๐โ๐ ๐+๐ sin ๐ โ sin ๐ = 2 sin ( ) cos ( ) 2 2 1 sin ๐ sin ๐ = {cos(๐ โ ๐) โ cos(๐ + ๐)} 2 1 sin ๐ cos ๐ = {sin(๐ + ๐) + sin(๐ โ ๐)} 2 sin ๐ + sin ๐ = 2 sin ( 1 2 cos(2๐) = 1 โ 2 sin2 ๐ tan(๐ + ๐) = tan ๐ + tan ๐ 1 โ tan ๐ tan ๐ tan(๐ โ ๐) = tan ๐ โ tan ๐ 1 + tan ๐ tan ๐ ๐+๐ ๐โ๐ cos ๐ + cos ๐ = 2 cos ( ) cos ( ) 2 2 ๐+๐ ๐โ๐ cos ๐ โ cos ๐ = โ2 sin ( ) sin ( ) 2 2 1 cos ๐ cos ๐ = {cos(๐ โ ๐) + cos(๐ + ๐)} 2 Area = ๐๐ sin(๐ถ) or Area = โ๐ (๐ โ ๐)(๐ โ ๐)(๐ โ ๐), ๐ = LAW OF Sines LAW of Cosines Triangles sin(๐ด) sin(๐ต) sin(๐ถ) = = ๐ ๐ ๐ Complex numbers ๐ 2 = ๐2 + ๐ 2 โ 2๐๐ cos(๐ถ) Let ๐ง1 = ๐1 (cos(๐) + ๐ sin(๐)) and ๐ง2 = ๐2 (cos(๐) + ๐ sin(๐)) โก ๐ง1 ๐ง2 = ๐1 ๐2 (cos(๐ + ๐) + ๐ sin(๐ + ๐)) โก ๐ง1 ๐ง2 ๐ = ๐1 (cos(๐ โ ๐) + ๐ sin(๐ โ ๐)) 2 Let ๐ง = ๐ + ๐๐ be a complex number โก The conjugate of ๐ง is ๐งฬ = ๐ โ ๐๐ โก |๐ง| = โ๐2 + ๐ 2 Vector Let ๐ฏ = ๐1 ๐ข + ๐1 ๐ฃ and ๐ฐ = ๐2 ๐ข + ๐2 ๐ฃ ๐ฏ โก Unit vector in same direction as ๐ฃ is ๐ฎ = โ๐ฏโ , โ๐ฏโ = โ๐1 2 + ๐1 2 โก Dot product: ๐ฏ ๏ ๐ฐ = ๐1 ๐2 + ๐1 ๐2 ๐ฏ๏๐ฐ โก If ๐ is between vectors ๐ฃ and ๐ค:cos ๐ = โ๐ฏโโโ๐ฐโ ๐+๐+๐ 2 1 DR. YOU: TRIGONOMETRY PRACTICE PROBLEMS FOR TRIGONOMETRY FINAL 1. Convert 84° to exact radian measure. (A) 11๐ 15 2. Convert (B) 13๐ 12 7๐ 15 (C) 7๐ 6 7๐ 7 12 (D) 12 (E) (D) 225° (E) 235° to exact degree measure. (A) 105° (B) 135° (C) 195° 20๐ ). 3 3. Evaluate cos ( (A) โ3 2 (B) โ โ3 2 1 1 2๐ 3 (D) โ 2 (E) (D) โ1.7710 (E) โ0.8253 (D) โ0.2958 (E) None of above (C) โ0.7° (D) โ67.6° (E) None of above (C) 66.4° (D) 21.8° (E) None of above (C) 2 4. Use a calculator to evaluate csc(โ0.6). Round to 4 decimal places. (A) 1.2116 (B) 1.0001 (C) โ1.2116 5. Find the approximate radian value for cos โ1(โ0.2915). (A) 0.2874 (B) โ1.2750 (C) 1.8666 6. Find the approximate degree for sinโ1 (โ0.6257). (A) โ38.7° (B) 51.3° 7. Find the approximate degree for sec โ1(2.5). (A) 0.5° (B) 23.6° 8. Tom is riding a bike with 14-inch diameter wheels which are rotating 6 revolutions per second. What is his linear speed in feet per minute? (A) 527.79 (B) 659.73 (C) 1319.47 (D) 2638.94 (E) None of above 9. Find the length of the arc subtended by a central angle of 135° on a circle of radius 4 meters. (A) 6๐ m (B) 36๐ m (C) 540 m (D) 1.5๐ m (E) 3๐ m 10. A child is spinning a rock at the end of a 2-foot rope at the rate of 180 revolutions per minute (rpm). Find the angular speed of the rock in radian per minute. (A) 180๐ (B) 360๐ (C) ๐ 2 (D) 2๐ (E) ๐ 11. Find the area of a sector a circle with the radius of 10 cm and a central angel of 120°. Round to the nearest hundredth