Download System of Equations: Row Reduction Method

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Determinant wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Matrix calculus wikipedia , lookup

Transcript
Systems with Three Variables
Objective:
I can solve systems with three or more variables.
How much does
each box
weigh?
Explain your
reasoning.
Solve the system.
๐Ÿ๐’™ โˆ’ ๐’š + ๐’› = ๐Ÿ’
๐’™ + ๐Ÿ‘๐’š โˆ’ ๐’› = ๐Ÿ๐Ÿ
๐Ÿ’๐’™ + ๐’š โˆ’ ๐’› = ๐Ÿ๐Ÿ’
๐Ÿ๐’™ โˆ’ ๐’š + ๐’› = ๐Ÿ’
๐’™ + ๐Ÿ‘๐’š โˆ’ ๐’› = ๐Ÿ๐Ÿ
๐Ÿ‘๐’™ + ๐Ÿ๐’š
= ๐Ÿ๐Ÿ“
๐Ÿ‘๐’™ + ๐Ÿ๐’š = ๐Ÿ๐Ÿ“
๐Ÿ‘ ๐Ÿ‘ + ๐Ÿ๐’š = ๐Ÿ๐Ÿ“
๐Ÿ— + ๐Ÿ๐’š = ๐Ÿ๐Ÿ“
๐Ÿ๐’™ โˆ’ ๐’š + ๐’› = ๐Ÿ’
๐Ÿ’๐’™ + ๐’š โˆ’ ๐’› = ๐Ÿ๐Ÿ’
๐Ÿ”๐’™
= ๐Ÿ๐Ÿ–
๐’™ =๐Ÿ‘
(๐Ÿ‘, ๐Ÿ‘, ๐Ÿ)
๐Ÿ๐’š = ๐Ÿ”
๐’š=๐Ÿ‘
๐Ÿ๐’™ โˆ’ ๐’š + ๐’› = ๐Ÿ’
๐Ÿ(๐Ÿ‘) โˆ’ (๐Ÿ‘) + ๐’› = ๐Ÿ’
๐Ÿ‘+๐’›=๐Ÿ’
๐’›=๐Ÿ
Solve the system.
๐’™ + ๐’š + ๐Ÿ๐’› = ๐Ÿ‘
โˆ’๐’™ โˆ’ ๐Ÿ๐’š + ๐’› = ๐Ÿ๐ŸŽ
โˆ’๐’š + ๐Ÿ‘๐’› = ๐Ÿ๐Ÿ‘
โˆ’๐’š + ๐Ÿ‘(๐Ÿ‘) = ๐Ÿ๐Ÿ‘
๐’™ + ๐’š + ๐Ÿ๐’› = ๐Ÿ‘
๐Ÿ๐’™ + ๐’š + ๐Ÿ‘๐’› = ๐Ÿ•
โˆ’๐’™ โˆ’ ๐Ÿ๐’š + ๐’› = ๐Ÿ๐ŸŽ
๐Ÿ๐’™ + ๐’š + ๐Ÿ‘๐’› = ๐Ÿ•
โˆ’๐’™ โˆ’ ๐Ÿ๐’š + ๐’› = ๐Ÿ๐ŸŽ
๐Ÿ๐’™ + ๐’š + ๐Ÿ‘๐’› = ๐Ÿ•
โˆ’๐Ÿ๐’™ โˆ’ ๐Ÿ’๐’š + ๐Ÿ๐’› = ๐Ÿ๐ŸŽ
โˆ’๐Ÿ‘๐’š + ๐Ÿ“๐’› = ๐Ÿ๐Ÿ•
๐’™ + ๐’š + ๐Ÿ๐’› = ๐Ÿ‘
๐’™ + (โˆ’๐Ÿ’) + ๐Ÿ(๐Ÿ‘) = ๐Ÿ‘
โˆ’๐’š + ๐Ÿ— = ๐Ÿ๐Ÿ‘
โˆ’๐’š = ๐Ÿ’
๐’š = โˆ’๐Ÿ’
โˆ’๐’š + ๐Ÿ‘๐’› = ๐Ÿ๐Ÿ‘
โˆ’๐Ÿ‘๐’š + ๐Ÿ“๐’› = ๐Ÿ๐Ÿ•
๐Ÿ‘๐’š โˆ’ ๐Ÿ—๐’› = โˆ’๐Ÿ‘๐Ÿ—
โˆ’๐Ÿ‘๐’š + ๐Ÿ“๐’› = ๐Ÿ๐Ÿ•
โˆ’๐Ÿ’๐’› = โˆ’๐Ÿ๐Ÿ
๐’› =๐Ÿ‘
๐’™โˆ’๐Ÿ=๐Ÿ‘
(๐Ÿ, โˆ’๐Ÿ’, ๐Ÿ‘)
๐’™=๐Ÿ
You manage a clothing store and budget $6000 to restock 200 shirts.
