* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Scientific Notation
Survey
Document related concepts
Transcript
P.2r !ffi IntegralExponents and Scientific Notation 19 Scientific Notation . bJE .3E-6 E-3 963BBEBE ?.3E-6 . EEs * FigureP.l5 Archimedes(287-212 e.c.) was a brilliant Greek inventor and mathematicianwho studied at the Egyptian city of Alexandria, then the center of the scientific world. Archimedes used his knowledge of mathematicsto calculatefor King Gelon the number of grains of sand in the universe: 1 followed by 63 zeros. Of course, Archimedes'universewas different from our universe,and he performedhis computations with Greek letter numerals,since the modern number systemand scientific notationhad not yet beeninvented.Although it is impossibleto calculatethe number ofgrains ofsand in the universe,this story illustrateshow long scientistshavebeen interestedin quantitiesranging in size from the diameterof our galaxy to the diameter of an atom. Scientific notation offers a convenientway of expressingvery large or very small numbers. In scientific notation,a positive number is written as a product of a number bet w e e n I a n d l 0 a n d a p o w e ro f 1 0 . F o r e x a m p l e . 9 . 6 3x 1 0 7a n d 2 . 3 x 1 0 - 6 a r e numberswritten in scientific notation. These numbers are shown on a graphing calculator in scientific notation in ffi Fig. P.16.Note that only the power of I 0 showsin scientific notationon a calculator. The graphing calculatorshown in Fig. P.16 convertsto standardnotation when the ENTER key is pressed(providedthe number is neithertoo large nor too small). tr Conversionof numbersfrom scientific notationto standardnotation is actuallv just multiplication. fuatT/e p Scientificnotation to standardnotation Converteachnumberto standardnotation. a. 9.63 x 107 b. 2.3 x 10-6 Sotution a. 9.63x 107: 9.63X 10.000.000Evaltratc 107 : 96,300,000 b. 2.3 x : -'?? X " M o v c d c c i r n l l p o i n l s c v c np l u c c st o t h c r i g h l . I 1,000,000 FlvaIuatc : 2.3 x 0.000001 : 0.0000023 7rV 7fu1. Convert 3.78x M o v c d c c i n r ap l o i n t s i x p l a c c st o t h c l c l i to standardnotation. Observehow the decimalpoint is relocatedin Example 5. Convertingfrom scientific notationto standardnotation is simply a matter of moving the decimalpoint. To convert a number from scientific to standardnotation, we move the decimal point the number of placesindicatedby the power of 10. Move the decimal point to the right for a positive power and to the left for a negative power. Note that in scientific notationa number greaterthan 10 is written with a positivepower of l0 and a number lessthan 1 is written with a negativepower of 10.NumbersbetweenI and l0 are not written in scientific notation. In the next example, we convert from standardnotation to scientific notation by reversingthe processusedin Example 5. 20 Chapter P r rffi 5. Sel I Prerequisites A graphing calculator converts to scientific notation when you press ENTER ffi as shown in Fie. P.17. ! 6. ESe fuatT/e !l Standardnotationto scientificnotation Converteachnumberto scientificnotation. " FigureP.17 a. 580,000,000,000 b. 0.0000683 Sotution a. Determinethe powerof l0 by cor.rnting the numberof placesthat the decimalmust movesothatthereis a singlenonzerodigitto theleft ofthe decimalpoint(l 1places). Since580,000,000,000 is largerthan10,weusea positivepowerof 10: : 5.8 x l0rl 580,000,000,000 b. Determinethe powerof l0 by countingthe numberof placesthe decimalmust moveso that thereis a singlenonzerodigit to the left of the decimalpoint (five