Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Systems with Three Variables Objective: I can solve systems with three or more variables. How much does each box weigh? Explain your reasoning. Solve the system. ๐๐ โ ๐ + ๐ = ๐ ๐ + ๐๐ โ ๐ = ๐๐ ๐๐ + ๐ โ ๐ = ๐๐ ๐๐ โ ๐ + ๐ = ๐ ๐ + ๐๐ โ ๐ = ๐๐ ๐๐ + ๐๐ = ๐๐ ๐๐ + ๐๐ = ๐๐ ๐ ๐ + ๐๐ = ๐๐ ๐ + ๐๐ = ๐๐ ๐๐ โ ๐ + ๐ = ๐ ๐๐ + ๐ โ ๐ = ๐๐ ๐๐ = ๐๐ ๐ =๐ (๐, ๐, ๐) ๐๐ = ๐ ๐=๐ ๐๐ โ ๐ + ๐ = ๐ ๐(๐) โ (๐) + ๐ = ๐ ๐+๐=๐ ๐=๐ Solve the system. ๐ + ๐ + ๐๐ = ๐ โ๐ โ ๐๐ + ๐ = ๐๐ โ๐ + ๐๐ = ๐๐ โ๐ + ๐(๐) = ๐๐ ๐ + ๐ + ๐๐ = ๐ ๐๐ + ๐ + ๐๐ = ๐ โ๐ โ ๐๐ + ๐ = ๐๐ ๐๐ + ๐ + ๐๐ = ๐ โ๐ โ ๐๐ + ๐ = ๐๐ ๐๐ + ๐ + ๐๐ = ๐ โ๐๐ โ ๐๐ + ๐๐ = ๐๐ โ๐๐ + ๐๐ = ๐๐ ๐ + ๐ + ๐๐ = ๐ ๐ + (โ๐) + ๐(๐) = ๐ โ๐ + ๐ = ๐๐ โ๐ = ๐ ๐ = โ๐ โ๐ + ๐๐ = ๐๐ โ๐๐ + ๐๐ = ๐๐ ๐๐ โ ๐๐ = โ๐๐ โ๐๐ + ๐๐ = ๐๐ โ๐๐ = โ๐๐ ๐ =๐ ๐โ๐=๐ (๐, โ๐, ๐) ๐=๐ You manage a clothing store and budget $6000 to restock 200 shirts. You can buy T-shirts for $12 each, polo shirts $24 each and rugby shirts for $36 each. You want to have twice as many rugby shirts as polo shirts. How many of each type shirt should you buy? ๐ป + ๐ท + (๐๐ท) = ๐๐๐ ๐ป + ๐ท + ๐น = ๐๐๐ ๐๐๐ป + ๐๐๐ท + ๐๐(๐๐ท) = ๐๐๐๐ ๐๐๐ป + ๐๐๐ท + ๐๐๐น = ๐๐๐๐ ๐ป + ๐๐ท = ๐๐๐ ๐น = ๐๐ท ๐น = ๐(๐๐) = ๐๐๐ ๐ป + (๐๐) + (๐๐๐) = ๐๐๐ ๐ป = ๐๐ Pg. 171 #9-11, 30 ๐๐๐ป + ๐๐๐ท = ๐๐๐๐ โ๐๐๐ป โ ๐๐๐ท = โ๐๐๐๐ ๐๐๐ป + ๐๐๐ท = ๐๐๐๐ ๐๐๐ท = ๐๐๐๐ ๐ท = ๐๐ Systems with Three Variables Objective: I can use matrices to solve systems. Use the rules below to change figure 1 into figure 2? Matrix: โข A rectangular array of numbers. โขDimensions: rows × columns Matrix Name 2 5 11 ๐ด = 3 โ2 5 Systems to