* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Dose assessment in Nuclear Medicine Therapy
Brachytherapy wikipedia , lookup
Backscatter X-ray wikipedia , lookup
Positron emission tomography wikipedia , lookup
Neutron capture therapy of cancer wikipedia , lookup
Radiation therapy wikipedia , lookup
Radiosurgery wikipedia , lookup
Medical imaging wikipedia , lookup
Proton therapy wikipedia , lookup
Nuclear medicine wikipedia , lookup
Dose assessment in Nuclear Medicine Therapy Elisa Grassi Medical Physics Dept Santa Maria Nuova Hospital Reggio Emilia 4° Meeting Internazionale Imaging Metabolico PET per una Moderna Radioterapia Reggio Emilia, 16-17 Aprile 2010 Importance of patient dosimetry z What is it? It is a technique to simulate the radionuclide therapy of a patient and to assess the internal doses to organs and lesions. z What the aim? At present to establish the highest dose to OARs with no damage. In the future it will be more and more oriented to define the ratio between tumour dose and OAR dose. State of the art following the original schema of MIRD16 and MIRD 21 z z z Planar conjugate view counting is the most widespread method Average dose to organs/lesions Hybrid planar + quantitative SPECT (or better if Uniform activity distribution SPECT-CT) Fully 3D SPECT-CT based dosimetry State of the art following the MIRD17 schema z Non uniform activity distribution dosimetry at the voxel level or voxel dosimetry Wesley E. et al. J Nucl. Med. 1999 / Jeffrey A. Siegel et al. J Nucl. Med. 1999 Radiopharmaceuticals of excellence for PRRT of NET z 90Y/177Lu-DOTATOC z 90Y/177Lu-DOTATATE Analogues of somatostatin z 90Y/177Lu-DOTA-lanreotide Dik J Kwekkeboom et al. Semin Nucl Med 2010 The future PRRT of NET ? Alpha emitter labelled peptides: 213Bi-DOTATOC Nayak TK et al. Nucl Med Biol 2007 Physical properties of beta emitters in radionuclide therapy of NET 131I 177Lu Half-life 8.04 d Radiation β-,γ (100%) 6.71 d β-,γ (17%) 90Y 64 h β- 177Lu-DOTATOC is preferred Lesions’ diameter<2cm Æ 182 keV 133 keV 933 keV Mean beta energy Lesions’ diameter >2cm 0.4 mmÆ range in water Maximum beta energy 807 keV range in water 90Y-DOTATOC 0.25 is mmpreferred4.3 mm Gabriel M et al. Q J nucl Med Mol Imaging 2010 497 keV 2284 keV 3.6 mm 1.9 mm 11.8 mm range in perspex 3.1 mm 1.6 mm 10.3 mm range in aluminium 1.6 mm 0.8 mm 5.2 mm range in lead 0.5 mm 0.3 mm 1.6 mm How to simulate PRRT? Directly with 90Y-DOTATOC in course of therapy SPECT-CT Bremsstrahlung from beta particles of 90Y Fabbri C. et al. Cancer Biother Radiopharm, 2009 With 111In-DOTATOC (185MBq) γ emission at 173keV and 247keV (T1/2phys=67.4 h) Planar imaging and/or SPECT-CT How to simulate PRRT? Directly with 177Lu-DOTATOC in course of therapy Planar imaging and/or SPECT-CT β/γ isotope Sandstrom M et al. Eur J Nucl Med Mol Imaging 2010 / Cremonesi M et al QJ Nucl Med Mol Imaging 2010 The role of PET-CT imaging 68Ga 86Y-DOTATOC / for dosimetry ? 68Ga / 86Y-DOTATOC 68Ga for diagnostics? Pharmacokinetics of 90Y-DOTATOC Urinary excretion 110 100 fraction of administered activity (%) 90 80 70 Blood clearance 60 50 40 30 20 Dmedia RM(90Y)=0.148Gy/GBq 10 0 0 10 20 30 t.p.i. (h) 40 50 blood sample FTI tw o-exp Dmedia KIDNEYs(90Y) α 30 x Dmedia RM(90Y) Results of 111In planar dosimetry for therapy with 90Y-DOTATOC z OAR par excellence are kidneys High doses are absorbed also by: z Liver z Spleen 10 9 Gy/GBq for kidneys z Kidneys protection reduces uptake (-25% to - 65%) 8 7 -24% 6 5 4 3 2 1 0 no protected kidneys 1 protected kidneys Organs and tumour doses estimates for 90Y / 177Lu-DOTATOC z Inserire istogramma articolo cremonesi quarterly Estimates of tumour and OAR doses per unit activity in patient undergoing PRRT trial Cremonesi M et al QJ Nucl Med Mol Imaging 2010 Results of SPECT-CT dosimetry for therapy with 90Y / 177Lu-DOTATOC z Fully 3D dosimetry: gamma-camera characterization for quantitative purpose Specific counts-to-activity calibration curves for all isotopes 120 100 Calculation of specific S-voxel for your case by Monte Carlo simulation for voxeldosimetry cps/MBq 80 111In 60 40 Other… 20 0 0 10 20 30 40 cc volumes 50 60 70 …a physicist for implementation! A study of dosimetric accuracy 111In dosimetry Sgouros G. et al Semin Nucl Med 2008 Simluations of activity distribution in a phantom C-Planar= conjugate view planar a planar quantitation method wherein Monte Carlo modeling 90YQ-Planar= dosimetry corrects for scatter and attenuation Q-SPECT=quantitative SPECT Fabbri C. et al. Cancer Biother Radiopharm, 2009 Dose limits for kidneys z z z From external radiation therapy it is: z TD5,5=23 Gy e TD5,50=27 Gy In internal radiation therapy the best quantity is the estimate of the Biological Effective Dose (BED) and the Equivalent Uniform Dose (EUD) BED can be evaluated by simple dosimetry technique (mean value), even if a better estimate of both BED and EUD is furnished by voxel dosimetry (BED and EUD maps) T1 / 2 rep β 2 BED = ∑ Di + × × ∑ Di α (T1 / 2rep + T1 / 2eff ) i i α/β=2.6Gy for healthy renal tissue Renal mono-exp decay assumption Repair from sub-letal damage (2.8h for kidneys) Oehme L et al Nuklearmedizin 200 Radiobiological aspects z BED map Æ DVH of dose values Æ DVH of BED values P(Ψ): the probability distribution of BED values where Ψ covers all possible values for BED ∞ EUD = − α1 ln( ∫ P (Ψ )e −αΨ dΨ 0 The mean absorbed dose required to yield a surviving fraction equal to that arising from the probability distribution of dose values (absorbed dose or BED) given by the normalized DVH. Sgouros G et al Semin nucl Med 2008 Combining dosimetry for target radionuclide and external beam therapies for organs and tumours BED images from RRT BED images from EXRT Combination between two dose distribution data Information regarding the spatial variability of radiosensitivity within a tumour BED map using full patient-specific data. Prideux A. et al J Nucl Med 2007 Conclusions •The role of dosimetry is fundamental to optimize the individual activity chosen for treatment •The dosimetric studies should improve the effective dose delivered to the tumour mass without increasing toxicity •The empirical approach should be left z What’s the future? ¾ To reach a more accurate computation level ¾ To optimize the tumours quantification through a more precise imaging ¾ To implement standard software for 3D dosimetry calculation and radiobiological considerations ¾ To implement new Monte Carlo based techniques Thanks for your attention!