places).Since0.0000683 is smallerthanl, we usea negative powerof l0: 0.0000683:6.83x10-' 77y 77A1. Convert5,480,000to scientificnotation. One advantageof scientific notation is that the rules of exponentscan be used when performing certain computationsinvolving scientific notation. Calculators can be used to perform computations with scientific notation, but it is good to practice some computation without a calculator. I fua*F/a I Using scientific notation in computations Perform the indicated operations without a calculator. Write your answersin scientific notation. Check your answerswith a calculator. x to-e)r a.(4x 1or3)(s fifil,' c. (2,000,000,000)' (0.00009) 600.000.000 Solution a . ( 4 x 1 0 1 3 ) (x5 l O - e ): 2 0 x l 0 r 3 + ( - e )Productrule for exponents :20 x l\a Simplify the exponent. :2x Write 20 in scientificnotation l0rx 104 :2x.105 1 . 2x l 0 - e 4x10-' b.-10-Y'1' t.2 4 Productrule for exponents Quotient rule for exponents : 0 . 3x 1 0 - 2 Simplify the exponent. :3X10-3 Use0.3:3 x l0 j. 1 P.2 I Effi lnteoralExoonentsand SclentificNotation 21 First convert each number to scientific notation, then use the rules of exponents to simplify: (0.00009)( 2 x l o e ) 3 ( 9 x t o - 5 ) (2,ooo,ooo,000)' 600,000,000 E E ( 8 x l o 2 7 ) ( 9x l o 5 ) 2eF 1 . ? E- 9 / 4 E- ? .5E( ? e 9 ) ^ 3 * 9 e- 5 / 6 p 6x108 - 7 2 x l o : 2: D x l o r 4 : 1 . 2x l o r s 6x10" 1 .? e l * FigureP.18 6X108 These three computations are done on a calculator in Fig. P.18. Set the mode ffi to scientific to get the answersin scientific notation. (7 x 1014)(5 x l0-3). TrV TTul. Findtheproduct t In the next example we use scientific notation to perform the type of computation performed by Archimedes when he attemptedto determine the number of grains ofsand in the universe. foo*V/e I rne numberof grainsof sand in Archimedes'eafth If the radius of the earth is approximately 6.3 8 x I 0r kilometers and the radius of a grain of sand is approximately I X 10-i meters, then what number of grains of sand have a volume equal to the volume of the earth? Solution Sincethe volume of a sphereis given by V : lrrr3 , thevolume of the earth is 4 i z ( 6 . 3 8 x l o 3 ) 3 k m:3 1 . 0 9x l 0 r 2 k m 3 . J Since I km : is 103m, the radius of a grain of sand is I X 10-6 km and its volume 4 km3- 4.19x lo-18km3. : r(l x 10-6)3 J . EH/HH"JHHbE -l 4, ISSTSB?c 1 . S 9 r l ? r 4 , 1 9 e- l 2.66r43198r * FigureP.19 To get the number of grains of sand,divide the volume of the earth by the volume of a grain of sand: l.0g x 1012km3 4.lg x l0-r8 km3 ffi - 2.60x l02e SeeFig.P.l9for thecomputations. TFV Th.tZ.Findthe volumeof a spherethat hasradius2.4 x l0-3 in. I ChapterP rrffi Prerequisites For Though True or False?Explain.Do Not Use a Calculator. 1.2-1 + 2*t : 2 . 2 1 0 0: 4 s 0 , lr 3 . 9 8 . 9 8 : 8 1 8r s.4 5- t' 27r 4. $.25\-t : 4r :5-zp /+\' : ' G/ 9. l0-a : 0.00001 r I 6.2.2.2.2-t: ^/:\-' t. (a/ --F IO 10. 98.6X 108: 9.86x 107p Exercises M Evaluate each expression without using a calculator Checkyour answerswith a calculator (ExampleI) l. 3-t tlz 2. 2-t tlz 4. -s-3 -tltzs s. *s '' I ^-1 - -3-r 1 /q\-: \r) st27 / r\-4 \ J/ t 0 .[ - ; f 3. -4-2-tlrc I v6. z- ,1 / o\-2 / t.(;) st4 s. r\-2 \-il 1 3 .l _ " 2 a o" a-1 14. * rlz+ L5. 20 + 2-r llz 1 7 . * 2 . 1 0 - 3- r l s o o /rt. -t-, . (-z)-2 -tl+ Simplifueachexpression.(Example 2) -6xttrtt 19, (-3x2y3)(2xey8) -ftotobs 20. (-6a7ba)(3a3b5) 2!, x2xa + x3x3 216 22. a1as + a3a9 2at2 39. -1(2x3)2 -+,6 40.(-Zr-r1-r -t / -u2\3 41.t \ " J ./ R"6 1-; 4 3 . 1 + l .y \)./ / . , 2\ a . . s *'\-;) h / 6xv2 \-3 ra,, 45.l; 41Ll zlx' \6x y-/ )_,14 'nu. " ' \ 1_75x__.y", t8x2y3/ 25y" 29. 