Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Polar Coordinates r2 = x2 + y 2 x = r cos θ y = r sin θ tan θ = y x The point represented by polar coordinates (r, θ) is also represented by (r, θ +2nπ) or (−r, θ + (2n + 1)π), if n is an integer. Polar curves A polar curve is the graph of a polar equation r = f (θ). Areas of polar regions ∫b A= 1 [f (θ)]2 dθ 2 a If a region R is bounded by two polar curves of equations r = f (θ) and r = g(θ), with a ≤ θ ≤ b, where f (θ) ≥ g(θ) ≥ 0 and 0 < b − a < 2π, then its area is given by 1 A= 2 ∫b [ 2 ] f (θ) − g 2 (θ) dθ a Arc Length of a polar curve ∫b √ ( r2 L= + dr dθ )2 dθ a Vectors If P = (x1 , y1 , z1 ) and Q = (x2 , y2 , z2 ), then the vector P⃗Q is given, in coordinates, by P⃗Q =< (x2 − x1 ), (y2 − y1 ), (z2 − z1 ) >. Length (magnitude) If ⃗v =< v1 , v2 , v3 > then |⃗v | = √ v12 + v22 + v32 . The vector ⃗u = 1 ⃗v |⃗v | a unit vector, pointing in the direction of ⃗v . Dot Product If ⃗u =< u1 , u2 , u3 > and ⃗v =< v1 , v2 , v3 > then ⃗u · ⃗v = u1 v1 + u2 v2 + u3 v3 . ( ) ⃗u · ⃗v ⃗u · ⃗v cos(θ) = proj⃗v (⃗u) = ⃗v |⃗u||⃗v | |⃗v |2 Cross Product If ⃗u =< u1 , u2 , u3 > and ⃗v =< v1 , v2 , v3 > then ⃗ ⃗ ⃗ i j k ⃗u × ⃗v = u1 u2 u3 =< u2 v3 − v2 u3 , u3 v1 − v3 u1 , u1 v2 − v1 u2 > v1 v2 v3 1 is Moreover, |⃗u × ⃗v | = |⃗u||⃗v | sin(θ). The volume of the box determined by ⃗u, ⃗v and w ⃗ is given by: (⃗u × ⃗v ) · w ⃗ = (⃗v × w) ⃗ · ⃗u = (w ⃗ × ⃗u) · ⃗v Lines and Planes The line L going through P (x0 , y0 , z0 ) parallel to ⃗v =< v1 , v2 , v3 > is given by: < x, y, z >=< x0 , y0 , z0 > +t < v1 , v2 , v3 > with t ∈ R. The distance from the point S to the line through P parallel to ⃗v is given by: d= |P⃗S×⃗v | . |⃗v | The plane going through P (x0 , y0 , z0 ) and normal to ⃗n =< A, B, C > is given by: A(x − x0 ) + B(y − y0 ) + C(z − z0 ) = 0 or Ax + By + Cz = D. The distance from the point S to the plane through P normal to ⃗n is given by: d = P⃗S · ⃗ n . |⃗ n| Vector Functions ⃗r(t) =< f (t), g(t), h(t) >. Taking limits, differentiation and integration is done component by component. Notation: ⃗r(t) is the position, ⃗v (t) = ⃗r′ (t) = and ⃗a(t) = ⃗r′′ (t) = d2 ⃗r(t) dt2 d ⃗r(t) dt is the acceleration. 2 is the velocity, |⃗v (t)| = |⃗r′ (t)| is the speed c 2011 Math Medics LLC. All rights reserved. � TRIGONOMETRIC IDENTITIES • Reciprocal identities 1 1 cos u = sin u = csc u sec u 1 1 cot u = tan u = cot u tan u 1 1 sec u = csc u = sin u cos u • Pythagorean Identities sin2 u + cos2 u = 1 1 + tan2 u = sec2 u 1 + cot2 u = csc2 u • Quotient Identities cos u sin u cot u = tan u = cos u sin u • Co-Function Identities π π sin( − u) = cos u cos( − u) = sin u 2 2 tan( csc( π π − u) = cot u cot( − u) = tan u 2 2 π − u) = sec u 2 sec( π − u) = csc u 2 • Parity Identities (Even & Odd) sin(−u) = − sin u cos(−u) = cos u tan(−u) = − tan u cot(−u) = − cot u csc(−u) = csc u sec(−u) = sec u • Sum & Difference Formulas sin(u ± v) = sin u cos v ± cos u sin v cos(u ± v) = cos u cos v ∓ sin u sin v tan u ± tan v tan(u ± v) = 1 ∓ tan u tan v • Double Angle Formulas sin(2u) = 2 sin u cos u cos(2u) = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u 2 tan u tan(2u) = 1 − tan2 u • Power-Reducing/Half Angle Formulas 1 − cos(2u) 2 1 + cos(2u) cos2 u = 2 1 − cos(2u) tan2 u = 1 + cos(2u) sin2 u = • Sum-to-Product Formulas � � � � u−v u+v cos sin u + sin v = 2 sin 2 2 sin u − sin v = 2 cos � cos u + cos v = 2 cos u+v 2 � cos u − cos v = −2 sin � u+v 2 � sin � u+v 2 � cos � u−v 2 � sin � u−v 2 � � u−v 2 • Product-to-Sum Formulas sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 cos u cos v = 1 [cos(u − v) + cos(u + v)] 2 sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 