* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Find the sum of the number of faces, vertices, and edges of a
Survey
Document related concepts
Transcript
2011 – 2012 Log1 Contest Round 3 Theta Individual Name: __________________ 4 points each 1 Findthemedianandmeanforthefollowingsetofnumbers: 8,10,16,3,8,6,12,4,20,13,11,14,5 2 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear 32 and 100 212 .Unitis relationshipbetweenFahrenheitandCelsius:0 optional. 3 Findthesumofthenumberoffaces,vertices,andedgesofapyramidwhose baseisintheshapeofaregularpentagon 4 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 5 Whatisthesum1 4 9 16 ⋯ 100? Median: _____ Mean: _____ 5 points each 6 Solveforx:512 7 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 8 Simplifytheexpression. 9 10 Ifa@bmeans 8 ,evaluate6@2,where means“a itemschooseb”. Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 6 points each 11 Findthecoefficientofthex6terminthebinomialexpansionof5x 3x‐2 7. 12 Abagcontains2blue,3redand5greenballs.Billwantstoknowwhatthe probabilitywillbeofpickingablueballonhisseconddraw.Previouslydrawnballs arenotreturnedtothebag. 13 9pointsarearrangedina3rowby3columnpattern.Whatistheprobabilityof randomlyselectingthreedistinctpointsthatformatriangle? 14 3 1 0 4 2 5 , find the value of A22, the entry in the 2 9 6 8 4 7 second row and second column of A. 15 Howmanypositivefactorsdoestheexpression 20 11 have? 2011 – 2012 Log1 Contest Round 3 Alpha Individual Name: __________________ 4 points each 1 Findthemedianandmeanforthefollowingsetofnumbers: 8,10,16,3,8,6,12,4,20,13,11,14,5 2 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear relationshipbetweenFahrenheitandCelsius:0 32 and 100 212 .Unitis optional. 3 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 4 Solveforx:512 5 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 8 Median: _____ Mean: _____ 5 points each 6 Simplifytheexpression. 7 Thesymbol meansthenumberofwaysonecanchoosey itemsfromx 2 3 4 6 5 distinguishableitems.Whatis ? 0 4 1 2 3 Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 9 Abagcontains2blue,3redand5greenballs.Billwantstoknowwhatthe probabilitywillbeofpickingablueballonhisseconddraw.Previouslydrawnballs arenotreturnedtothebag. 10 DaveandMollyareplayingagamewheretheytaketurnsspinningaspinner.The spinnerhasaone‐thirdchanceofcomingup“WIN”andtwo‐thirdschanceof“PASS”. Davegoesfirstandtheytaketurnsuntiloneofthemspins“WIN”.Whatisthe probabilitythatDavewins? 8 6 points each 11 3 1 0 4 2 5 , find the value of A22, the entry in the 2 9 6 8 4 7 second row and second column of A. 12 Howmanypositivefactorsdoestheexpression 20 11 have? 13 Findthenumberofcommonprimefactorsof2002and1729. 14 Convertthisequationfrompolartorectangularform. 15 Evaluatecos 75° sin 30° 4 sin 2011 – 2012 Log1 Contest Round 3 Mu Individual Name: __________________ 4 points each 1 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear relationshipbetweenFahrenheitandCelsius:0 32 and 100 212 .Unitis optional. 2 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 3 Solveforx:512 4 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 5 Simplifytheexpression. 8 5 points each 6 Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 7 Findthecoefficientofthex6terminthebinomialexpansionof5x 3x‐2 7. 8 9pointsarearrangedina3rowby3columnpattern.Whatistheprobabilityof randomlyselectingthreedistinctpointsthatformatriangle? 9 Thereare5coinsinabox.2havea40%chanceoflandingonheadsandtheother3 arefaircoins.Ifyoupicktwoatrandomandflipthem,whatistheprobabilitythat theywillbothbetails?Expressasapercentage. 10 Howmanypositivefactorsdoestheexpression 20 11 have? 6 points each 11 Whatisthesmallestpositivethree‐digitnumberthathasaremainderof2when dividedby3,aremainderof4whendividedby5andaremainderof6whendivided by7? 12 Convertthisequationfrompolartorectangularform. 4 sin 13 Evaluatecos 75° 14 Giventhefunction7 5. 