• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Sign in Sign up
Upload
2 HYPERBOLIC FUNCTIONS
2 HYPERBOLIC FUNCTIONS

... Integrals of this type are found by means of a substitution involving hyperbolic functions. They may be a little more complicated than the ones above and it is sometimes necessary to complete the square. ...
Limit and Derivatives
Limit and Derivatives

APEX Calculus I
APEX Calculus I

Introduction to Calculus
Introduction to Calculus

(pdf)
(pdf)

... property says that the expected future price based on all information up to this point in time will be the price today. The martingale is the mathematical formulation of the Efficient Market Hypotheisis. ...
a la Finance University Paris 1 Stochastic Calculus 2 Annie Millet
a la Finance University Paris 1 Stochastic Calculus 2 Annie Millet

3.4 Finite Limits at Points
3.4 Finite Limits at Points

Method of external potential in solution of Cauchy mixed problem for
Method of external potential in solution of Cauchy mixed problem for

... represented in the study of heat conductivity and diffusion process. Numerous research works are devoted to study Cauchy mixed problem for model heat equations because of its theoretical and practical importance. Among them we can notice monographers [1]-[3] which demonstrate main research methods, ...
Week 7: Limits at Infinity. - MA161/MA1161: Semester
Week 7: Limits at Infinity. - MA161/MA1161: Semester

An introduction of the enlargement of filtration
An introduction of the enlargement of filtration

... series of results will be presented in this section, which form basic connexions between the stochastic calculus and the problem of filtration enlargement. They are selected notably because of their fundamental role in [51, 83]. ...
Test - FloridaMAO
Test - FloridaMAO

Functional Limit theorems for the quadratic variation of a continuous
Functional Limit theorems for the quadratic variation of a continuous

... It can be assigned a topology that, intuitively allows us to wiggle space and time a bit (whereas the traditional topology of uniform convergence only allows us to wiggle space a bit). Skorokhod (1965) proposed four metric separable topologies on D, denoted by J1 , J2 , M1 and M2 . A. Skorokhod. Lim ...
Chapter 1 Fourier Series
Chapter 1 Fourier Series

Trigonometrical functions
Trigonometrical functions

calcuLec11 - United International College
calcuLec11 - United International College

... x intercepts: The points where a graph crosses the x axis. A y intercept: A point where the graph crosses the y axis. How to find the x and y intercepts: The only possible y intercept for a function is y0  f (0) , to find any x intercept of y=f(x), set y=0 and solve for x. Note: Sometimes finding x ...
x - United International College
x - United International College

On Undefined and Meaningless in Lambda Definability
On Undefined and Meaningless in Lambda Definability

Improper Integrals
Improper Integrals

... The function f was assumed to be continuous, or at least bounded, otherwise the integral was not guaranteed to exist. Assuming an antiderivative of f could b be found, a f (x) dx always existed, and was a number. In this section, we investigate what happens when these conditions are not met. Defini ...
The Inverse Trigonometric Functions - Beck-Shop
The Inverse Trigonometric Functions - Beck-Shop

Course Notes
Course Notes

Transcript  - MIT OpenCourseWare
Transcript - MIT OpenCourseWare

Approximate Fixed Point Theorems
Approximate Fixed Point Theorems

Course Title:
Course Title:

Inverses (Farrand-Shultz) - Tools for the Common Core Standards
Inverses (Farrand-Shultz) - Tools for the Common Core Standards

... If we think of a function as a rule that assigns to each number in its domain a unique value, then the inverse can be thought of as the rule that undoes that assignment. For example, the function f(x) = 3x + 4 can be thought of as the rule defined by the following sequence of two steps: Multiply by ...
With(out) A Trace - Matrix Derivatives the Easy Way
With(out) A Trace - Matrix Derivatives the Easy Way

1 2 3 4 5 ... 15 >

Sobolev space

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function itself and its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, thus a Banach space. Intuitively, a Sobolev space is a space of functions with sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that solutions of partial differential equations are naturally found in Sobolev spaces, rather than in spaces of continuous functions and with the derivatives understood in the classical sense.
  • studyres.com © 2023
  • DMCA
  • Privacy
  • Terms
  • Report