Download MATH 155 — Solutions to Quiz #1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Trigonometric functions wikipedia , lookup

Transcript
MATH 155 — Solutions to Quiz #1
February 09, 2000
Problem 1
We consider the function g(x) = tan x cos x on the interval (− π2 , + π2 ).
(a) Setting u(x) = tan x and v 0 (x) = cos x use integration by parts to find
Z
tan
| {z x} cos
| {z x} dx.
u
v0
(b) Show an alternate way (not involving integration by parts) of obtaining the antiderivative of the
function tan x cos x.
(a)
Z
tan
| {z x} cos
| {z x} dx = tan
| {z x} sin
| {zx} −
u
u
v0
Z
v
1
sin x dx
2 | {z }
|cos
{z x}
(1pt)
v
u0
1
sin2 x
1
+C =
−
+C
cos x
cos x
cos x
sin2 x − 1
cos2 x
+c=−
+ c = − cos x + C.
cos x
cos x
= tan x sin x −
(2pts)
=
(1pt)
The integral
sin x
dx
cos2 x
can be evaluated using the substitution y = cos x, dy = − sin xdx.
Z
(b) (2 pts). Observe that tan x cos x = sin x on the given interval, hence
Z
Problem 2
tan x cos x dx =
Z
sin x dx = − cos x + C.
Use trigonometric substitution to find
Z
√
1
dx.
4 − x2
The following formulas are used:
x = 2 sin t
(1pt)
dx = 2 cos tdt
p
4 − x2 =
(1pt)
q
4 − 4 sin2 t = 2 cos t.
(1pt)
This gives
Z
1
2 cos t
√
dx =
dt = 1dt
2
2 cos t
4−x
= t+C
−1 x
= sin
+C
2
Z
Z
1
(1pt)
(1pt)
(1pt).
Problem 3
Use partial fractions to find the antiderivative of
x−8
f (x) =
(x + 1)(x − 2)
(a) Write down the partial fractions.
(b) Use the partial fractions to find
R
f (x) dx.
(a)
x−8
A
B
=
+
(x + 1)(x − 2)
x+1 x−2
(x − 8) = A(x − 2) + B(x + 1)
Set x = 2: − 6 = 3B
Set x = −1: − 9 = −3A
(1pt)
⇒ B = −2,
(1pt)
⇒ A = 3.
(1pt)
or solve system of two equations,
A + B =
1
−2A + B = −8
giving the same solution A = 3, B = −2. Hence
3
2
x−8
=
−
.
(x + 1)(x − 2)
x+1 x−2
(b)
x−8
dx = 3 ln |x + 1| − 2 ln |x − 2| + C
(x + 1)(x − 2)
= ln |x + 1|3 − ln(x − 2)2 + C
|x + 1|3
= ln
+ C.
(x − 2)2
Z
Any of these answers is o.k.; 3 points total. Deduct 1 point for missing constant C, deduct 1 pt for
missing absolute value signs (where necessary).
Problem 4
Evaluate the following integrals. 2 points each; 1 point if answer is somewhat
close to correct one.
Z x
d
2
2
e2t dt
= e2x .
dx 0
Z
x
h
ix
d 3
(t − 1) dt = t3 − 1 = x3 − 1.
1
dt
1
d
dx
Z
π/2
0
1
= 0.
= −x2 .
π/4
d
dx
Z
sin t dt
!
Z
0
x
2
t dt
2
h
i1
d π
π2
−1
2
−1
2
−1
2
−1
2
(T an x) dx = (T an x)
= (T an (1)) − (T an (0)) =
=
.
0
dx
4
16
2
Problem 5 Use substitution and integration by parts to find
1
2
Z
√ x dx.
cos
Using the substitution
t2 = x,
(1pt),
2tdt = dx
(1pt),
we obtain
Z
Z
√ 1
cos x dx = t cos t dt.
2
To evaluate this integral we use integration by parts,
1
2
Z
(1pt).
Z
Z
√ cos x dx = |{z}
t cos
t sin
1 sin
| {z }t dt = |{z}
|{z}t − |{z}
|{z}t dt
u
u
v0
v
(1pt)
v
u0
= t sin t + cos t + C
(1pt)
√
√
√
x sin x + cos x + C.
=
(1pt)
Problem 6 Evaluate the following definite integrals
(a)
Z
+2 −2
4x3 + 3x2 − 101x − 4 dx =
(b)
Z
2π
2π
Z
cos2 x dx +
0
sin2 x dx =
0
(a)
Z
+2 −2
+2
101 2
x − 4x
(2pts)
2
−2
= (16 + 8 − 202 − 8) − (16 − 8 − 202 + 8) = 0.
4x3 + 3x2 − 101x − 4 dx =
x4 + x3 −
(2pts)
Using that x3 and x are odd functions, the problem can be simplified by omitting these terms:
Z
+2 −2
4x3 + 3x2 − 101x − 4 dx =
Z
=
h
+2 −2
3x2 − 4 dx
i+2
x3 − 4x
−2
(2pts)
= (8 − 8) − (−8 + 8) = 0.
(2pts)
(b) (2 points).
Z
0
2π
cos2 x dx +
Z
2π
Z
sin2 x dx =
0
0
3
2π
(cos2 x + sin2 x) dx =
Z
0
2π
dx = 2π.
Alternatively, we can compute each of the integrals seperately. Using trigonometric identities
1
cos2 x = (1 + cos(2x)),
2
1
sin2 x = (1 − cos(2x)),
2
we get
Z
0
2π
cos2 x dx +
Z
0
2π
2π 1
1
(1 + cos(2x)) dx +
(1 − cos(2x)) dx
2
2
0
0
2π 2π
x 1
x 1
=
+ sin(2x)
+
− sin(2x)
2 4
2 4
0
0
= π + π = 2π.
sin2 x dx =
Z
2π
4
Z