52 . 32zzs 30, 23 . 42 tzs / .- -) o\-) Simpltfy each expression.Assurnethat all basesare nonzero real numbers and all exponentsare integers. (Example4) 51. (rr. ("')(-r) - (-r) - ,(-"') + z(22) + zl z / - r\ - 2 or.\a) 4a2 .t a\-1 _')< /1r_\ 1a551-4a61zo" + m ( 3 m 2 )4 m 3+ m 2 -l 38.(b-\2 - GU-',y+ o 49. (-5az'6-t1t 27. (-m2)(-m) - m(-*) -r , /t gl. (za2)3+ (-3a3)2 na6 24. (4y6)(-xya) + (3xye)(5y) ttxyl} -38*3 y 'x. -P='q=i -rpq - L 5p- - l 'n ," 1 . - o m ' n ' z- 1 ^ a -5il1 47. 26. (w2)(-3v't) - (-5w)(-7w2) /' 3xy- 23. (-2b\(3b3) + (5b3)(-3b2) -21bs 25. (-2a2)(ae7 - \3 ?34.--:a --^ / 1 6 .6 - r + 5 - t 1 l / 3 0 n. ( !o- 5u) 1ooal3 a') -9r2r, 617 33. -3x4 zx- 4 1-2 1 2 .4 . 4 , 4 . 4 - t r c * ( !,- a; ) ( l' - r - u) ], \2 /\3 / 6y' 1000 tt.2-1 . 42 . I}-t cls ar Simpltfy each expression.Write answerswithout negative exponents.Assume that all variables reoresentnonzero real numbers. (Example31 /"t \/r \ , /1 \ -' P.2 rffim lnw-zz >3. notation. (Erantples 5 a.nd(t) 5 6 . 5 . 9 8x 1 0 55 9 8 ^ o o o 5 7 .3 . 5 6x 1 0 - 50 . 0 0 0 0 3 s 6 5 9 . 5 , 0 0 0 , 0 0 0x5 1 0 6 58. 9.333x 10 ', 0.000000009333 10 . 6 s 8r7 l 0 7 60. 16,587,00 61. 0.0000672 6.12/. t0 ' 6 2 . 0 . 0 0 0 0 0 0 9e8.18 lx l 0 7 '', 63. 7 x 10 0.000000007 64.6x10-30.006 6 5 . 2 0 , 0 0 0 , 0 0 0 , 0 0x0 l2o ' u x lo " 66. 0.000000000044 23 abnormal rf yom BMI (from the previous.exercise)satisfies Convert each number given in standard notation to scientific notation and each number given in scientific notation to standard 55. 4.3 x 10443,000 Exercises $hich of the five players does not have abnormal body fat? Smrth u Tablefor Exercise 80 8 1 . Displacement-LengthRatio The displacement-lengthratio D indicateswhethera sailboatis relativelyheavy or relatively D is light (Ted BrewerYacht Design,www.tedbrewer.com). givenby the formula Perfbrm the indicated operations without a calculabr. Write your answersin scientific notation. Use a calculator to check. (li.runtpla7) 6 7 . ( 5 x 1 0 8 ) ( 4x 1 0 1 ) 2 x 1 0 1 6 8 . ( 5 x 1 0 - 1 0 ) ( 6x 1 0 5 ) 3 x 1 01 8 . 2x l 0 9 . 3 1 01 2 l0' I lo' 69.-2 70' 4.txt0' t, , ,ut 4 x lo r') 7 1 .5 ( 2 x l o r o ) 3 ''' (2.000.000 )r(0.000005 ) (o,ooo2l2 I x l0rr u, , :_ 2uo ' where I is the length at the water line in feet, and d is the displacementin pounds.IfD > 300, then a boat is considered relativelyheavy.Find D for the USS Constitution,the nation's oldest floating ship, which has a displacementof 2200 tons and a length of 175 feet. 1J- 36(r.5 i 2 . 2 ( 2 x 1 0 8 ) - 4l . 2 s x l o r r t+' dLt.t06 -3 (6,ooo,ooo)2 (o.ooooo3) ( I ,000,000) (2000)3 1 . 7x 1 0 1 1 82. A Lighter Boat IfD < 150 (frorn the previousexercise), Use a calculator to perfbrm the indicated operations. Give your answersin scientific notation. (lixumplt'8) /5. then a boat is consideredrelatively light. a. Use the accompanyinggraph to estimatethe length for which D < 150for a boat with a displacement of I 1,500 pounds.Lcngthgrcatcr'1han l0 11 ( 4 . 3 2> <l 0 - e ) ( 2 . 3x 1 0 4o) . o 3 rx, r o 5 7 6 . ( 2 . 3 3> <1 0 2 3 ) ( 3 . x9 8l 0 - e )( ) . 2 7 3x4 t 0 t 4 b. Use the formula to find D for a 50-foot boat with a displacementof I 1,500pounds.4 l. I ( 5 . 6 3x t o - 6 ) 3 ( 3 .x5 l 0 7 ) 4 4 . 7 8x l 0 " ' 77. x 10 4)2 ?7'.(8.9 78. rQ.39 x l0-r2)2 sl{'r lo \ 6 . 7 5/ t o \ gt"" riii t i l rf l ;rti'-c400 rli b4 ii,i :oo Solve each problem. Useyour calculator. 