Download Chapter 1: The Foundations: Logic and Proofs

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Mathematical logic wikipedia , lookup

Mathematical proof wikipedia , lookup

Axiom wikipedia , lookup

Modal logic wikipedia , lookup

Quantum logic wikipedia , lookup

Intuitionistic logic wikipedia , lookup

Supertask wikipedia , lookup

Argument wikipedia , lookup

History of logic wikipedia , lookup

Truth-bearer wikipedia , lookup

Syllogism wikipedia , lookup

Foundations of mathematics wikipedia , lookup

History of the function concept wikipedia , lookup

Axiom of reducibility wikipedia , lookup

Laws of Form wikipedia , lookup

Inquiry wikipedia , lookup

Analytic–synthetic distinction wikipedia , lookup

Tractatus Logico-Philosophicus wikipedia , lookup

Natural deduction wikipedia , lookup

Propositional calculus wikipedia , lookup

Propositional formula wikipedia , lookup

Catuṣkoṭi wikipedia , lookup

Law of thought wikipedia , lookup

Principia Mathematica wikipedia , lookup

Transcript
Chapter 1: The Foundations:
Logic and Proofs
1.1 Propositional Logic
1.2 Propositional Equivalences
1.3 Predicates and Quantifiers
1.4 Nested Quantifiers
1.5 Rules of Inference
1.6 Introduction to Proofs
1.7 Proof Methods and Strategy
1
1.2: Propositional Equivalences
Definition:
Tautology: A compound proposition that
is always true.
Contradiction: A compound proposition
that is always false.
Contingency: A compound proposition
that is neither a tautology nor a
contradiction.
2
3
Logical Equivalences
•
Compound propositions that have
the same truth values in all possible
cases are called logically equivalent.
• Definition:
The compound propositions p and q are
called logically equivalent if pq is a
tautology. Denote pq.
4
Logical Equivalences
•
•
One way to determine whether
two compound propositions are
equivalent is to use a truth table.
Symbol: PQ
5
Logical Equivalences
•
Prove the De Morgan’s Laws.
6
Logical Equivalences
• HW: Prove the other one (De Morgan’s
Laws).
7
Logical Equivalences
• Example:
Show that pq and ¬pq are logically
equivalent.
• HW: example 4 of page 23
8
Logical Equivalences
t01_2_006.jpg
9
Logical Equivalences
10
Logical Equivalences
11
Logical Equivalences
Example 5: Use De Morgan’s laws to express the
negations of “Miguel has a cellphone and he
has a laptop computer”.
Example 5: Use De Morgan’s laws to express the
negations of “Heather will go to the concert or
Steve will go to the concert”.
12
Logical Equivalences
• Example 6: Show that ¬(pq) and p ¬q are
logically equivalent.
• Example 7: Show that ¬(p(¬p  q)) and ¬p 
¬q are logically equivalent by developing a
series of logical equivalences.
• Example 8: Show that (p  q) ( pq) is a
tautology.
13
Terms
•
•
•
•
•
•
•
•
Tautology
Contradiction
Contingency
Logical Equivalence
De Morgan’s Laws
Commutative Law
Associative Law
Distributive Law
14