of a square centimeter. (A) 600.00 (B) 104.72 (C) 209.44 (D) 10.92 (E) 657.97 2 DR. YOU: TRIGONOMETRY 12. A car is traveling 55 mph. If the radius of the wheel is 11 inches, find the angular velocity in revolutions per minute. (A) 600 rpm (B) 695 rpm (C) 735 rpm (D) 840 rpm (E) 1200 rpm 13. The graph shown below is the graph of which trigonometric function over the domain from โ2๐ โค ๐ฅ โค 2๐ with ๐ฅaxis scale of ๐ 2 and ๐ฆ-axis scale of 1. (A) ๐ฆ = cos ๐ฅ 4 (B) ๐ฆ = sec ๐ฅ 2 ฯ 2ฯ ฯ (C) ๐ฆ = cot ๐ฅ 2ฯ (D) ๐ฆ = csc ๐ฅ 2 4 ๐ 2 14. Graph the function ๐ฆ = 5 sin (2๐ฅ โ ) over the domain from [โ2๐, 2๐] with ๐ฅ-axis scale of (A) 4 2 ฯ and ๐ฆ-axis scale of 1. (B) 4 2ฯ ๐ 2 2 ฯ 2ฯ ฯ 2ฯ 2 ฯ 2ฯ ฯ 2ฯ 2 4 4 (C) (D) 4 4 2 2 2ฯ ฯ ฯ ฯ 2ฯ 2ฯ 2 2 4 4 Instructions for questions 14-16. Find the values of the indicated trigonometric functions of the angle ๐, which is in standard position with the terminal side passing through the point ๐(12, โ5). 15. Find the value of the sine function, sin ๐, using the point ๐ listed above. 5 (A) โ 13 5 (B) 12 12 (C) โ 13 12 (E) โ 12 12 (E) โ 12 12 5 (E) โ (D) 13 5 16. Find the value of the cosine function, cos ๐, using the point ๐ listed above. 5 (A) โ 13 5 (B) 12 12 (C) โ 13 (D) 13 5 17. Find the value of the cotangent function, cot ๐, using the point ๐ listed above. 13 (A) โ 12 5 (B) 12 5 (C) โ 12 (D) 12 5 3 DR. YOU: TRIGONOMETRY 18. If the function ๐ฆ = cot(๐ฅ) is graphed over the domain โ2๐ โค ๐ฅ โค 2๐, this graph has vertical asymptotes (VA) and ๐ฅintercepts at the following: (A) VA at โ2๐, โ๐, 0 ๐, 2๐ and ๐ฅ-intercepts at โ (B) VA at โ 3๐ ๐ ๐ 3๐ ,โ2,2, 2 2 (C) VA at โ 3๐ ๐ , โ 4, 4 (D) VA at โ 3๐ ๐ ๐ 3๐ ,โ2,2, 2 2 3๐ ๐ ๐ 3๐ ,โ2,2, 2 2 and ๐ฅ-intercepts at โ2๐, โ๐, 0, ๐, 2๐ ๐ 3๐ , 4 4 and ๐ฅ-intercepts at โ and ๐ฅ-intercepts at โ 3๐ ๐ ๐ 3๐ ,โ2,2, 2 2 3๐ ๐ , โ 4, 4 ๐ 3๐ , 4 4 ๐ฅ 2 19. State the amplitude(A) and period(P) of the graph of ๐(๐ฅ) = 3 sin ( ). (A) ๐ด = 3 ; ๐ = (D) ๐ด = 1 2 ๐ 2 (B) ๐ด = 3 ; ๐ = ๐ (C) ๐ด = 3 ; ๐ = 4๐ (E) None of these ;๐ = 3 20. State the period of the function ๐(๐ฅ) = โ2 tan(4๐ฅ). (A) ๐ (B) 2๐ (C) 4๐ (D) ๐ 2 (E) ๐ 4 (E) 3 4 4 5 21. If ๐ is an acute angle in the standard position and cos ๐ = , find the value of sin ๐. 