matrices ๏ฌ A1 x ๏ซ B1 y ๏ฝ C1 ๏ญ ๏ฎ A2 x ๏ซ B2 y ๏ฝ C2 ๐ฅ + 4๐ฆ = 5 2๐ฅ + 5๐ฆ = 4 ๏ฉA1 B1 C1 ๏น matrix ๏ชA B2 C2 ๏บ ๏ซ 2 ๏ป matrix 1 4 2 5 5 4 ๏ฉ1 0 a ๏น ๏ช0 1 b ๏บ ๏ซ ๏ป (โ๐, ๐) Reduced Row Echelon form (rref) -4 × Row 2 + Row 1 Divide Row 2 by -3 -2 × Row 1 + Row 2 Put in Row 1 Put in Row 2 Put in Row 2 1 0 4 5 โ3 โ6 1 4 0 1 5 2 1 0 0 1 โ3 2 Systems to matrices ๏ฌ A1 x ๏ซ B1 y ๏ฝ C1 ๏ญ ๏ฎ A2 x ๏ซ B2 y ๏ฝ C2 2๐ฅ + ๐ฆ = 5 5๐ฅ + 3๐ฆ = 13 matrix matrix ๏ฉA1 B1 C1 ๏น ๏ชA B2 C2 ๏บ ๏ซ 2 ๏ป 2 1 5 3 5 13 ๏ฉ1 0 a ๏น ๏ช0 1 b ๏บ ๏ซ ๏ป rref rref 1 0 0 1 [2nd],[x-1],[โบ] ,[โบ], [enter] Reduced Row-Echelon Form enter rows [enter] [2nd], [x-1], [โบ], [alpha], [apps] enter columns [enter] or enter matrix; [2nd], [x-1], [โบ], [โผ] to rref( , [enter] [2nd], [mode] [2nd], [ x-1], [enter], [enter] 2 1 (๐, ๐) Solve each system using matrices ๏ฌ 2 x ๏ซ 5 y ๏ฝ 11 ๏ญ ๏ฎ๏ญ 3 x ๏ซ 8 y ๏ฝ ๏ญ1 ๏ฉ 2 ๏ช๏ญ 3 ๏ซ ๏ฉ1 ๏ช0 ๏ซ 5 8 0 1 11 ๏น ๏ญ 1๏บ ๏ป 3๏น 1๏บ ๏ป Solution: ( 3, 1 ) Solution: ( 1 , ๏ญ 1, 0 ) ๏ฌ a๏ซb๏ซc ๏ฝ 0 ๏ฏ ๏ญ 4a ๏ซ 2b ๏ซ c ๏ฝ 2 ๏ฏ16a ๏ซ 4b ๏ซ c ๏ฝ 12 ๏ฎ ๏ฉ1 ๏ช4 ๏ช ๏ช ๏ซ16 1 1 2 1 4 1 ๏ฉ1 ๏ช0 ๏ช ๏ช ๏ซ0 0 0 1 0 0 1 0๏น 2๏บ ๏บ 12๏บ ๏ป 1 ๏น ๏ญ 1๏บ ๏บ 0 ๏บ ๏ป Solve each system using matrices ๏ฌ๏ญ 4 x ๏ฝ 2 y ๏ซ 7 ๏ญ ๏ฎ 3x ๏ซ y ๏ฝ ๏ญ5 Solution: ( -1.5, -0.5) ๏ฌ๏ญ 4 x ๏ญ 2 y ๏ฝ 7 ๏ญ ๏ฎ 3 x ๏ซ y ๏ฝ ๏ญ5 ๏ฉ๏ญ 4 ๏ช 3 ๏ซ ๏ฉ1 ๏ช0 ๏ซ ๏ญ2 1 0 1 7 ๏น ๏บ ๏ญ 5๏ป ๏ญ 1.5 ๏น ๏ญ 0.5๏บ ๏ป Solution: ( -2 , 3, 5) Pg. 179 #15-20, 24-27, 32,33,36,37 ๏ฌx ๏ซ 3 y ๏ญ z ๏ฝ 2 ๏ฏ ๏ญ x ๏ซ 2z ๏ฝ 8 ๏ฏ 2y ๏ญ z ๏ฝ1 ๏ฎ ๏ฉ1 ๏ช1 ๏ช ๏ช ๏ซ0 ๏ฉ1 ๏ช0 ๏ช ๏ช ๏ซ0 3 ๏ญ1 0 2 2 ๏ญ1 0 0 1 0 0 1 2๏น 8๏บ ๏บ 1๏บ ๏ป ๏ญ 2๏น 3 ๏บ ๏บ 5 ๏บ ๏ป