* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Abstract Book New model systems for early land plant evolution
History of botany wikipedia , lookup
Arabidopsis thaliana wikipedia , lookup
Venus flytrap wikipedia , lookup
Plant physiology wikipedia , lookup
Plant morphology wikipedia , lookup
Sustainable landscaping wikipedia , lookup
Glossary of plant morphology wikipedia , lookup
Newmodelsystemsforearlyland plantevolution(w16-05) Vienna,Austria,22-24June2016 Organisers:FredericBerger(GMI)and LiamDolan(UniversityofOxford) 1 Talks DNAmethylationinArabidopsishasageneticbasisandshowsevidenceof localadaptation MagnusNordborg,etal. GregorMendelInstitute,Vienna,Austria Epigenomemodulationinresponsetotheenvironmentpotentiallyprovidesa mechanismfororganismstoadapt,bothwithinandbetweengenerations. Neithertheextenttowhichthisoccurs,northemolecularmechanismsinvolved areknown.WeinvestigatedexpressionandDNAmethylationvariationin Arabidopsisthalianaaccessionsgrownattwodifferenttemperatures. EnvironmentaleffectsonDNAmethylationwerelimitedtotransposons,where CHHmethylationincreasedwithtemperature.GWAmappingrevealedthatthe extensiveCHHmethylationvariationwasstronglyassociatedwithcisandtrans geneticvariants,includingamajortrans-associationclosetotheDNA methyltransferaseCMT2.UnlikeCHHmethylation,CpGgenebodymethylation (GBM)onthecodingregionofgeneswasnotaffectedbygrowthtemperature, butinsteadstronglycorrelatedwiththelatitudeoforigin.Accessionsfrom colderregionshadhigherlevelsofGBMforasignificantfractionofthegenome, andthiswascorrelatedwithelevatedtranscriptionlevelsforthegenesaffected. GWAmappingrevealedthatthiswaslargelyduetotrans-actingloci,which showedevidenceoflocaladaptation.Ingeneral,geneticvariationappearedto haveagreatereffectonexpressionvariationthanmethylationvariation, althoughexpressionataround60locishowedevidenceofbeingaffectedby methylationvariationindependentlyofgeneticvariation.Statisticalanalysis suggestedthatmethylationaffectsexpressionmorefrequentlythanviceversa. OurfindingsconstitutethefirstdirectlinkbetweenDNAmethylationand adaptation,andprovideabasisfordissectinghowenvironmentallydrivenand geneticallydeterminedepigeneticvariationinteractandinfluenceorganismal fitness. Earlylandplantsystematicsandpalaeontology PaulKenrick TheNaturalHistoryMuseum,London,London,UnitedKingdom MicrobialcommunitieshaveexistedonlandsinceatleasttheNeoarchean(2800 to2500millionyears),butfossilevidenceindicatesthattheancestorsofland plantsfirstappearedmuchlaterduringthemid-Ordoviciansome470million yearsago.Theselattercommunitiesprobablycomprisedvariedandmixed associationsofArchaea,Bacteria,arthropods,lichens,fungi,greenalgaeand extinctlandplantscalled'cryptophytes'.Littleisknownaboutthecryptophytes, butemergingevidencefromfossilcharcoalrecordsminutesporophytesatthe bryophytelevelofcomplexitybutwithnovelcombinationsofcharacteristics. Someareknowntocontainsporesdispersedastetradsanddyadssuggesting thatsignificantdifferencesinsporogenesisoperatedinsomeearlyextinct lineages.Themostintactandearliestwell-preservedfossilecosystemisthe407 2 millionyearoldRhynieChert(Scotland).Here,plantswerefossilisednearto theirsitesofgrowthpreservingsofttissuesandorganismassociations.Such fossilsprovideunparalleledinsightsintotheevolutionofmajororgansystemsin stemgroupvascularplantsandlycophytes,includingroots,shoots,leaves, vascularsystemandreproductivestructures.Theyarehelpingustounderstand