4 4 (A) 3 22. Given that sin ๐ = โ (A) โ3 3 โ3 2 3 5 (B) 5 (D) 5 (C) 3 for an angle in quadrant IV, find the exact value of cot ๐. (B) โ โ3 3 (C) โ3 (D) โโ3 1 (E) โ 2 1 23. Find the exact value of cosโ1 (โ 2). (A) โ ๐ 3 (B) โ ๐ 6 (C) ๐ 6 (D) ๐ 3 (E) 2๐ 3 (D) 12 5 (E) 13 12 (E) 3 4 (E) 7๐ 5 5 24. Find the exact value of sin (cos โ1 (13)). (A) 67.4° 12 5 (B) 13 (C) 12 3 25. Find the exact value of cos (tanโ1 (โ 4)) 4 (A) โ 5 4 3 (C) โ 5 (B) 5 26. Find the exact value of sinโ1 (sin (โ (A) 2๐ 5 (B) โ 2๐ 5 3 (D) 5 3๐ )) 5 (C) 3๐ 5 (D) โ 3๐ 5 4 DR. YOU: TRIGONOMETRY 27. Write cos(2๐ฅ) cos(3๐ฅ) โ sin(2๐ฅ) sin(3๐ฅ) in terms of a single trigonometric function. (A) sin(โ๐ฅ) (B) sin(5๐ฅ) (C) cos(๐ฅ) 3 5 (D) cos(5๐ฅ) (E) None of these ๐ 2 28. Find the exact value of cos(2๐ฅ) if sin ๐ฅ = and 0 < ๐ฅ < . (A) โ 4 5 (B) 7 25 (C) โ 4 5 29. Given cos ๐ผ = โ with ๐ผ in quadrant II and sin ๐ฝ = โ 56 (B) (A) 65 36 25 18 25 5 13 (D) (E) โ 7 25 with ๐ฝ in quadrant IV, find the exact value of sin(๐ผ + ๐ฝ). 36 65 (E) None of these (D) โ 65 33 (E) None of these (D) 2 โ โ2 (E) None of these 56 (D) โ (C) โ 65 63 (C) โ2 โ 1 (C) โ 65 4 18 25 12 30. Find the exact value of sin [cosโ1 (5) + sinโ1 (โ 13)]. 63 33 (A) 65 (B) 65 31. Use a half-angle formula to evaluate tan(22.5°). (A) 2โ2 โ 2 (B) โ2 + 2 32. Use a half-angle formula to evaluate sin(15°) (A) โ2โโ2 (B) 2 โ2+โ2 2 (C) โ2โโ3 (D) 2 โ2+โ3 (E) None of these 2 33. Find the length of the indicated side, ๐ฅ, in the right triangle below; (A) 10.064 cm 57° 12 cm (B) 14.308 cm (C) 6.537 cm (D) 22.033 cm x cm (E) 18.478 cm 34. A 22-foot extension ladder leaning against a building makes a 70° angle with the ground. How far up the building does the ladder touch? (A) 17.026 ft (B) 20.67 ft (C) 23.41 ft (D) 6104.89 ft (E) None of these 35. To find the distance across a canyon from point B to point C, a surveying team locates points A and B on one side of the canyon and point C on the other side of the canyon. The distance between A and B is 92 yards. Angle CAB measures 67°, and angle CBA is 89°. Find the distance across the canyon from point B to point C. Round to the nearest yard. (A) 150 yd (B) 208 yd (C) 230 yd (D) 248 yd (E) 350 yd 5 DR. YOU: TRIGONOMETRY 36. The measure of the angle of elevation from a position 65 feet from the base to the top of a flagpole is 32°. Find the height of the flagpole to the nearest tenth of a foot. (A) 34.4 ft (B) 40.6 ft (C) 55.1 ft (D) 72.4 ft (E) 104.0 ft 37. Find the measure of angle ๐ด of a right triangle if ๐ = 25 cm, ๐ถ = 90°, and ๐ = 14 cm (A) 29° (B) 34° (C) 56° (D) 61° (E) None of these 38. Find the measure of angle ๐ต in a triangle ABC if ๐ = 24 m, ๐ = 47m and ๐ด = 36°. (A) 18° (B) 18°, 163° (C) 60° (D) 54° (E) None of these 39. In a triangle ABC, ๐ = 10 km, ๐ = 20 km, and ๐ถ = 110°. Find the length of the side ๐. (A) 20.8 km (B) 19.1 km (C) 25.2 km (D) 23.8 km (E) None of these 