15 Calculatethevolumeofanobjectthatisproducedwhenthefunction 3 2onthedomainx 0,4 isrevolvedaroundthex‐axis. sin 30° 2,determinethevalueof when 2011 – 2012 Log1 Contest Round 3 Theta Individual Name: __________________ 4 points each 1 Findthemedianandmeanforthefollowingsetofnumbers: 8,10,16,3,8,6,12,4,20,13,11,14,5 2 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear relationshipbetweenFahrenheitandCelsius:0 32 and 100 212 .Unitis optional. 113 3 Findthesumofthenumberoffaces,vertices,andedgesofapyramidwhose baseisintheshapeofaregularpentagon 22 4 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 1 5 Whatisthesum1 4 9 16 ⋯ Median: __10_ Mean: __10_ 100? 385 5 points each 6,‐3 6 Solveforx:512 7 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 8 Simplifytheexpression. 9 10 Ifa@bmeans 8 4:42 5 34 7 18 ,evaluate6@2. Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 900,900 6 points each 11 Findthecoefficientofthex6terminthebinomialexpansionof5x 12 Abagcontains2blue,3redand5greenballs.Billwantstoknowwhatthe probabilitywillbeofpickingablueballonhisseconddraw.Previouslydrawnballs arenotreturnedtothebag. 1 5 13 9pointsarearrangedina3rowby3columnpattern.Whatistheprobabilityof randomlyselectingthreedistinctpointsthatformatriangle? 19 21 14 3 1 0 4 2 5 , find the value of A22, the entry in the 2 9 6 8 4 7 second row and second column of A. A22 ‐87 15 Howmanypositivefactorsdoestheexpression 20 11 have? 3x‐2 7. 102060 45 2011 – 2012 Log1 Contest Round 3 Alpha Individual Name: __________________ 4 points each 1 Findthemedianandmeanforthefollowingsetofnumbers: 8,10,16,3,8,6,12,4,20,13,11,14,5 2 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear relationshipbetweenFahrenheitandCelsius:0 32 and 100 212 .Unitis optional. 3 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 4 Solveforx:512 5 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 8 Median: __10_ Mean: __10_ 113 1 6,‐3 4:42 5 points each 6 Simplifytheexpression. 7 Thesymbol 8 meansthenumberofwaysonecanchoosey itemsfromx 2 3 4 6 5 distinguishableitems.Whatis ? 0 2 4 1 3 Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 5 34 35 900,900 9 Abagcontains2blue,3redand5greenballs.Billwantstoknowwhatthe probabilitywillbeofpickingablueballonhisseconddraw.Previouslydrawnballs arenotreturnedtothebag. 1 5 10 DaveandMollyareplayingagamewheretheytaketurnsspinningaspinner.The spinnerhasaone‐thirdchanceofcomingup“WIN”andtwo‐thirdschanceof“PASS”. Davegoesfirstandtheytaketurnsuntiloneofthemspins“WIN”.Whatisthe probabilitythatDavewins? 3 5 6 points each 11 3 1 0 4 2 5 , find the value of A22, the entry in the 2 9 6 8 4 7 second row and second column of A. 12 Howmanypositivefactorsdoestheexpression 20 11 have? 45 13 Findthenumberofcommonprimefactorsof2002and1729. 2 14 Convertthisequationfrompolartorectangularform. 15 Evaluatecos 75° sin 30° 4 sin A22 ‐87 4 orequivalent √ or equivalent 2011 – 2012 Log1 Contest Round 3 Mu Individual Name: __________________ 4 points each 1 Fred,inNewYorkcheckedhisthermometerandhesawthatitwas45° Fahrenheit. Hecallshisfriend,Sergei,inRussiaandtellshimthatitwas45°.Sergeithoughtwe meant45°Celsius.IndegreesFahrenheit,whatis45°Celsius.Thereislinear relationshipbetweenFahrenheitandCelsius:0 32 and 100 212 .Unitis optional. 2 Theseventhelementofanarithmeticsequenceis22andtheeleventh elementis36.Whatisthefirstelement? 3 Solveforx:512 4 Ifadigitalclockstartsatmidnight,12:00,andlosesone secondeveryhour,what timewilltheclockreadinthreeyears?Assumethereare365daysinayear. 5 Simplifytheexpression. 8 113 1 6,‐3 4:42 5 34 5 points each 6 Howmanycombinationsof13lightbulbslinedupinastraightrowwilltherebeif youhave4red,4green,3yellowand2blue? 900,900 7 Findthecoefficientofthex6terminthebinomialexpansionof5x 3x‐2 7. 102060 8 9pointsarearrangedina3rowby3columnpattern.Whatistheprobabilityof randomlyselectingthreedistinctpointsthatformatriangle? 9 Thereare5coinsinabox.2havea40%chanceoflandingonheadsandtheother3 arefaircoins.Ifyoupicktwoatrandomandflipthem,whatistheprobabilitythat theywillbothbetails?Expressasapercentage. 10 Howmanypositivefactorsdoestheexpression 20 11 have? 19/21 29.1% 45 6 points each 11 Whatisthesmallestpositivethree‐digitnumberthathasaremainderof2when dividedby3,aremainderof4whendividedby5andaremainderof6whendivided by7? 