howkeyplantorgansevolvedfromprecursorstructures,todisentangle homologyfromhomoplasy,tobetterreconstructearlylifecycleevolution,andto learnabouttheco-evolutionofplantsandtheirfungalsymbionts. Marchantiaandliverwortsystematics LauraForrest1,JuanCarlosVillarreal2,DavidLong1 1RoyalBotanicGardenEdinburgh,Edinburgh,UnitedKingdom 2UniversitéLaval,Quebec,Canada Marchantiopsida,comprisingthecomplexthalloidliverwortsandtheBlasiales, willbeplacedphylogeneticallyinthecontextoftheotherliverwortlineages (HaplomitriopsidaandJungermanniopsida),withabriefsummaryof morphologyofthemajorliverwortclades.Ashortsurveyofthe36accepted generaofcomplexthalloidliverwortswillthenbepresented,encompassingtheir morphologicalandtaxonomicdiversity.Wehavecompletegenus-levelsampling acrossthecomplexthalloidlineage,with98accessionssampledfor11markers. Alimitednumberofmorphologicalcharacters–withparticularfocusonthe carpocephalum,theevolutionofairchambers,andpeggedrhizoids–willthenbe tracedacrossthecomplexthalloidphylogenytodiscussevolutionarytrendsin thegroup. FunctionalPTBphosphatetransportersarepresentinstreptophytealgae andearlydiverginglandplant. ClémenceBonnot1,HélèneProust1,3,BenoîtPinson2,GiuliaMorieri1,Holger Breuninger1,ClémentChampion1,AlexanderHeatherington1,StevenKelly1,Liam Dolan1 1DepartmentofPlantSciences,OxfordUniversity,SouthParksRoad,OX13RB Oxford,Unitedkingdom,Oxford,UnitedKingdom 2IBGC-CNRS-UMR5095,UniversitédeBordeaux,1RueCamilleSaintSaens,33077 Bordeaux,France.,Bordeaux,France 3Presentaddress: InstituteofPlantSciencesParisSaclayIPS2,CNRS,INRA,UniversitéParis-Sud, UniversitéEvry,UniversitéParisSaclay,Batiment630,91045Orsay,France.,Orsay, France Plantsabsorborthophosphate(Pi)throughPi-transporterproteinslocatedinthe plasmamembraneofcellsattheinterfacewiththeexternalenvironment. PHOSPHATETRANSPORTER1(PHT1)proteinstransportPithroughH+/Pi-cotransportacrosstheplasmamembraneofrootcellsinangiosperms.The presenceofPHT1genesinearlydiverginglandplantsandstreptophytealgae suggeststhatPHT1proteinfunctioninallstreptophytelineages.However,PiuptakedependonNa+-influxinstreptophytealgaeimplyingthatNa+/Pi- 3 symportersfunctionattheplasmamembraneofstreptophytes.Herewereport thediscoveryofPHOSPHATETRANSPORTERB(PTB)instreptophytealgaeand landplants. Previouslyidentifiedinchlorophytealgaeonly,thePTBproteinsare hypothesisedtouptakePibyNa+/Pi-symport.ConsistentwitharoleinPiuptakefromtheenvironment,streptophytePTBproteinsarepredictedtobe plasmamembraneproteinsandthesteadystatelevelsofmRNAsofmostPTB genesinthebryophyteMarchantiapolymorphaandinthestreptophytealga Coleochaetenitellarumarehigherlow-Pithaninreplete-Pienvironmentsandin M.polymorpharhizoidsthaninM.polymorphathallus.TheexpressionofM. polymorphaPTBproteinsintheSaccharomycescerevisiaepho2mutant, defectiveinhigh-affinityPi-transport,rescuesgrowthinlow-Pienvironments. ThesedatademonstratethatPTBproteinsareplasmamembranePitransportersandsuggestthatPTBandPHT1proteinsoperateinparallelinearly diverginglandplantsandstreptophytealgae.Thisdualsystemmightattestthe progressivetransitionbetweentwoPi-uptakemechanismsandadaptationtodry habitatduringlandcolonization. Theroleofplastidexaptationsinstreptophyteterrestrialisation JandeVries1,JohnM.Archibald2,SvenB.Gould1 1MolecularEvolution,Heinrich-Heine-UniversityDüsseldorf,Düsseldorf, Germany 