You can buy T-shirts for $12 each, polo shirts $24 each and rugby shirts
for $36 each. You want to have twice as many rugby shirts as polo
shirts. How many of each type shirt should you buy?
๐‘ป + ๐‘ท + (๐Ÿ๐‘ท) = ๐Ÿ๐ŸŽ๐ŸŽ
๐‘ป + ๐‘ท + ๐‘น = ๐Ÿ๐ŸŽ๐ŸŽ
๐Ÿ๐Ÿ๐‘ป + ๐Ÿ๐Ÿ’๐‘ท + ๐Ÿ‘๐Ÿ”(๐Ÿ๐‘ท) = ๐Ÿ”๐ŸŽ๐ŸŽ๐ŸŽ
๐Ÿ๐Ÿ๐‘ป + ๐Ÿ๐Ÿ’๐‘ท + ๐Ÿ‘๐Ÿ”๐‘น = ๐Ÿ”๐ŸŽ๐ŸŽ๐ŸŽ
๐‘ป + ๐Ÿ‘๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ
๐‘น = ๐Ÿ๐‘ท
๐‘น = ๐Ÿ(๐Ÿ”๐ŸŽ) = ๐Ÿ๐Ÿ๐ŸŽ
๐‘ป + (๐Ÿ”๐ŸŽ) + (๐Ÿ๐Ÿ๐ŸŽ) = ๐Ÿ๐ŸŽ๐ŸŽ
๐‘ป = ๐Ÿ๐ŸŽ
Pg. 171
#9-11, 30
๐Ÿ๐Ÿ๐‘ป + ๐Ÿ—๐Ÿ”๐‘ท = ๐Ÿ”๐ŸŽ๐ŸŽ๐ŸŽ
โˆ’๐Ÿ๐Ÿ๐‘ป โˆ’ ๐Ÿ‘๐Ÿ”๐‘ท = โˆ’๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ
๐Ÿ๐Ÿ๐‘ป + ๐Ÿ—๐Ÿ”๐‘ท = ๐Ÿ”๐ŸŽ๐ŸŽ๐ŸŽ
๐Ÿ”๐ŸŽ๐‘ท = ๐Ÿ‘๐Ÿ”๐ŸŽ๐ŸŽ
๐‘ท = ๐Ÿ”๐ŸŽ
Systems with Three Variables
Objective:
I can use matrices to solve systems.
Use the rules below to change figure 1 into figure 2?
Matrix:
โ€ข A rectangular array of numbers.
โ€ขDimensions: rows × columns
Matrix
Name
2 5 11
๐ด =
3 โˆ’2 5
Systems to matrices
๏ƒฌ A1 x ๏€ซ B1 y ๏€ฝ C1
๏ƒญ
๏ƒฎ A2 x ๏€ซ B2 y ๏€ฝ C2
๐‘ฅ + 4๐‘ฆ = 5
2๐‘ฅ + 5๐‘ฆ = 4
๏ƒฉA1 B1 C1 ๏ƒน
matrix
๏ƒชA B2 C2 ๏ƒบ
๏ƒซ 2
๏ƒป
matrix
1 4
2 5
5
4
๏ƒฉ1 0 a ๏ƒน
๏ƒช0 1 b ๏ƒบ
๏ƒซ
๏ƒป
(โˆ’๐Ÿ‘, ๐Ÿ)
Reduced Row Echelon form (rref)
-4 × Row 2 + Row 1
Divide Row 2 by -3
-2 × Row 1 + Row 2
Put in Row 1
Put in Row 2
Put in Row 2
1
0
4
5
โˆ’3 โˆ’6
1 4
0 1
5
2
1 0
0 1
โˆ’3
2
Systems to matrices
