Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CH 2 CH 2 USING THE BRAILLE SCIENCE CODE THE BRAILLE SCIENCE CODE FOR SCHOOLS This document is intended for use by all those who are involved with the teaching of Science to students who use Braille as their main medium for communication. The document is based on the Braille code used in the United Kingdom for transcribing Science from print text into Braille, and includes advice about various transcription issues. The official statement of the UK Science code is contained in the BAUK document “Braille Science Notation” which may be obtained from the BAUK web site, www.bauk.org.uk, or in hard copy from RNIB. The document contains examples of most of the common units and chemical symbols found in the Key Stage 3, Key stage 4, AS and A2 curricula. The examples are not meant to be exhaustive but should act as a guide to solving the common problems which occur when transcribing Science notation into Braille. There is also a section for those wishing to transcribe the notation found in Genetics. The code in this section is one that has been used successfully but has never been adopted as a standard by BAUK. The document was produced by the following members of the RNIB/VIEW Science Curriculum Group. Frances Betts, Norman Brown, Rowena Curley, Susan Epstein, Susan Parker, Cath Smith and Hillary Unwin. We would like to thank the staff at RNIB New College and the members of RNIB/VIEW Science Curriculum Group for their comments during the drafting of this document. 1 CONTENTS 1. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mass and force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS and A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Compound units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional useful units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical formulae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ionic symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subatomic particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic structure/configuration . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Covalent bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS and A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Organic chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shorthand for organic chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structural formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical display formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrochemical shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GCSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 3 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 9 10 10 11 13 14 14 15 16 18 19 20 21 21 22 22 22 23 24 25 26 26 26 27 27 29 UNITS For details of layout see the Braille Science Notation and Braille Mathematics Notation booklets. Units are coded according to the print by placing a dot 6 before each capital letter. Dot 5,6 is only required: 1. Before a lower case or upper case single letter unit symbol (eg m or T), standing alone or with just an index or punctuation. 2. Before the abbreviation for second in combined unit, where necessary to avoid ambiguity. 