* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Corresponding angles and corresponding sides are congruent in
Dessin d'enfant wikipedia , lookup
Penrose tiling wikipedia , lookup
Multilateration wikipedia , lookup
Technical drawing wikipedia , lookup
Apollonian network wikipedia , lookup
Rational trigonometry wikipedia , lookup
Euler angles wikipedia , lookup
Reuleaux triangle wikipedia , lookup
Trigonometric functions wikipedia , lookup
History of trigonometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Unit 4: Congruence and Triangles (4.2) p.202211 Congruent Triangles:2 triangles that are exactly the same, both equal in length and equal in angle measure Corresponding angles and corresponding sides are congruent in congruent triangles. see example below Ex: Triangle ABC ≅ Triangle DEF E B D A C F 1 Third Angles Theorem: If 2 angles are congruent in one triangle to 2 angles in another triangle, then the third angle in each triangle will also be congruent B D F A C E If <A≅<D and <B≅<E, then <C≅<E 2 Ex: Solve for x and y I ABCDE≅FGHIJ A 111o E 93o B 15 in. 14 in. 105o D 12 in. C (4x + 7) in. (2y7)o J H G F 3 Ex: Solve for x (5x + 8)o 42o (4x 1)o 4 Properties of Congruent Triangles Reflexive Property of Congruent Triangles: a triangle is congruent to itself ABC ≅ ABC A Symmetric Property of Congruent Triangles : DEF ≅ ABC If ABC ≅ DEF, then D Transitive Property of Congruent Triangles : If and , ABC ≅ DEF DEF ≅ JKL then ABC ≅ JKL J B C E F K L 5 X Ex: Given: XY // WZ XY ≅ WZ V is the midpoint of XZ and WY Prove: YVX ≅ WVZ W V Y Z StatementsReasons 1) XY // WZ, XY ≅ WZ 1) _________________ 2) <YXV≅<VZW <XYV≅<ZWV 2) _________________ 3)__________________ 3) Vertical <'s Theorem 4) V is the mdpt XZ & WY 4)__________________ 5)___________________ 5) __________________ 6) YVX ≅ WVZ 6) __________________ 6 HW: p.206207 #1014 #1621 #2328 7 Unit 4: Proving Triangles are Congruent: SSS & SAS(4.3)p.212219 5 Congruence Postulates and Theorems: THE BIG 5 1: Side Side Side Postulate (SSS) 2: Side Angle Side Postulate (SAS) 3: Angle Side Angle Postulate (ASA) 4: Angle Angle Side Postulate (AAS) 5: Hypotenuse Leg Theorem (HL) 8 SideSideSide (SSS) Postulate: SSS: If 3 sides of one triangle are congruent to the 3 corresponding sides of another triangle, then the two triangles are congruent. D B A C F E 9 SideAngleSide (SAS) Postulate: SAS: If 2 sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then two triangles are congruent. B M N A C L 10 Ex: Given AB≅DB and AC≅DC Prove: ABC≅ DBC A Statements C B D Reasons 1) 1) Given 2) 2) 3) 3) 11 Ex: Given: C is the midpoint of AE and BD B Prove: ABC ≅ EDC E C A Statements D Reasons 1) 1) 2) 2) 3) 3) 4) 4) 12 T Given: UV bisects TW at point V TU≅WU Prove: TVU ≅ WVU V U Statements W Reasons 1) 1) Given 2) V is the midpoint of 2) TW 3) 3) Def. of midpoint 4) 4) Given 5) 5) 6) 6) 13 Ex: Is there enough information to prove the 2 triangles congruent? If so, give a reason why. and the congruence statement C a) E F A B D N Z b) X Y M L T c) V R Q R d) N M L Q 14 HW: p.216217 #1123 all 15 Unit 4: Proving Triangles are Congruent: ASA & AAS (4.4) p.220228 ASA: If 2 angles and the included side of one triangle are congruent to 2 angles and the included side of another triangle, then the 2 triangles are congruent. Z A B C X Y 16 AAS: If 2 angles and a nonincluded side of one triangle are congruent to 2 angles and a nonincluded side of another triangle, then the 2 triangles are congruent. A H C B K J 17 HL: If the hypotenuse and a leg of one right triangle are congruent to a hypotenuse and a leg of another right triangle, then the 2 triangles are congruent. B A C I G H 18 Given: <A≅<C and <ADB and <BDC are right angles Prove: ADB ≅ CDB A Statements 1) 2) <ADB≅<BDC B D C Reasons 1) 2) 3) 3) 4) 4) 19 Given: AC≅CD and <A≅<D Prove: ABC ≅ DEC E B C A Statements D Reasons 1) 1) 2) 2) 3) 3) 20 A Given: AZ≅AX <AYX and <AYZ are right angles Prove: AYZ ≅ AYX Z Reasons Statements 1) 1) 2) 2) 3) 3) 4) 4) Y X 21 E Given: BE bisects <AED <A≅<D Prove: ABE ≅ DBE A Statements B D Reasons 1) BE bisects <AED 1) 2) 2) 3) <A≅<D 3) 4) 4) 5) 5) 22 Ex: Is there enough information to prove the triangles are congruent? If so, explain why? D B a) C E A Y b) Z X W O c) M N P L d) T S Q R 23 HW: p.223224 #822 all 24 Review Congruent TrianglesExtra Practice with THE BIG FIVE: SSS, SAS, ASA, AAS, HL Example 1: Are the 2 triangles congruent? If so, why are they congruent and give the congruence statement. B b) A R Z a) C X Y T Q E D 25 Ex 1: continued c) H e) R E N d) X T S F G A O f) M L O C M E Y N 26 Example 1: continued S D g) A h) U C B Q T i) R j) T D G E F U X W V 27 Unit 4: Using Congruent Triangles (4.5) p.229242 TIDBITS OF INFO There is no Angle Side Side when proving congruent triangles Once you use 1 of THE BIG 5, the reason you can use to say all other parts of triangles are congruent is: Corresponding Parts of Congruent Triangles are Congruent (CPCTC): If 2 triangles are congruent, then all corresponding parts (sides and angles) are also congruent. Vertical angles are always congruent E A <ACB ≅ <ECD C D B Reflexive sides are always congruent N LN ≅ LN M P L Parallel Lines only allow you to say 2 angles are congruent A E <A≅<D <E≅<B C B D A B C <ABC≅<E E D 28 B Given: AB≅BC and AD≅AC Prove: <A≅<C A Reasons Statements 1) 1) 2) 2) 3) 3) 4) 4) D C 29 Given: AB//DC and BD//AC Prove: AB≅CD B A Statements 1) 2) <ABC≅______ <ACB≅______ D C Reasons 1) 2) 3) 3) 4) 4) 5) 5) 30 Given: QR//VT , QR≅VT, and <R≅<T Prove: QV≅VX Q R V T X Statements 1) QR//VT Reasons 1) 2) 2) 3) 3) Given 4) 4) 5) 5) 31 Given: <WVY≅<WXZ and WZ≅WY Prove: <Z≅<Y V Z Reasons Statements 1) 1) 2) 2) 3) 3) 4) 4) W X Y 32 HW: p.232234 #818 all 33