Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EXPONENTIAL GROWTH AND DECAY Section 6.4a Law of Exponential Change Suppose we are interested in a quantity y that increases or decreases at a rate proportional to the amount present… Can you think of any examples??? If we also know the initial amount of y , we can model this situation with the following initial value problem: Differential Equation: Initial Condition: y dy ky dt 0 y0 Note: k can be either positive or negative What happens in each of these instances? Law of Exponential Change dy Let’s solve this differential equation: ky dt dy kdt Separate variables y dy y kdt ln y kt C Integrate ln y e kt C e y e e C kt Exponentiate Laws of Logs/Exps Law of Exponential Change dy Let’s solve this differential equation: ky dt y e e C kt y e e Def. of Abs. Value kt C Let A = + e – y Ae k 0 y 0 Ae A y0 Apply the C Solution: y y0 e kt Initial Cond. kt Law of Exponential Change If y changes at a rate proportional to the amount present (dy/dt = ky) and y = y 0 when t = 0, then y y0 e kt where k > 0 represents growth and k < 0 represents decay. The number k is the rate constant of the equation. Compounding Interest Suppose that A 0 dollars are invested at a fixed annual interest rate r. If interest is added to the account k times a year, the amount of money present after t years is r A t A0 1 k kt Interest can be compounded monthly (k = 12), weekly (k = 52), daily (k = 365), etc… Compounding Interest What if we compound interest continuously at a rate proportional to the amount in the account? We have another initial value problem!!! Differential Equation: dA rA dt Look familiar??? Initial Condition: Solution: A 0 A0 A t A0e rt Interest paid according to this formula is compounded continuously. The number r is the continuous interest rate. Radioactivity Radioactive Decay – the process of a radioactive substance emitting some of its mass as it changes forms. Important Point: It has been shown that the rate at which a radioactive substance decays is approximately proportional to the number of radioactive nuclei present… So we can use our familiar equation!!! y y0e kt k 0 Half-Life – the time required for half of the radioactive nuclei present in a sample to decay. Guided Practice Find the solution to the differential equation dy/dt = ky, k a constant, that satisfies the given conditions. 1. k = – 0.5, y(0) = 200 Solution: y t 200e 0.5t Guided Practice Find the solution to the differential equation dy/dt = ky, k a constant, that satisfies the given conditions. y0 60 2. y(0) = 60, y(10) = 30 y 10 30 60e 10 k 0.5 e 10 k Solution: or ln 0.5 10k k 0.1ln 0.5 0.1ln 2 y t 60e t 10 y t 60 2 0.1ln 2t Guided Practice Suppose you deposit $800 in an account that pays 6.3% annual interest. How much will you have 8 years later if the interest is (a) compounded continuously? (b) compounded quarterly? (a) (b) A 8 800e .0638 $1324.26 .063 A 8 800 1 4 4 8 $1319.07 Guided Practice Find the half-life of a radioactive substance with the given decay equation, and show that the half-life depends only on k. y y0e kt Need to solve: 1 y0 e y 0 2 1 kt ln 2 kt 1 1 ln 2 t ln k 2 k This is always the half-life of a radioactive substance with rate constant k (k > 0)!!! Guided Practice Scientists who do carbon-14 dating use 5700 years for its halflife. Find the age of the sample in which 10% of the radioactive nuclei originally present have decayed. Half-Life = y0 e kt kt ln 2 ln 2 k 5700 5700 k 0.9 y0 e 0.9 kt ln 0.9 1 t ln 0.9 k 5700 ln 0.9 866.418 ln 2 The sample is about 866.418 years old Guided Practice A colony of bacteria is increasing exponentially with time. At the end of 3 hours there are 10,000 bacteria. At the end of 5 hours there are 40,000 bacteria. How many bacteria were present initially? 10, 000 y0 e 5k 40, 000 y0e 3k 10, 000 y0e 3k 40, 000 y0 e 4e 2k 5k k ln 2 10, 000 y0 e 3ln 2 y0 1250 There were 1250 bacteria initially Guided Practice The number of radioactive atoms remaining after t days in a sample of polonium-210 that starts with y 0 radioactive atoms is 0.005t 0 yye (a) Find the element’s half-life. Half-life = ln 2 ln 2 138.629 days k 0.005 Guided Practice The number of radioactive atoms remaining after t days in a sample of polonium-210 that starts with y 0 radioactive atoms is 0.005t 0 yye (b) Your sample is no longer useful after 95% of the initial radioactive atoms have disintegrated. For about how many days after the sample arrives will you be able to use the sample? 0.05 y0 y0 e 0.005t ln 0.05 0.005t ln 0.05 t 599.146 days 0.005