2DepartmentofBiochemistryandMolecularBiology,DalhousieUniversity, Halifax,Canada Oneofthebigquestionsinearlylandplantevolutioniswhydidithappenonly once?Theancestortoalllandplantswasastreptophytealgaanditssuccessful transitionto,andsubsequentcolonisationof,landisconsideredtohavebeen favouredbytwoproperties:thatitwasfresh-waterdwellingandthatitwaspreadaptedtothestressfactorsitencounteredonland.Yet,streptophyte(algal) evolutionisnotacleartrajectoryfromsimpletocomplex,withaprogressing accumulationofembryophyticcharacteristicsalongitspath.Recentexhaustive phylogeneticdatashowedthatamongstreptophytealgae,thelesscomplex Zygnematophyceaerepresenttheclosestextantrelativestolandplants.While pre-adaptationsofthestreptophytebodyandphysiologyarefoundamong variousstreptophytealgae,theirplastidgenomes’codingcapacitiesofferbetter guidanceregardingthetrajectoryofstreptophyteevolution.Plastid-encoded proteinssuchasycf1andftsHcanactassignaturesforthechangesthatoccurred intheplastidsofstreptophytes.Zygnematophyceaesharewithlandplantsthe lackofafewessentialplastidgenesthathavebeentransferredtothenucleus, suggestingthattheirplastidsaremoresubmissivetonuclearcontrol.Weargue thattheseorganelle-associatedchangesaidedindealingwithterrestrial stressorsandthusthesuccessfulterrestrialisationbyfresh-wateralgae.Italso providedthenucleuswithevermorecontrol,whichsubsequentlytransformed thestreptophyteplastidintowhatwerefertoastheembryoplast:theplastidof vascularplantsthatcandifferentiateintoanunparallelednumberofdifferent typeswithinasinglespecies. 4 Diversificationofmembranetraffickingpathways~lessonsfromthe liverwort~ TakashiUeda DivisionofCellularDynamics,NationalInstituteforBasicBiology,Okazaki,Aichi, Japan JapanScienceandTechnologyAgency(JST),PRESTO,Kawaguchi,Saitama,Japan Membranetraffickingbetweensinglemembrane-boundedorganellesplays pivotalrolesinvariouscellactivitiesineukaryoticcells,whicharealsocriticalin multiplelayersofhigher-orderedfunctionsofmulticellularorganisms.Although thebasicframeworkofmembranetraffickingiswellconservedamong eukaryoticlineages,recentcomparativegenomicshassuggestedthateach lineagehasacquireduniquemembranetraffickingpathwaysduringevolution. RABGTPasesandSNAREproteinsareevolutionarilyconservedkeyregulators actingintetheringand/orfusionofmembranevesicleswithtargetmembranes. Ithasbeenproposedthatlineage-specificdiversificationofthesekeyfactorsis tightlyassociatedwithacquisitionofthelineage-specificmembranetrafficking system;however,itsmolecularbasisremainsunknown.Plantshavealso acquireduniquerepertoiresofRABandSNAREproteinsduringevolution,which shouldleadtoacquisitionoftheuniquemembranetraffickingsystem.For informationonthediversificationofmembranetraffickingpathwaysduringland plantevolution,wesystematicallyidentifiedRABGTPasesandSNAREproteins inMarchantiapolymorpha.Comparisonofcontentsoftheseproteinfamilies withotherplantlineages,followedbytheirfunctionalanalysesinM.polymorpha andArabidopsisthaliana,indicatedthatdiversificationofmembranetrafficking pathwaysinlandplantshasbeenachievedby1)acquisitionofnovelmachinery components,2)relocatingconservedmachinerycomponentstodistinct traffickingevents,and3)secondarylossofconservedmachinerycomponents, duringevolution. UnravelingkeytranscriptionfactorfunctionsinMarchantiapolymorpha SabineZachgo BotanyDepartment,Osnabrück,Germany WetakeadvantageofthenovelmossmodelorganismMarchantiapolymorphato