40. In a triangle ABC, ๐ = 21 ft, ๐ = 19 ft, and ๐ = 25 ft. Find the measure of the angle ๐ต. (A) 48° (B) 42° (C) 55° (D) 77° (E) 65° 41. In a triangle ABC, ๐ = 10 m, ๐ = 6 m, and ๐ถ = 61°. Find the area of the triangle ABC. Round to the nearest square meter. (A) 15 m2 (B) 26 m2 (C) 30 m2 (D) 52 m2 (E) 105 m2 42. In a triangle ABC, ๐ = 24 ft, ๐ = 28 ft, and ๐ = 30 ft. Find the area of the triangle ABC. Round to the nearest square feet. (A) 285 ft 2 (B) 316 ft 2 (C) 336 ft 2 (D) 909 ft 2 (E) 99671 ft 2 43. Two observation points A and B (which are left side of an airplane) are 950 ft apart. From these points the angle of elevation of an airplane are 52° and 57°, respectively. Find the height of the airplane. (A) 1462.87 ft (B) 1215.94 ft (C) 7000.98 ft (D) 7203.63 ft (E) 9500 ft 44. A boat travels at 55 mph for one hour at a bearing of 315°. Then the boat travels at 50 mph for 2 hours at a bearing of 225°. At the end of these 3 hours, how far is the boat form the starting point? Round to the nearest mile. (A) 74 miles (B) 90 miles (C) 105 miles 45. The polar coordinates of a point are given as (โ5, 5โ2 5โ2 , 2 ) 2 (A) ( (B) (โ 5โ2 5โ2 , 2 ) 2 7๐ ). 4 (D) 110 miles (E) 114 miles Find the rectangular coordinates for this point. 5โ2 5โ2 ,โ 2 ) 2 (C) ( (D) (โ 5โ2 5โ2 ,โ 2 ) 2 5 5โ3 ) 2 (E) (2 , 6 DR. YOU: TRIGONOMETRY 46. The rectangular coordinates of a given point are given as (1, โโ3). Find an equivalent pair of the polar coordinates. ๐ (A) (2, 3 ) (B) (2, 2๐ ) 3 (C) (2, 4๐ ) 3 (D) (2, 5๐ ) 3 2๐ ) 3 (E) (2, โ 47. Write ๐ง = โ1 โ ๐โ3 in polar form. 4๐ 4๐ (A) โ3 [cos ( 3 ) + ๐ sin ( 3 )] ๐ ๐ (D) โ3 [cos ( 3 ) + ๐ sin ( 3 )] ๐ ๐ (B) 2 [cos ( 3 ) + ๐ sin ( 3 )] 7๐ 4๐ 4๐ (C) 2 [cos ( 3 ) + ๐ sin ( 3 )] 7๐ (E) 2 [cos ( 6 ) + ๐ sin ( 6 )] 48. Write ๐ง = 6[cos(60°) + ๐ sin(60°)] in the standard form ๐ฅ + ๐๐ฆ. (A) 3 + 3โ3๐ (B) 3โ3 + 3๐ (C) 6 + 6โ3๐ (E) None of these (D) 6โ3 + 6๐ 49. Find the product ๐ง๐ค of ๐ง = 2[cos(155°) + ๐ sin(155°)] and ๐ค = 6[cos(275°) + ๐ sin(275°)] (A) 8[cos(130°) + ๐ sin(130°)] (B) 12[cos(70°) + ๐ sin(70°)] (D) 12[cos(120°) + ๐ sin(120°)] (E) 3[cos(120°) + ๐ sin(120°)] 5๐ (C) 12[cos(265°) + ๐ sin(265°)] 5๐ 50. Write {2 [cos ( 16 ) + ๐ sin ( 16 )]} 4 in the standard form ๐ฅ + ๐๐ฆ. 5๐ 5๐ (B) 2 [cos ( 4 ) + ๐ sin ( 4 )] 9๐ 16 9๐ 16 (E) 16 [cos ( ) + ๐ sin ( )] (A) 8 [cos ( 4 ) + ๐ sin ( 4 )] (D) 8 [cos ( ) + ๐ sin ( )] 5๐ 9๐ 16 5๐ 5๐ 5๐ (C) 16 [cos ( 4 ) + ๐ sin ( 4 )] 9๐ 16 8 51. Write (1 + โ3 ๐) in the standard form ๐ฅ + ๐๐ฆ. (A) 128 โ 128โ3 ๐ (B) โ4 + 4โ3 ๐ (D) 4 โ 4โ3 ๐ (E) None