Download Useful Formulae Exam 1 - Iowa State University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Multiple integral wikipedia , lookup

Limit of a function wikipedia , lookup

Sobolev space wikipedia , lookup

Matrix calculus wikipedia , lookup

Fundamental theorem of calculus wikipedia , lookup

Derivative wikipedia , lookup

Function of several real variables wikipedia , lookup

Generalizations of the derivative wikipedia , lookup

Chain rule wikipedia , lookup

Transcript
Leader: Wheaton
Useful Formulae
Course: Math 165
Supplemental Instruction
Instructor: Dr. Tokorcheck
Iowa State University
Date: 02/11/15
Below is a list of formulae that it will be helpful to know moving forward in calculus that we
have learned or needed to know to this point. While this list is by no means exhaustive, it should
be a useful starting point.
Trigonometric Formulae
Limit Laws
lim π‘˜ = π‘˜
Angle Sum Identities
π‘₯→𝑐
sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin⁑(𝛽)
lim π‘₯ = 𝑐
π‘₯→𝑐
cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽)
βˆ’ sin(𝛼) sin⁑(𝛽)
π‘π‘œπ‘  2 (π‘₯) + 𝑠𝑖𝑛2 (π‘₯) = 1
1 + π‘‘π‘Žπ‘›
π‘₯→𝑐
lim[𝑓(π‘₯) + 𝑔(π‘₯)] = lim 𝑓(π‘₯) + lim 𝑔(π‘₯)
Pythagorian Identities
2 (π‘₯)
lim π‘˜π‘“(π‘₯) = π‘˜ βˆ— lim 𝑓(π‘₯)
π‘₯→𝑐
2
= sec (π‘₯)
1 + π‘π‘œπ‘‘ 2 (π‘₯) = csc 2 (π‘₯)
Odd-Even Identities
sin(βˆ’π‘₯) = βˆ’ sin(π‘₯)
cos(βˆ’π‘₯) = cos(π‘₯)
tan(βˆ’π‘₯) = βˆ’ tan(π‘₯)
π‘₯→𝑐
π‘₯→𝑐
π‘₯→𝑐
lim[𝑓(π‘₯) βˆ’ 𝑔(π‘₯)] = lim 𝑓(π‘₯) βˆ’ lim 𝑔(π‘₯)
π‘₯→𝑐
π‘₯→𝑐
π‘₯→𝑐
lim[𝑓(π‘₯) βˆ— 𝑔(π‘₯)] = lim 𝑓(π‘₯) βˆ— lim 𝑔(π‘₯)
π‘₯→𝑐
π‘₯→𝑐
lim [
π‘₯→𝑐
π‘₯→𝑐
lim 𝑓(π‘₯)
𝑓(π‘₯)
] = π‘₯→𝑐
𝑔(π‘₯)
lim 𝑔(π‘₯)
π‘₯→𝑐
lim[𝑓(π‘₯)]𝑛 = [lim 𝑓(π‘₯)]
π‘₯→𝑐
𝑛
π‘₯→𝑐
𝑛
lim βˆšπ‘“(π‘₯) = π‘›βˆšlim 𝑓(π‘₯)
π‘₯→𝑐
π‘₯→𝑐
Continuity
Differentiable
For a function to be continuous it must satisfy
three conditions:
A function 𝑓(π‘₯) is differentiable if 𝑓′(𝑐)
exists for every 𝑐 in a given interval.
1) 𝑐 is in the domain of 𝑓
2) lim 𝑓(π‘₯) ⁑𝑒π‘₯𝑖𝑠𝑑𝑠
π‘₯→𝑐
3) lim 𝑓(π‘₯) = 𝑓(𝑐)
An infinitely differentiable function is called