analyzeMADS-boxandTCPtranscriptionfactors,whichexertcrucialfunctionsin diversedevelopmentalprocessesinArabidopsis.There,therespectivegene familiescompriseover100and20genesandredundancyeffectsoftenhinder geneticanalyses.InM.polymorpha,onlyonegenebelongingtotheMIKC*and MIKCCMADS-boxsubclassesexistandalsoonlyoneTCP-PandTCP-Csubgroup member.TheTALENtechniqueforM.polymorphaknockoutmutantgeneration hasbeenestablishedenablingfunctionalgeneanalysesandcomparisonswith othergenomeeditingtechniques,suchasCRIPR/Cas9andknockoutmutant generationbyhomologousrecombinationwillbediscussed. Furthermore,M.polymorphaisaninterestingmodelorganismtoinvestigatethe evolutionofcelldivisionplanecontrolinlandplants.M.polymorphautilizesa specialcombinationofcentrosome-likestructures,calledpolarorganizers(POs), 5 andapreprophaseband(PPB)forecastingtheplaneofcytokinesis.M. polymorphamightthereforerepresentanintermediatestatebetweenthetwo differentcelldivisionmechanismsemployedbyalgaeandlandplants. ANIMA-relatedkinaseregulatesdirectionaltipgrowthofrhizoidsin Marchantiapolymorpha HiroyasuMotose1,KentoOtani1,KimitsuneIshizaki2,RyuichiNishihama3, TakayukiKohchi3,TakuTakahasi1 1Grad.Sch.Nat.Sci.&Tech.,OkayamaUniv.,Okayama,Japan 2Grad.Sch.Sci.,KobeUniv.,Kobe,Japan 3Grad.Sch.Biostudies,KyotoUniv.,Kyoto,Japan NeverinmitosisA(NIMA)-relatedkinases(NEKs)regulatevariousmitotic eventsinfungiandanimals,whereasplantNEKsregulatedirectionalcell expansionduringinterphase.However,thefunctionalredundancyofplantNEK membersmakesitdifficulttodeterminetheirpreciserolesinplant development.ToelucidatethefunctionandevolutionofplantNEKfamily,we analyzedtheroleofMpNEK1,asingleNEKgeneinMarchantiapolymorpha,in directionalgrowth.Weemployedgenedisruptionbyhomologousrecombination andobtainedthirteenknockoutlinesforMpNEK1.Allofthemexhibited abnormalgrowthandmorphologyofrhizoidcells.Inthewildtype,rhizoidcell extendedbytipgrowth,leadingtoahair-likeprotrusionmorethan1cmin length.Intheknockoutmutants,rhizoidsfrequentlychangedtheirdirectionof growthanddevelopedinatwistedand/orspiralmorphology.MpNEK1-GFP complementedthesedefectsandlocalizedtotheapicalgrowingregionofthe rhizoid.Furthermore,stabilizedmicrotubulesextendedintotheapicaldomeof rhizoidsintheMpNEK1mutants.TheseresultsdemonstratethatMpNEK1 maintainthedirectionofrhizoidgrowththroughmicrotubuledestabilization. Auxininmossdevelopmentalbiology EvaSundberg,etal. DepartmentofPlantBiology,UppsalaBioCenter,LinneanCentreofPlantBiology inUppsala,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden Auxinplaysafundamentalroleasasignalfordevelopmentaldecisionsin floweringplants.Auxinhasalsobeensuggestedtohaveasimilarfunctionin earlydiverginglandplants(Landbergetal.,2013;Viaeneetal.,2014;Bennettet al.,2014;Coudertetal.,2015;Plavskinetal.,2016).Polarauxintransport, spatiotemporallyregulatedbiosynthesisandauxinsignalingtogetherappearto determinethesitesofauxinactionbothduringvegetativeandreproductive development.Inaddition,auxinsynthesis,transportand/orresponseareactive incelldestinedtodeath(archegoniacanalcells),tocytoplasmicreduction (spermcellsandarchegonialcanalcells),andtobecomereproductivecells(egg andsperm).Thespermcellsaredependentonmacroautophagyforcytoplasmic reduction,andthisprocessisalsoimportantformucilageformationinthe archegoniacanalandeggcavity. 6 Landbergetal.(2013)PlantPhysiology162,1406-1419 Viaeneetal.