of these (C) โ128 + 128โ3 ๐ 52. Convert 36°9โฒ to decimal degree. (A) 36.1° (B) 36.9° (C) 36.15° (D) 36.05° (E) 36.8° 53. Given the vector, โโโโโ ๐๐ , whose initial point is ๐ = (โ2,4) and whose terminal point is ๐ = (4, โ3), the position vector, โโโโโ , is given by v, which is equal to vector, ๐๐ (A) 6๐ข + ๐ฃ (B) 6๐ข โ 7๐ฃ (C) 2๐ข + ๐ฃ (D) โ3๐ข โ ๐ฃ (E) โ6๐ข + 7๐ฃ 54. If ๐ is the angle between the two vectors, v and w, find the measure of angle ๐ in degrees, where v = 2๐ข โ 3๐ฃ and w = 4๐ข + 2๐ฃ. Round to the nearest tenth. (A) 82.9° (B) 29.7° (C) 3.1° (D) 60.3° (E) 71.9° 7 DR. YOU: TRIGONOMETRY 55. An airplane is traveling due south at 500 mph (the airplane vector is ๐ฏ๐ = โ500 ๐ฃ). The wind is blowing southeast at 40 mph (the wind vector is ๐ฏ๐ฐ = 20โ2๐ข โ 20โ2 ๐ฃ). The airplaneโs actual vector as measured from the ground will be given by the vector, ๐ฏ๐ = ๐ฏ๐ + ๐ฏ๐ฐ . What is the airplaneโs speed as measured from the ground? Round to the nearest mile per hour. (A) 473 mph (B) 529 mph (C) 645 mph (D) 560 mph (E) None of these 56. Solve the equation on 0 โค ๐ฅ < 2๐: (sec ๐ฅ + 2)(tan ๐ฅ โ 1) = 0. 2๐ 4๐ ๐ 5๐ , , } 3 4 4 (B) { 3 , ๐ 4๐ ๐ 5๐ , , } 3 4 4 2๐ 4๐ ๐ 7๐ , , , } 3 3 4 4 (E) None of these (A) { 3 , (D) { 2๐ 5๐ 3๐ 7๐ , , } 3 4 4 (C) { 3 , 57. Solve the equation on 0 โค ๐ฅ < 2๐: sin ๐ฅ = sin ๐ฅ cos ๐ฅ. ๐ (A) { } 2 58. Find the equivalent expression of (A) sin ๐ฅ ๐ 3๐ } 4 4 (B) {0, ๐} cos2 ๐ฅ sin ๐ฅ ๐ 3๐ } 2 2 (C) { , (D) { , (E) None of these (C) sec ๐ฅ (D) csc ๐ฅ (E) tan ๐ฅ (D) โ120 (E) None of these + sin ๐ฅ. (B) cos ๐ฅ 59. Let ๐ฏ = โ8๐ข + 15๐ฃ be a vector. Find the magnitude of ๐ฏ, โ๐ฏโ. (A) 7 (B) 23 (C) 17 60. Find the force (independent of friction) required to keep a 1000-pound crate from sliding down a ramp that is inclined 10° to the horizontal. Round to the nearest pound. (A) 100 (B) 177 (C) 985 (D) 174 (E) None of these (B) 2โ2 (C) โ34 (D) 34 (E) 8 61. Find |๐ง| if ๐ง = 5 โ 3๐. (A) 2 62. Compute the cube root of 8 and write your answer in the standard form ๐ฅ + ๐๐ฆ. (A) 2, โโ3 ± ๐ (B) 2, 1 ± โ3 ๐ (D) 2, โ1 ± โ3 ๐ (E) None of these (C) 2, โ1 ± ๐ 63. Let v = โ2๐ข + 3๐ฃ and w = 6๐ข + 4๐ฃ. Find the dot product ๐ฏ โ ๐ฐ. (A) 0 (B) 11 (C) 24 (D) 10 (E) 90° 8 DR. YOU: TRIGONOMETRY SOLUTIONS 1 B 16 D 31 C 46 D 61 C 2 C 17 E 32 C 47 C 62 D 3 D 18 A 33 A 48 A 63 A 4 D 19 C 34 B 49 B 5 C 20 E 35 B 50 C 6 A 21 D 36 B 51 C 7 C 22 B 37 C 52 C 8 C 23 E 38 E 53 B 9 E 24 B 39 C 54 A 10 B 25 B 40 A 55 B 11 B 26 B 41 B 56 A 12 D 27 D 42 B 57 B 13 D 28 B 43 D 58 D 14 B 29 A 44 E 59 C 15 A 30 D 45 B 60 D 9