79. Body-Mass Index The body mass index (BMI) is used to assessthe relativeamountof fat in a person'sbody (ShapeUp America, www.shapeup.org).If w is weight in poundsand /l is height in inches,then r;rE 200 rli i ra .9 100 rli .i, li;' ,I BMI : 703wh-2. Find the BMI for Dalias Cowboys'playerFlozell Adams at 6'7" and335 pounds.BMI :37.7 80. Abnormal Fat The accompanyingtable showsthe height and weight of five Da1lasCowboys players in training camp (ESPN, www.espn.com).Somephysiciansconsideryour body fat o-- 25 50 ]s Length (f'eet) , i l , i I i , , t r f ti : , 1 ; i l l l l i | i l , 1 , ' l : t . i iIir f i . r i m Figure for Exercise 82 83. Nalional Debt In February2005,the nationaldebt was 1.634 x 1012dollarsandthe U.S.populationwas 2.956 X 108 people(U.S.Treasury,www.treas.gov).What was eachperson'sshareof the debt at that time? $25.825 24 C h a p t e r Pr s s b Prerequisites 84. IncreasingDeh In the three yearsprior to Februaryof 2005, the national debt was increasingat an averagerate of L44 X 10" dollars per day. If the debt keeps increasing at that rate, then what will be the amount of the debt in February of 20 11? See s x e r c i s e$.1 . 0 7 9 l 0 l ' t h ep r e v i o u e 85. Energyfrom the Sun Merely an averagestar, our sun is a swirling mass of densegasespowered by thermonuclearreactions.The great solarfurnacetransforms5 million tons of mass into energy every second.How many tons of masswill be transformed into energy during the sun's 10 billion-year iifetime? 1.577x l02atons F i n dt h e n u m b e o r f s e c o n disn l 0 b i l l i o ny e a r s . 89. Mass oJ the Sun The massof the sun is 1.989 x 1030kg and the massof the earth is 5.976 r 1024kg. How many times larger in massis the sun than the earth?3.3 x 105 90. Speedo/'Light Ifthe speedoflight is 3 X 108m/sec, then how long does it take light from the sun to reach the earth? (SeeExercise88.) 8.-lrnin 'iiiii!,ft r -- DIR For Writing/Discussion 91. The integral powers of 10 are important in the decimal number system. a. Use a calculatorto evaluate5365.4 5 . 1 0 r + 3 . 1 0 2+ 6 . l 0 r + 5 ' 1 0 0+ 4 . l 0 - r . b. Without using a calculator,evaluate9102.38 9 . 1 0 3+ 7 . 1 0 2+ 2 . r c o + 3 . l 0 - r + 8 . 1 0 * 2 . c. Write a brief explanationof how you did part (b). n Figurefor Exercise 85 86. Orbit of'the Earth The earthorbits the sun in an approximatelycircularorbit with a radiusof 1.495979X 108km. What is the areaof the circle?7.03x l0r('krn2 d. Write 9063.241as a sum of integralmultiples of powersof 10. Is your answerunique?Write a detaileddescriptionof h o w y o u d i d i t . g x l 0 r + ( r X 1 0 1+ 3 x 1 0 0 + 2 x 1 0 1 + 4x l0 2+ I x l0 r,notuniquc e. Try to write 43,002.l9 as a sum of integralmultiples of powersof l0 using the descriptionthat you wrote for part (d). 4 x 1 0 1 + 3 x l 0 r + 2 x 1 0 0 +I x l 0 I + . ) x l 0 2 92. Many calculatorscan handlescientific notationfor powersof l0 between-99 and 99. How can you be expectedto compute (4 X l}2201zlUsctlrcrulcsofcxponents to gct l.(r x 1014r. fta,qs 0*ft1!e !h,eeu !! { !t! Powers oJ'Three What is x if x 108km 1.495979 1 27 ' Figurefor Exercises 86 and 87 8 7 . Radiusof the Earth The radiusof the sun is 6.9599 / 10s km, which is 109.1times the earth'sradius.What is the radius ofthe earth?6379km 88. Distance to the Sun The distancefrom the sun to the earth is | .495979 X 108km. Use the fact that I km : 0.621 mr ro find the distancein miles from the earth to the sun. 9 . 2 9X 1 0 7m i 3 1 0 0. CommonRemainders The numbers |,576,231, 4,080,602, and 2,690,422 all yield the sameremainderwhen divided by a certainnatural number that is greaterthan one. What is the divisor and the remainder'?Divisor89.rcmaindcr' 41