(2014)CurrentBiology24,2786-2791 Bennettetal.(2014)CurrentBiology24,2776-2785 Coudertetal.(2015)eLife10.7554/eLife.06808 Plavskinetal.(2016)DevelopmentalCell36,276-289 Jasmonatesignallinginearlylandplantevolution IsabelMonte1,MatsHamberg2,SakikoIshida3,KosakuTakahashi4, RyuichiNishihama3,TakayukiKohchi3,RobertoSolano1 1DepartmentofPlantMolecularGenetics,NationalCentreforBiotechnology (CNB),ConsejoSuperiordeInvestigacionesCienti?ficas(CSIC),Campus UniversityAuto?noma,Madrid,Spain 2DivisionofPhysiologicalChemistryII,DepartmentofMedicalBiochemistryand Biophysics,KarolinskaInstitutet,,Stockholm,Sweden 3GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 4ResearchFacultyofAgriculture,HokkaidoUniversity,Sapporo,Japan Jasmonates(JAs)areplanthormonesinvolvedinbothdevelopmentalandstress responses.ThegenomeofBryophytescontainsequencesforthemain ArabidopsisJAsignallingcomponents,suchastheco-receptorCOI1/JAZ,the adaptorproteinNINJAandtheMYCtranscriptionfactors.However,lowerplants cannotsynthesizeJAandaccumulatetheprecursorOPDA(Stumpeetal.,2010; Yamamotoetal.,2015).Wehaveanalysedthefunctionalconservationoftheco- receptorMpCOI1/MpJAZinMarchantiapolymorpha.WefoundthatMpJAZcan interactwiththeAtJAZpartners,includingAtCOI1(onlyinthepresenceofJA- Ile),AtMYC2/3/4andAtNINJA. OPDA,butnotJA-Ile,inhibitsgrowthofM.polymorphainanMpCOI1-dependent manner.TheoverexpressionofAtCOI1intheMpcoi1mutantrestoresOPDA responsivenessintheseplantsandconfersthemtheabilitytoperceiveJA-Ile. ThisresultindicatesthatCOI1determinesthespecificityfortheligandin MarchantiaandArabidopsisandthatbothJAZandCOI1arefunctionally conserved. Stumpeetal.(2010).ThemossPhyscomitrellapatenscontainscyclopentenones butnojasmonates:mutationsinalleneoxidecyclaseleadtoreducedfertilityand alteredsporophytemorphology.NewPhytol.188,740–749. Yamamotoetal.(2015).Functionalanalysisofalleneoxidecyclase,MpAOC,in theliverwortMarchantiapolymorpha.Phytochemistry116,48–56. 7 MechanismsforshapedeterminationintheliverwortMarchantia polymorpha. JillHarrison,NikCuniffe,JeremySolly universityofBristol,Bristol,UnitedKingdom Twoplantshapesoptimisephotosyntheticefficiencyduringindeterminate growth(1)anerectbranchinggrowthhabitwithlateralorgansand(2)athalloid growthhabitinwhichstemsandleavesarenotdifferentiatedandtissuegrows asacreepingmatalongtheground.Whilstthemechanismsregulatingplanar growthinfloweringplantsarewellunderstood,themechanismsregulating thalloidarealmosttotallyunknown. OurworkshowsthatthallioftheliverwortMarchantiapolymorphaundergoa stereotypicalsequenceofshapetransitionsduringdevelopment.Keyaspectsof globalshapedependonregionalgrowthratedifferencesspecifiedbythecoordinatedactivitiesofapicalnotches.Computationalmodelingshowsthata diffusiblegrowthpromotingmorphogenproducedateachnotchisinsufficientto accountforobservedgrowthratedistributions;instead,thenotchesmayprepatternthegrowthratedistribution.Whilststudiesoforgandevelopmentin floweringplantsdemonstrateakeyroleforcellpolarityandanisotropicgrowth ingeneratingoverallshape,theresultsshowthatspecifiedanisotropyisnota necessarycontributortothallusshape,butthatgrowthrateheterogeneityisthe primaryshapedeterminant.Thethallusmayhavedistinctfunctionalzones patternedbytheapicalnotches. AtranscriptomeatlasofPhyscomitrellapatensprovidesinsightsintothe evolutionanddevelopmentoflandplants