3. Before a lower case letter which is followed by an upper case letter at the beginning of an abbreviation. The following are examples of the most commonly used symbols at KS 3, KS 4 and AS and A2 levels. Key Stage 3 Length Print Braille Examples mm (millimetres) Mm 9 mm #i mm #d1e mm 4.5 mm cm (centimetres) Cm #c cm 3 cm 150.5 cm m (metres) km (kilometres) ;m Km 6m #aej1e cm #f ;m 12 m #ab ;m 1.5 m #a1e ;m 20 km #bj km 12.25 km 3 #ab1be km Area Print Braille Examples mm2 (millimetres2) Mm+2 9 mm2 #i mm+2 #d1e mm+2 4.5 mm2 cm2 (centimetres2) Cm+2 #c cm+2 3 cm2 150.5 cm2 m2 (metre2) km2 (kilometres) ;m+2 Km+2 #aej1e cm+2 #f ;m+2 6 m2 1.5 m2 #a1e ;m+2 20 km2 #bj km+2 12.25 km2 #ab1be km+2 Volume Print Braille Examples mm3 (millimetres3) Mm+3 9 mm3 #i mm+3 #d1e mm+3 4.5 mm3 cm3 (centimetres3) Cm+3 #c cm+3 3 cm3 150.5 cm3 m3 (metre3) l (litre) ;m+3 ;l or #aej1e cm+3 #f ;m+3 6 m3 12 m3 #ab ;m+3 1.5 m3 #a1e ;m+3 20 l #bj ;l 12.25 l #ab1be ;l L (Litre) ;,l 50 L #ej ;,l ml (millilitre) Ml 50 ml #ej ml 4 Time Print Braille Examples s (second) ;s 6s min (minute) M9 3 min Print Braille Examples g (gram) ;g 6g kg (kilogram) Kg 3 kg N (Newton) ;,n 15.5 N #f ;s #c m9 Mass and force #f ;g #c kg #ae1e ;,n Temperature Print Braille Examples °C (degrees celsius) 0,c 6°C #f0,c Note the unit is unspaced. K (Kelvin) ;,k 8K #h ;,k Electrical Print Braille Examples V (Volt) ;,v 6V #f ;,v A (Ampere) ;,a 3A #c ;,a mA (milliamp) ;m,a 5 mA #e ;m,a 5 For KS 4 add the following Electrical Print Braille Examples Ω (Ohm) _w 6Ω #f _w W (Watt) ;,w 3W #c ;,w MW (megawatt) ,,mw 6 MW #f ,,mw J (Joule) ;,j 4.2 J #d1b ;,j kJ (kilojoule) ;k,j 35 kJ #ce ;k,j Note the use of the capital Greek letter sign (dots 4,5,6) Radiation Print Braille Examples λ (lambda) .l 6λ Hz (Hertz) ,hz 50 Hz α (alpha) .a α-particle .a-"picle β (beta) .b β-particle .b-"picle γ (gamma) .g γ-particle .g-"picle #f .l #ej ,hz Note the use of the lower case Greek letter sign (dots 4,6) Time Print Braille Examples ms (milliseconds) ms 50 ms 6 #ej ms For AS and A2 add the following Length Print Braille Examples μm (micrometre) .mm 6 μm #f .mm nm (nanometres) Nm 3 nm #c nm Print Braille Examples μl (microlitre) .ml 6 μl dm3 (decimetre3) Dm+3 3 dm3 Print Braille Examples Pa (Pascals) ,pa 6000 Pa kPa (kilopascals) ;K,pa 6 kPa MPa (megapascals) ,m,pa 2.5 MPa Volume #f .ml #c dm+3 Pressure 7 #fjjj ,pa #f ;k,pa #b1e ,m,pa COMPOUND UNITS Print Braille Examples Nm (Newton metres) ,n'm 3 Nm #c ,n'm g/l (grams per litre) ;g_/l 10 g/l #aj ;g_/l gl-1 (grams per litre) ;g'l+;-1 5 gl-1 #e ;g'l+;-1 m/s metres per second ;M_/s 30 m/s ms-1 (metres per second) ;M's+;-1 20 ms-1 #bj ;m's+;-1 m/s2 (metres per second2) ;m_/s+2 25 m/s2 #be ;m_/s+2 ms-2 (metres per second2) ;M's+;-2 25 ms-2 #be ;m's+;-2 Nm-2 (Newtons per metre squared) ,n'm+;-2 25 Nm-2 #be ,N'm+;-2 N/m2 (Newtons per square metre) ,n_/m+2 25 N/m2 #be ,n_/m+2 mph (miles per hour) ;mph 60 mph kph (kilometres per hour) ;kph 35 kph or #cj ;m_/s or or or #fj ;mph #ce ;kph Note the use of a dot 3 separator where the oblique sign is not used. 8 Additional useful units Print Braille Examples pH ;p,h pH 7 molarity ,m 2M ;p,h #g #b,m pH can be spaced or unspaced from a following number, according to print. M is always unspaced from a preceding number. 9 CHEMICAL SYMBOLS A single letter symbol is preceded by dot 6. A two letter symbol is preceded by dot 5. Examples: Level Print Braille All levels H ,h C ,C O ,O Na "na Mg "Mg Al "Al Note that, as with units and elsewhere, a single letter symbol possibly followed by a subscript number, standing alone in ordinary text requires a dots 5,6 also. Example Print Braille H ;,h (when standing alone) 10 Chemical formulae All two letter symbols must be preceded by dot 5. Dot 6 only needs to be used at the start of the formula if the first symbol is a one letter symbol. It does not have to be repeated in the middle of a formula. Subscripts are written in the lower case. Key Stage 3 Print Braille H 2O ,H2O CO2 ,CO2 MgO "MgO KCl ,K"Cl CaCl2 "Ca"Cl2 CuSO4 "CuSO4 (no need for dot 6) CaCO3 "CaCO3 (no need for dot 6) CO ,co CoO "coo (no need for dot 6) 11 Formulae with brackets Round brackets ( ), use maths brackets (gh and ar contractions). Square brackets [ ], use maths brackets (of and with contractions). Level Print Braille Key Stage 3 Ca(OH)2 "Ca<oh>2 Key Stage 4 (NH4)2SO4 <,nh4>2so4 Cu(NO3)2 "Cu<no3>2 (CH3)3OH <,ch3>3oh [Fe(OH)3(H2O)3] ("fe<oh>3<h2o>3) A Level 12 Ionic symbols Use the appropriate number of + or – signs unspaced from the symbol. Level Print Braille Key Stage 4 H+ ,h;6 K+ ,k;6 Zn2+ "Zn;66 Al3+ "Al;666 F- ,f;- O2- ,o;-- N3- ,n;--- NH4+ ,nh4;6 OH- ,oh;- SO42- ,so4;-- [Fe(H2O)6]2+ ("fe<h2o>6);66 [Cr(OH)6]3- ("cr<oh>6);--- A Level Complex ions N.B. The Braille Science Code includes the alternative notation for ionic charges of +/- 2 or greater using a superscript number followed by a + ;6 or – ;- sign. Print Braille Mg2+ "Mg+#b;6 Al3+ "Al+#c;6 SO42- ,so4+#b;- The notation using the appropriate number of + or – signs is preferred by teachers. Braille producers for examinations can use the alternative! 13 Atomic Structure Atomic mass numbers and atomic numbers are given as superscript + and subscripts * respectively in front of the symbol. Use lower case numbers. Level Print Braille Key Stage 4 and A Level 4 He 2 +4*2"he 27 13 Al +27*13"al Subatomic particles Use lower case letters. Level Print Braille Key stage 4 p (proton) ;p e (electron) ;e e- (electron showing charge) ;e;- n (neutron) ;n 1p 1 +1*1;p –0 e –1 +0*;-1;e 1n 0 +1*0;n A Level 14 Electronic Structure/configuration Key Stage 4 Print Braille Na (2,8,1) "na <#b#h#a> Ca (2,8,8,2) "ca <#b#h#h#b> A Level No need to use lower case letter sign except in front of “d” (this avoids confusion with the number 4) . Keep unspaced throughout. 1s22s22p4 #as+2#bs+2#bp+4 1s22s22p63s23p63d74s2 #as+2#bs+2#bp+6#cs+2#cp+6#c;d+7#ds+2 15 Chemical equations Use + (;6) unspaced from the following item. The Æ spaced on both sides is preferred to = unspaced from the following item. Print Braille Æ 3o Word equations Here are some examples. Magnesium + oxygen Æ magnesium oxide magnesium ;6oxyg5 3o magnesium oxide Calcium carbonate + hydrochloric acid Æ calcium chloride + carbon dioxide + water calcium c>bonate ;6hydro*loric acid 3o calcium *loride ;6c>bon dioxide ;6wat] Carbon dioxide + water (chlorophyll, light) glucose + oxygen c>bon dioxide ;6wat] 3o+<*lorophyll1 li<t> glucose ;6oxyg5 See pages 19 and 20 for more information about words above and below the arrow. 16 Symbol equations Equations should begin in cell 5, with runovers in cell 7. If a runover is needed, finish the previous line with a dot 5. All Levels C + O2 Æ CO2 ,c ;6,o2 3o ,co2 2NH4OH + H2SO4 Æ (NH4)2SO4 + 2H2O #b,nh4oh ;6,h2so4 3o <,nh4>2so4" ;6#b,h2o or: #b,nh4oh ;6,h2so4 3o" <,nh4>2so4 ;6#b,h2o 17 State symbols in equations Write after the formula, leaving one space. Key Stage 4 and A Level Print Braille (s) (solid) 7;s7 (l) (liquid) 7;l7 (g) (gas) 7;g7 (aq) (aqueous) 7aq7 C(s) + O2(g) Æ CO2(g) ,c 7;s7 ;6,o2 7;g7 3o ,co2 7;g7 2H2(g) + O2(g) Æ 2H2O(l) #b,h2 7;g7 ;6,o2 7;g7 3o" #b,h2o 7;l7 NaOH(aq) + HCl(aq) Æ NaCl(aq) + H2O(l) "naoh 7aq7 ;6,h"cl 7aq7 3o" "na"cl 7aq7 ;6,h2o 7;l7 H+(aq) + OH-(aq) Æ H2O(l) ,h;6 7aq7 ;6,oh;- 7aq7 3o" ,h2o 7;l7 Mg(g) Æ Mg2+(g) + 2e- "mg 7;g7 3o "mg;66 7;g7 ;6#b;e;Cl(g) + e- Æ Cl-(g) "cl 7;g7 ;6e;- 3o "cl;- 7;g7 18 Reversible reactions/equilibrium The arrow should be spaced on both sides. Key Stage 4 and A Level Print Braille 53e N2 + 3H2 2NH3 ,n2 ;6#c,h2 53e #b,nh3 Information above/below arrows Key Stage 4 and A Level Use superscript sign (+) immediately after the arrow. Use round brackets to enclose two or more items of information. H 2S 400°C º H2 + S ,h2s 53e+#djj0,c ,h2 ;6,s N2 + 3H2 400°C, 200 atm º 2NH3 ,n2 ;6#c,h2 53e+<#djj0,c1 #bjj atm> #b,nh3 19 If there is information above and below the arrow in print, Braille entirely as superscript. 