Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures. These phenomena cannot be explained using simple geometrical optics, and are based on the wave nature of light. In this chapter we explore the wave nature of light and examine several key optical interference phenomena. 35- 1 Light as a Wave Huygen’s Principle: All points on a wavefront serve as point sources of spherical secondary wavelets. After time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets. Fig. 35-2 35- 2 Law of Refraction λ1 λ2 λ1 v1 → = t= = v1 v2 λ2 v2 λ1 sin θ1 = (for triangle hce) hc sin θ 2 = sin θ1 = sin θ 2 c n1 = v1 sin θ1 = sin θ 2 Fig. 35-3 λ2 hc (for triangle hcg) λ1 v1 = λ2 v2 c Index of Refraction: n = v c and n2 = v2 c n1 n2 = c n2 n1 Law of Refraction: n1 sin θ1 = n2 sin θ 2 35- 3 Wavelength and Index of Refraction λn v v λ = → λn = λ → λn = c n λ c v cn c fn = = = = f λn λ n λ The frequency of light in a medium is the same as it is in vacuum Since wavelengths in n1 and n2 are different, the two beams may no longer be in phase L L Ln1 Number of wavelengths in n1: N1 = = = Fig. 35-4 λn1 λ n1 λ L L Ln2 Number of wavelengths in n2 : N 2 = = = λn 2 λ n2 λ Ln2 Ln2 L Assuming n2 > n1: N 2 − N1 = − = ( n2 − n1 ) λ λ λ N 2 − N1 = 1/2 wavelength → destructive interference 35- 4 Rainbows and Optical Interference Fig. 35-5 The geometrical explanation of rainbows given in Ch. 34 is incomplete. Interference, constructive for some colors at certain angles, destructive for other colors at the same angles is an important component of rainbows 35- 5 Diffraction For plane waves entering a single slit, the waves emerging from the slit start spreading out, diffracting. Fig. 35-7 35- 6 Young’s Experiment For waves entering a two slit, the emerging waves interfere and form an interference (diffraction) pattern. Fig. 35-8 35- 7 Locating Fringes The phase difference between two waves can change if the waves travel paths of different lengths. What appears at each point on the screen is determined by the path length difference ∆L of the rays reaching that point. Path Length Difference: ∆L = d sin θ Fig. 35-10 35- 8 Locating Fringes if ∆L = d sin θ = ( integer )( λ ) → bright fringe Maxima-bright fringes: d sin θ = mλ for m = 0,1, 2,K Fig. 35-10 if ∆L = d sin θ = ( odd number )( λ ) → dark fringe Minima-dark fringes: d sin θ = ( m + 12 ) λ for m = 0,1, 2,K 2λ −1 1.5λ m 1 dark fringe at: sin θ = = m = 2 bright fringe at: θ = sin −1 35- 9 d d Coherence Two sources to produce an interference that is stable over time, if their light has a phase relationship that does not change with time: E(t)=E0cos(ωt+φ) Coherent sources: Phase φ must be well defined and constant. When waves from coherent sources meet, stable interference can occur. Sunlight is coherent over a short length and time range. Since laser light is produced by cooperative behavior of atoms, it is coherent of long length and time ranges Incoherent sources: φ jitters randomly in time, no stable interference occurs 35-10 Intensity in Double-Slit Interference E2 E1 = E0 sin ω t and E2 = E0 sin (ω t + φ ) 2π d I = 4 I 0 cos2 12 φ φ= sin θ λ maxima when: 12 φ = mπ for m = 0,1, 2,K → φ = 2mπ = → d sin θ = mλ for m = 0,1, 2,K E1 2π d λ sin θ (maxima) minima when: 12 φ = ( m + 12 ) π → d sin θ = ( m + 12 ) λ for m = 0,1, 2,K (minima) I avg = 2 I 0 Fig. 35-12 35-11 Proof of Eqs. 35-22 and 35-23 Eq. 35-22 E ( t ) = E0 sin ω t + E0 sin (ω t + φ ) = ? E = 2 ( E0 cos β ) = 2 E0 cos 12 φ E 2 = 4 E02 cos2 12 φ I E2 = 2 = 4 cos2 12 φ → I = 4 I 0 cos2 12 φ I 0 E0 Eq. 35-23 β + β =φ Fig. 35-13 phase path length difference difference = λ 2π phase 2π path length difference = λ difference φ= 2π λ ( d sin θ ) 35-12 Combining More Than Two Waves In general, we may want to combine more than two waves. For eaxample, there may be more than two slits. Prodedure: 1. Construct a series of phasors representing the waves to be combined. Draw them end to end, maintaining proper phase relationships between adjacent phasors. 2. Construct the sum of this array. The length of this vector sum gives the amplitude of the resulting phasor. The angle between the vector sum and the first phasor is the phase of the resultant with respect to the first. The projection of this vector sum phasor on the vertical axis gives the time variation of the resultant wave. E4 E E1 E3 E2 35-13 Interference from Thin Films φ12 = ? θ ≈0 Fig. 35-15 35-14 Reflection Phase Shifts n1 n1 n1 > n2 n1 < n2 n2 n2 Reflection Reflection Phase Shift Off lower index 0 Off higher index 0.5 wavelength Fig. 35-16 35-15 Equations for Thin-Film Interference Three effects can contribute to the phase difference between r1 and r2. 1. Differences in reflection conditions λ 2. Difference in path length traveled. 0 2 3. Differences in the media in which the waves travel. One must use the wavelength in each medium (λ / n), to calculate the phase. Fig. 35-17 ½ wavelength phase difference to difference in reflection of r1 and r2 odd number odd number 2L = × wavelength = × λn 2 (in-phase waves) 2 2 2 L = integer × wavelength = integer × λn 2 (out-of-phase waves) λn 2 = λ n2 2L = (m + 2L = m λ n2 1 2 ) λ n2 for m = 0,1, 2,K (maxima-- bright film in air) for m = 0,1, 2,K (minima-- dark film in air) 35-16 Film Thickness Much Less Than λ r1 r2 If L much less than l, for example L < 0.1λ, than phase difference due to the path difference 2L can be neglected. Phase difference between r1 and r2 will always be ½ wavelength → destructive interference → film will appear dark when viewed from illuminated side. 35-17 Color Shifting by Morpho Butterflies and Paper Currencies For the same path difference, different wavelengths (colors) of light will interfere differently. For example, 2L could be an integer number of wavelengths for red light but a half integer wavelengths for blue. Furthermore, the path difference 2L will change when light strikes the surface at different angles, again changing the interference condition for the different wavelengths of light. Fig. 35-19 35-18 Problem Solving Tactic 1: Thin-Film Equations Equations 35-36 and 35-37 are for the special case of a higher index film flanked by air on both sides. For multilayer systems, this is not always the case and these equations are not appropriate. What happens to these equations for the following system? L r2 r1 n1=1 n2=1.5 n3=1.7 35-19 Michelson Interferometer ∆L = 2d1 − 2d 2 (interferometer) ∆Lm = 2 L (slab of material of thickness L placed in front of M 1 ) 2 L 2 Ln Nm = = (number of wavelengths λm λ in slab of material) Na = Fig. 35-20 N m -N a = 2 Ln λ 2L λ (number of wavelengths in same thickness of air) 2L 2L − = ( n-1) (difference in wavelengths λ λ For each change in path by 1λ, the interference pattern shifts by one fringe at T. By counting the fringe change, one determines Nm- Na and can then solve for L in terms of λ and n. for paths with and without thin slab) 35-20