MarcelaHernandez-Coronado1,CarlosOrtiz-Ramírez1,AnnaThamm2, CatarinoBruno2,LiamDolan2,JoséA.Feijó1,3,JörgD.Becker1 1InstitutoGulbenkiandeCiência,Oeiras,Portugal 2DepartmentofPlantSciences,UniversityofOxford,Oxford,UnitedKingdom 3UniversityofMaryland,DeptofCellBiologyandMolecularGenetics,Maryland, UnitedStates Identifyingthegeneticmechanismsthatunderpintheevolutionofneworgan andtissuesystemsisanaimofevolutionarydevelopmentalbiology. Comparativefunctionalgeneticstudiesbetweenangiospermsandbryophytes candefinethosegeneticchangesthatwereresponsiblefordevelopmental innovations.Here,wereportthegenerationofatranscriptomeatlascovering mostphasesinthelifecycleofthemodelbryophytePhyscomitrellapatens, includingdetailedmalegametogenesisandsporophytedevelopmental progression.Weidentifiedacomprehensivesetofsporophytespecific transcriptionfactors,andfoundthatmanyofthesegeneshavehomologsin angiospermsthatfunctionindevelopmentalprocessessuchasfloweringand shootbranching.DeletionofthePpTCP5transcriptionfactorresultsin developmentofsupernumerarysporangiaattachedtoasingleseta,suggesting thatitnegativelyregulatesbranchinginthemosssporophyte.GiventhatTCP genesrepressbranchinginangiosperms,wesuggestthatthisactivityisancient. 8 Duringspermatogenesisacomplextranscriptomewasobserved,characterized byahighnumberofenrichedandpreferentiallyexpressedgenes.A phylostratigraphicanalysisshowedthatinantherozoidsthosetranscripts correspondtoevolutionarilyyoungergenes,andthereforemightactasasource ofevolutionarygeneinnovation. ElucidationofbasicframeworkofplantimmunesystemusingMarchantia HirofumiNakagami1,2,IzumiYotsui1,HidenoriMatsui1,3,Yuko Nomura1,RyuichiNishihama4,TakayukiKohchi4 1RIKENCSRS,Japan 2MaxPlanckInstituteforPlantBreedingResearch,Germany 3OkayamaUniversity,Japan 4KyotoUniversity,Japan Todate,wehaveconfirmedthatrecentproteomicsapproacheshavean outstandingpotentialtoexplorenovelcomponentsinplantimmunity. Meanwhile,unsophisticatedproteomicsapproachesoftenresultedin identificationoftoomanypotentialregulatorswhoseimportanceareuncertain. Thecomparativeandevolutionarygenomics/proteomicscouldbeefficient approachestoelucidatefundamentalcomponentsandsystemsthatarebroadly conservedacrosstheplantkingdom.Therefore,westartedtoinvestigate whetheremergingmodelorganismliverwortsMarchantiapolymorphacanbe usedasnewmodelsystemtounderstandplantimmunity.Importantly, Marchantiagenomehasbeenreportedtohavehighlystreamlinedarchitecture, withsmallergenefamiliesandlessredundancycomparedtohigherplants. AnalysisofMarchantiawithsimplegenenetworksisexpectedtofacilitate exploringthefundamentalcomponentsofplantimmunesystem.Asexpected, plantimmunity-relatedgenesarefoundtobelessredundantinMarchantia comparedtohigherplants.Interestingly,LysMdomain-containingproteins responsibleforchitinandpeptidoglycan(PGN)perception/signalingin angiospermsarehighlyconservedinMarchantiabutnotbacterialMAMP receptorssuchasFLS2andEFRwhichbelongtothegroupXIILRR-RLK.Wehave confirmedthatMarchantiaactuallyrecognizechitinandinduceaseriesof defenseresponses.Moreover,wehavedisruptedLysMgenesinMarchantiaand revealedthatCERK1homologisrequiredforchitinandPGNresponsesbut CEBiPhomologisrequiredonlyforPGNresponseinMarchantia.These evidencesassurethatMarchantiacanbeusedasnewmodelsystemto understandbasicframeworkofplantimmunesystem. 