12 Convertthisequationfrompolartorectangularform. 4 sin 13 Evaluatecos 75° 104 4 or equivalent √ sin 30° orequivalent 14 Giventhefunction7 15 Calculatethevolumeofanobjectthatisproducedwhenthefunction 3 2onthedomainx 0,4 isrevolvedaroundthex‐axis. 2,determinethevalueof when 5. 1 10 14672 15 2011 – 2012 Log1 Contest Round 3 Individual Solutions Mu Al 1 Th 1 Solution Median:10 Mean:130/13 10 3,4,5,6,8,8,10,11,12,13,14,16,20 1 2 2 ConvertCelsiustoFahrenheit 45 32 32 3 Thispyramidhas6vertices.Eachedgeonthebasepentagoncorrespondstoexactly onelateralfaceonthepyramid.Thusthereare6facesonthispyramid includingthe base .Eachvertexonthebasepentagoncorrespondstoexactlyonelateraledgeon thepyramid.Thusthereare5lateraledgesonthepyramidand5edgesonthebase pentagon.Thesumis22. 45 32 113 2 3 4 Thedifferencebetweenthe11th and7th elementsis4timesthecommondifference. The7thand1stelementsdifferby6timesthecommondifference.The1stelementis then22– 6/4 36‐22 22‐21 1 5 Theformulaisn n 1 2n 1 /6 10 11 21/6 385. 6 8 2 512 9 5 3 3 3 5 3 3 15 3 0 3 18 0 6 3 6, 3 7 Thereare3*365*24 26280hoursinexactlythreeyear.Thus,26280secondsare lost.Thisisequivalentto438minutesor7hours,18minutes.Exactlythreeyears later,insteadofreadingmidnight,theclockwillbeslowbythisamount,equivalentto 4:42. 3 4 4 5 2 Knowingthat 1 1 1 1 1 1 1 1 1 ⋯ 2 5 3 5 8 3 14 17 3 Factoringoutthecommon1/3,onlythefirstandlasttermsremain.Allthemiddle termscancelout. Therefore, 5 6 8 9 Evaluate. Onecanevaluateeachcombinationseparatelybutthereisaformulasometimes 7 referredtoas“hockey‐stick”whichhasthissumequal 35.Inotherwords, 4 1 ∑ 7 6 8 10 13!/ 4!4!3!2! 900,900 7 11 9 12 8 13 9 10 7 243 4 21 5 20412.Thisnumberisthenmultipliedby5toattainthefinalresultof102060 Forthefactor 3x‐2 7,thecoefficientofthex5 termis 3 1 2 1 2 2 1 18 1 10 9 90 5 9 Thereare 84waystochoose3pointsoutofa3x3lattice.Ofthese84points,the 3 onlypossiblecombinationsthatCANNOTformatrianglearethosethatarecollinear. Thesewouldbethe3columns,3rowsand2diagonalsetsofpoints.Thusthereare76 possiblecombinationsthatcanformatriangle.Theprobabilityis 8 10 1 Createachoicetable: H 50 50 50 40 40 T 50 50 50 60 60 Definethefollowingprobabilities: P TT probabilityofthrowingtwotailsregardlessofthetypeofcoin. P T50T50 probabilityofdrawing2regularcoinsANDthrowingtwotails. 3 2 1 1 3 5 4 2 2 40 P T60T60 probabilityofdrawing2biasedcoinsANDthrowingtwotails. 2 1 3 3 9 5 4 5 5 250 P T50T60 probabilityofdrawingabiasedandaregularcoinANDthrowingtwotails. Thereare6outof10possiblewaystodrawabiasedandaregular coin. P TT P T50T50 P T60T60 P T50T60 P TT 11 14 2 9 Inthefirstturn,Davehasa1/3chanceofwinning.InorderforMollytowin,Dave mustpassandthenMolly“win”withprobability 2/3 1/3 2/9.Thereisa5/9 chanceofsomeonewinninginthefirstroundand4/9chancethatitgoestoround two.OnecantreatthisasaninfinitesequenceornotethatDave’sprobabilityof ,sothedesiredchanceis3/5. winningis 2 3 1 0 4 2 9 6 8 3 0 1 6 3 4 2 0 9 6 2 4 6 20 54 80 1 8 9 8 6 20 8 15 2 5 Evaluating 54 80 50 87 4 7 Forthisproblem,onereallyonlyneeds: 7 2 4 Intermsofprimefactors 20 11 4 1 2 1 2 1 45 9 8 87 2 5 11 .Therefore,thetotalnumberoffactorsis 10 12 15 13 OnecanfindthegreatestcommondivisorusingtheEulermethod.2002 1729 1 273,1729 273 6 91and273 91 3 .ThismeanstheGCF 91withprimefactorsof 7and13. 11 If1isaddedtothenumber,itisdivisibleby3,5and7or3*5*7 105.Thereforethe numberis105‐1 104. 12 14 Since and 4 sin 4 . 4 Thus, Otherpossibilities 2 4or sin .Theequation 4 4 sin ,becomes 0.Itisacircleofradius2centeredat 0,2 . Theanswerwilldependonwhetherasumformulaorhalfangleformulaisusedto evaluatecos 75 . I.cos 75 cos 45 √ √ 30 √ √ √ sotheansweris 13 15 II.LetA cos 75 A sin 15 √3 2 4 1 2 7 14 7 cos 30 2 2 √3 8 7 2 0 7 14 7 14 7 14 5 1 10 Usingthediscmethod, 15 3 2 6 13 12 4 1 3 13 4 6 4 0 5 2 3 1024 768 832 192 32 2 3 2 2 5 6144 11520 8320 2880 480 30 29344 30 14672 15 √ , 1 sin 30 Implicitlydifferentiating, 14 √ √ sin 30 Therefore, 7 √ 1 2 1 2 √3 2 2 1 1 2 √3 2