400°C, 200 atm N2 + 3H2 Haber Process 2NH3 ,n2 ;6#c,h2 53e+<#djj0,c1 #bjj atm1 hab] process> #b,nh3 Covalent bonds Key Stage 4 and A Level Bond Print Braille Single H—H ,h@h Double O ,o^o Triple N≡N O ,n_n 20 A Level Chemistry Example Print Braille delta + δ+ .d;6 Enthalpy change ΔH _d,h Enthalpy of formation ΔHf _d,h*f Enthalpy of combustion ΔHc _d,H*c Equilibrium constants Kc ,k*c Kp ,k*p Kw ,k*w Ka ,k*a Rate constant k ;k Standard reduction potential E ,e+0 (n.b. this is not an agreed convention but is an acceptable match to the print) 21 Acceptable shorthand for Organic Chemistry Example Print Braille Alkyl radical R ,R Aryl group, C6H5 Ar "Ar (n.b. this is only in the context of Organic Chemistry and must not be confused with the symbol for the element argon, Ar) Methyl group, CH3 Me "me Ethyl group, C2H5 Et "et Molecular formulae Follow the rules for chemical formulae. Print Braille C 2H 6 ,c2h6 C3H7OH ,c3h7oh CH3COCl ,ch3co"cl C2H5COOCH3 ,C2H5COOCH3 22 Structural formulae Follow the rules for chemical formulae. Print Braille CH3CH3 ,CH3CH3 CH3CHOHCH3 ,CH3CHOHCH3 CH3CHClC(CH3)2CH3 ,CH3CH"CLC<CH3>2CH3 Structural formulae showing bonds Use code for bonds. Print Braille CH3—CH3 ,CH3@CH3 CH3—CH2—Br ,CH3@CH2@"BR —O (CH3)2C— <,CH3>2C^O 23 Displayed graphical formulae Whilst this is covered in para 19 onwards in the Chemistry section of the Braille Science Notation, for school use these are best done using raised diagrams with the bonds represented by solid lines. For double and triple bonds the gap between the lines should be no less than 3mm. Key Stage 4 and A Level Print Braille ,H H H C H ,H ,C ,H H ,H H H C ,H ,H C ,C H ,C H ,H H C C H ,H 24 ,H ,C ,C ,H Electrochemical cell shorthand A Level There is no agreed Braille convention for this. The following is only a suggestion which bears some resemblance to the print layout. Print Zn(s) ⎮ Zn2+(aq) Cu2+(aq) ⎮ Cu(s) Suggested Braille: _ unspaced to the right to represent vertical line Use __ unspaced to the right to represent double, dashed vertical lines Use "zn 7;s7 _"zn;66 7aq7 __"cu;66 7aq7 _"cu 7;s7 25 PHYSICS Circuit diagrams The following symbols are used to produce raised circuit diagrams. Where a symbol is thought to be unfamiliar the name of the component is often added in Braille under the symbol. Key Stage 3 Print Braille Switch (open) Cell Resistor Variable resistor Lamp Lamp (alternative version) 26 Print Braille V Voltmeter ,v A Ammeter ,A M Motor ,m All of these symbols will need to be enlarged by a factor of at least two before they can be used by a student working by touch alone. For GCSE Print Braille Fuse Battery Diode 27 For GCSE (continued) Print Braille Capacitor Thermistor Light emitting diode (LED) Light dependent resistor (LDR) These examples are not exhaustive but they should give a good idea of how the majority of symbols can be enlarged and presented in a tactile form. Where there might be doubt about a particular example the name can be provided below the symbol in Braille. Mathematical formulae used in Physics should follow the advice given in the Braille Mathematics Notation (BAUK). 28 GENETICS The study of Genetics requires students to solve problems which require a standard code in print. There is at present no Braille equivalent but the following has been used successfully with students working towards GCSE and A level examinations. The key to the code involves the use of the dot 6 capital letter sign to identify upper case letters in the code and the dots 56 letter sign to identify the lower case letters. Genetics problems have a particular layout which forms part of the assessment criteria. The following examples use Braille but have the layout that is used in print. This means that students’ answers can be easily transcribed and anyone with a limited amount of Braille knowledge can follow the steps used by the student to solve the problem. In each example the print translation is