๏ƒฌ A1 x ๏€ซ B1 y ๏€ฝ C1
๏ƒญ
๏ƒฎ A2 x ๏€ซ B2 y ๏€ฝ C2
2๐‘ฅ + ๐‘ฆ = 5
5๐‘ฅ + 3๐‘ฆ = 13
matrix
matrix
๏ƒฉA1 B1 C1 ๏ƒน
๏ƒชA B2 C2 ๏ƒบ
๏ƒซ 2
๏ƒป
2 1
5 3
5
13
๏ƒฉ1 0 a ๏ƒน
๏ƒช0 1 b ๏ƒบ
๏ƒซ
๏ƒป
rref
rref
1 0
0 1
[2nd],[x-1],[โ–บ] ,[โ–บ], [enter]
Reduced Row-Echelon Form
enter rows [enter]
[2nd], [x-1], [โ–บ], [alpha], [apps]
enter columns [enter]
or
enter matrix;
[2nd], [x-1], [โ–บ], [โ–ผ] to rref( , [enter]
[2nd], [mode]
[2nd], [ x-1], [enter], [enter]
2
1
(๐Ÿ, ๐Ÿ)
Solve each system using matrices
๏ƒฌ 2 x ๏€ซ 5 y ๏€ฝ 11
๏ƒญ
๏ƒฎ๏€ญ 3 x ๏€ซ 8 y ๏€ฝ ๏€ญ1
๏ƒฉ 2
๏ƒช๏€ญ 3
๏ƒซ
๏ƒฉ1
๏ƒช0
๏ƒซ
5
8
0
1
11 ๏ƒน
๏€ญ 1๏ƒบ
๏ƒป
3๏ƒน
1๏ƒบ
๏ƒป
Solution:
( 3, 1 )
Solution:
( 1 , ๏€ญ 1, 0 )
๏ƒฌ a๏€ซb๏€ซc ๏€ฝ 0
๏ƒฏ
๏ƒญ 4a ๏€ซ 2b ๏€ซ c ๏€ฝ 2
๏ƒฏ16a ๏€ซ 4b ๏€ซ c ๏€ฝ 12
๏ƒฎ
๏ƒฉ1
๏ƒช4
๏ƒช
๏ƒช
๏ƒซ16
1
1
2
1
4
1
๏ƒฉ1
๏ƒช0
๏ƒช
๏ƒช
๏ƒซ0
0
0
1
0
0
1
0๏ƒน
2๏ƒบ
๏ƒบ
12๏ƒบ
๏ƒป
1 ๏ƒน
๏€ญ 1๏ƒบ
๏ƒบ
0 ๏ƒบ
๏ƒป
Solve each system using matrices
๏ƒฌ๏€ญ 4 x ๏€ฝ 2 y ๏€ซ 7
๏ƒญ
๏ƒฎ 3x ๏€ซ y ๏€ฝ ๏€ญ5
Solution:
( -1.5, -0.5)
๏ƒฌ๏€ญ 4 x ๏€ญ 2 y ๏€ฝ 7
๏ƒญ
๏ƒฎ 3 x ๏€ซ y ๏€ฝ ๏€ญ5
๏ƒฉ๏€ญ 4
๏ƒช 3
๏ƒซ
๏ƒฉ1
๏ƒช0
๏ƒซ
๏€ญ2
1
0
1
7 ๏ƒน
๏ƒบ
๏€ญ 5๏ƒป
๏€ญ 1.5 ๏ƒน
๏€ญ 0.5๏ƒบ
๏ƒป
Solution:
( -2 , 3, 5)
Pg. 179
#15-20,
24-27,
32,33,36,37
๏ƒฌx ๏€ซ 3 y ๏€ญ z ๏€ฝ 2
๏ƒฏ
๏ƒญ x ๏€ซ 2z ๏€ฝ 8
๏ƒฏ 2y ๏€ญ z ๏€ฝ1
๏ƒฎ
๏ƒฉ1
๏ƒช1
๏ƒช
๏ƒช
๏ƒซ0
๏ƒฉ1
๏ƒช0
๏ƒช
๏ƒช
๏ƒซ0
3
๏€ญ1
0
2
2
๏€ญ1
0
0
1
0
0
1
2๏ƒน
8๏ƒบ
๏ƒบ
1๏ƒบ
๏ƒป
๏€ญ 2๏ƒน
3 ๏ƒบ
๏ƒบ
5 ๏ƒบ
๏ƒป