smooth (examples include 𝑠𝑖𝑛(π‘₯) and
π‘π‘œπ‘ (π‘₯))
π‘₯→𝑐
Derivative Definitions
Derivative Rules
𝑓(𝑐 + β„Ž) βˆ’ 𝑓(𝑐)
β„Žβ†’0
β„Ž
This definition is useful to evaluate the
derivative at a given point 𝑐.
Power Rule
𝑓′(𝑐) = lim
𝑑 𝑛
(π‘₯ ) = 𝑛π‘₯ π‘›βˆ’1
𝑑π‘₯
𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)
β„Žβ†’0
β„Ž
𝑓 β€² (π‘₯) = lim
1060 Hixson-Lied Student Success Center  515-294-6624  [email protected]  http://www.si.iastate.edu
This definition gives a function that
represents derivative of the function 𝑓(π‘₯)
𝑓(π‘₯) βˆ’ 𝑓(𝑐)
π‘₯→𝑐
π‘₯βˆ’π‘
This definition is useful to calculate inverse
functions.
𝑓 β€² (π‘₯) = lim
Trig Derivatives
𝑑
(cos(π‘₯)) = βˆ’ sin(π‘₯)
𝑑π‘₯
𝑑
(sin(π‘₯)) = cos(π‘₯)
𝑑π‘₯
𝑑
(tan(π‘₯)) = sec 2 (π‘₯)
𝑑π‘₯
𝑑
(cot(π‘₯)) = βˆ’ csc 2 (π‘₯)
𝑑π‘₯
𝑑
(sec⁑(x)) = tan(π‘₯) sec(π‘₯)
𝑑π‘₯
𝑑
(csc⁑(x)) = cot(π‘₯) csc(π‘₯)
𝑑π‘₯
Squeeze Theorem Limits
lim (
π‘₯β†’0
1 βˆ’ π‘π‘œπ‘ (π‘₯)
)=0
π‘₯
𝑠𝑖𝑛(π‘₯)
lim (
)=1
π‘₯β†’0
π‘₯
Common Exponential Derivatives
𝑑 π‘₯
(𝑒 ) = 𝑒 π‘₯
𝑑π‘₯
𝑑 π‘₯
(π‘Ž ) = ln(π‘Ž) βˆ— π‘Ž π‘₯
𝑑π‘₯
Linearity of Derivatives
𝑑
𝑑
(𝑐 βˆ— 𝑓(π‘₯)) = 𝑐
(𝑓(π‘₯))
𝑑π‘₯
𝑑π‘₯
𝑑
𝑑
𝑑
(𝑓(π‘₯) + 𝑔(π‘₯)) =
𝑓(π‘₯) +
𝑔(π‘₯)
𝑑π‘₯
𝑑π‘₯
𝑑π‘₯
Product Rule
𝑑
𝑑
(𝑓 βˆ— 𝑔)(π‘₯) = 𝑓(π‘₯) 𝑔(π‘₯)
𝑑π‘₯
𝑑π‘₯
𝑑
+ 𝑔(π‘₯) 𝑔(π‘₯)
𝑑π‘₯
Quotient Rule
𝑑 𝑓
𝑓 β€² (π‘₯) βˆ— 𝑔(π‘₯) βˆ’ 𝑔′ (π‘₯) βˆ— 𝑓(π‘₯)
( ) (π‘₯) =
𝑑π‘₯ 𝑔
𝑔2 (π‘₯)
Composition Rule
𝑑
(𝑓°π‘”)(π‘₯) = 𝑓 β€² (𝑔(π‘₯)) βˆ— 𝑔′(π‘₯)
𝑑π‘₯
𝑑
(𝑓°π‘”°β„Ž)(π‘₯) = 𝑓 β€² (𝑔(β„Ž(π‘₯)))
𝑑π‘₯
βˆ— 𝑔′ (β„Ž(π‘₯)) βˆ— β„Žβ€²(π‘₯)
U substitution composition
𝑑
𝑑𝑓(𝑒) 𝑑𝑒
𝑓(π‘₯) =
βˆ—
𝑑π‘₯
𝑑𝑒
𝑑π‘₯
𝑑
𝑑𝑓(𝑣) 𝑑𝑣(𝑒) 𝑑𝑒
𝑓(π‘₯) =
βˆ—
βˆ—
𝑑π‘₯
𝑑𝑣
𝑑𝑒
𝑑π‘₯
Common Log Derivatives
𝑑
1
(ln(π‘₯)) =
𝑑π‘₯
π‘₯
𝑑
1
(log π‘Ž (π‘₯)) =
𝑑π‘₯
π‘₯𝑙𝑛(π‘Ž)
Inverse Functions
A function 𝑓(π‘₯) is one to one if for every pair
of π‘₯1 , π‘₯2 then 𝑓(π‘₯1 ) β‰  𝑓(π‘₯2 ) (vertical line
test)
must pass vertical line test to have inverse
(may have to restrict domain)
Inverse function theorem:
𝑑π‘₯
1
Simply stated: 𝑑𝑦 = 𝑑𝑦⁄𝑑π‘₯
Easy way to solve for an inverse is switch and
solve (exchange all x’s and y’s, solve for y)