provided as a guide to both content and layout. The first example shows the steps used in a standard Mendel monohybrid cross. This type of cross is found in the syllabi for GCSE. 29 Example 1 The original parents are from two pure breeding strains where the dominant allele codes for a tall individual and the recessive allele codes for a dwarf individual. The dominant allele is represented by T and the recessive allele by t. P>5ts tall Parents tall G5otypes ,T,T Genotypes TT Gametes ,T Gametes T ;8 x dw>f dwarf ;t;t tt ;t t (fspr+ ,T;t Offspring Tt All (fspr+ >e tall 2c ;,T is dom9ant 6;t4 All offspring are tall because T is dominant to t. See the next page for the next stage. 30 If ;! (fspr+ n[ 9t]bre$4 If these offspring now interbreed. P>5ts ,T;t ;8 Parents Tt Gametes ,T & ;t ,T & ;t Gametes T and t T and t x ,T;t Tt (fspr+ Offspring ,T ;t T t ,T ,T,t ,T;t T TT Tt ;t ,T;t ;t;t t Tt tt ? gives "o ,T,T & two ,T;t 9dividuals b !y w 2 tall 9dividuals z ;,T is dom9ant4 "O ;t;t 9dividual is al produc$4 ? 9dividual is dw>f4 This gives one TT and two Tt individuals but they will be tall individuals as T is dominant. One tt individual is also produced. This individual is dwarf. Please note that the Braille table above is identical to the Punnet square used by those working in print. Some teachers use arrows to link the various gametes to form the offspring. This process will not work for students working in Braille and is confusing for many partially sighted students. Therefore teachers should be encouraged to use the Punnet square method. 31 32 rT and rt RT Gametes Rt ,R,T ,R;t ;r,T & ;r;t RrTt ,R;r,T;t Gametes Parents P>5ts x ;8 RT Rt rT and rt ,R,T ,R;t ;r,T & ;r;t RrTt ,R;r,T;t Let one gene be for flower colour with two alleles, R for red petals and r for white petals. R is dominant to r. The other gene is for plant height, T for tall and t for dwarf. T is dominant to t. In this example the parents are heterozygous for both genes ie their genotypes are RrTt. This second example shows a Mendel dihybrid cross which is found in most A2 level syllabi. Here two genes with two alleles are involved in the cross. Example 2 This page has to be in landscape format so that the Braille can fit. Students making notes on standard Braille paper need to be aware that they will need to conserve space as much as possible. 33 ,R,R,T;t RRTt ,R;r,T,T RrTT ,R;r,T;t RrTt ,R;t Rt ;r,T rT ;r;t rt Rrtt ,R;r;t;t RrTt ,R;r,T;t RRtt ,R,R;t;t RRTt rrTt ;r;r,T;t rrTT ;r;r,T,T RrTt ,R;r,T;t RrTT ,R;r,T,T rT ;r,T rrtt ;r;r;t;t rrTt ;r;r,T;t Rrtt ,R;r;t;t RrTt ,R;r,T;t rt ;r;t This gives 9 red flowered tall plants, 3 red flowered dwarf plants, 3 white tall plants and 1 white dwarf plant. ? gives #i r$ fl[]$ tall plants1 #c r$ fl[]$ dw>f plants1 #c :ite tall plants & #a :ite dw>f plant4 RRTT RT ,R,R,T;t Rt RT ,R,R,T,T ,R;t ,R,T ,R,T Offspring (fspr+ Example 3 Some geneticists use a single capital letter to distinguish the gene and a superscript letter to label the allele. This can be seen in crosses involving the fruit fly, Drosophila and sometimes in the genetics of the ABO blood groups. In blood groups the gene is given the letter I and the groups are labelled as IA, IB and Io. In Braille these would be ,i+,a, ,i+,b and ,i+;o. This notation takes up considerably more space (especially in a dihybrid cross). It may be necessary to modify questions to eliminate the letter for the gene leaving the letters for the alleles which can then be used as shown earlier. 34 Other titles in this series: TC20209 Using the Braille French Code TC20910 Using the Braille German Code TC20911 Using the Braille Spanish Code TC21086P Using the Braille Mathematics Code ISBN 976 1 85878 820 3 TC21085P 2008 Produced by RNIB on behalf of RNIB/VIEW Science Curriculum Group