9 AMYBtypetranscriptionfactorcontrolsfemalereproductiveorgan developmentinMarchantiapolymorpha TetsuyaHisanaga,KeijiNakajima NaraInstituteofScienceandTechnology,Ikoma,Nara,Japan Indioeciousplants,developmentofmaleandfemalereproductiveorgansis determinedbysexchromosomes.Mechanismsbywhichfactorsencodedbythe sexchromosomesdifferentiallyproducemaleorfemalereproductiveorgans, however,arepoorlyunderstood,becausecurrentlyusedmodelplantspeciesare mostlymonoeciousorhermaphroditic.Recently,Marchantiapolymorpha,a dioeciousliverworthasbeenestablishedasamodelsystemamenableto moleculargeneticstudies.Weareusingthismodelplantspeciestoelucidate molecularmechanismsofsexualdifferentiationinplants. Bycomparingtranscriptomedataofthalliandarchegonia,weidentifiedFEMALE GAMETOPHYTE-SPECIFICMYB(MpFGMYB)asagenepreferentiallyexpressed inthearchegoniaofM.polymorpha,suggestingthatMpFGMYBmayfunctionin femalesexualorgandevelopment.Totestthishypothesis,weconstructed knockoutmutantsofMpFGMYBusingtheCRISPR/CAS9technology. Surprisingly,geneticallyfemaleindividualsofMpfgmybmutants,asjudgedby sexchromosome-linkedmarkers,developedantheridiophore-likestructures insteadofarchegoniophores.Later,thesepseudo-antheridiophoresgenerated antheridia-likereproductiveorgansthatevencontainedsperm-likecells,though theirmorphologywasabnormalpossiblyduetothelackoftheYchromosome. TheseresultsindicatethatdisruptionofMpFGMYBleadstofemale-to-male conversion,andsupportanotionthatMpFGMYBplaysanessentialrolein archegoniophoredevelopment.GiventhatMpFGMYBisanautosomalgene, MpFGMYBislikelytobeamasterregulatoroffemalereproductivedevelopment actingdownstreamofasyetunknownfemalesexdeterminantsresidingontheX chromosome.FunctionalanalysisofMpFGMYBwillthereforeprovideakeyto understandmolecularmechanismsofsexualdifferentiationinplants. DevelopmentalgeneregulationbychromatinmodificationfactorMpE(z) anditstargetgenesKNOXandBELLinthebasallandplantMarchantia polymorpha TomDierschke MonashUniversity,Melbourne,Australia UniversityofOsnabrück,Osnabrück,Germany Recentstudiessuggestthatchromatinmodificationfactors,includingthe PolycombRepressiveComplex2(PRC2),playamajorroleinphasetransitions byrepressingsporophytespecificgenes,forexampleKNOXgenes.KNOXand BELLproteinsbelongtotheTALEclasshomeodomainsuperclassofproteins thatarepresentinanimals,plantsandfungi.KNOX-BELLTALEproteinshave beenproposedtoplayakeyroleintheevolutionofalternationofgenerationsin greenalgae. TheMarchantiagenomeencodeseightTALEclasshomeodomaingenes,four KNOXandfourBELLgenes.ThreeoftheKNOXgenesfallintotheclass1,oneisa class2orthologandfourareBELLgenes.InducibledisruptionofMarchantia 10 PRC2functionbyexpressingofanartificialmicroRNAtargetingMpE(z)inthe gametophyticstageofthelifecyclecausesde-repressionofthesporophyte specificMpKNOX2andandsporophytespecificMpBELLgeneandresultin developmentalarrest.Plantsco-expressingeitheroftwoBELLgenesand MpKNOX2simultaneouslyphenocopythislethalphenotypeofknock-down MpE(z)lines.Intheory,theseproteinscomeintophysicalcontactupon fertilization.Protein-proteininteractionsofMpBELLandMpKNOXproteinswith subsequentintracellulartrans-localisationtothenucleuswasvalidatedbyBiFC. Knock-outlinesofthesporophytespecificKNOX2andBELLgeneshow developmentalarrestinlatesporophytedevelopment,suggestinganimportant roleofthesegenesinthemaintenanceofthediploidgenerationofthisearly divergedlandplant. InvestigationofpolarityestablishmentinMarchantiapolymorpha JohnBowman,TomFisher,EduardoFlores-Sandoval MonashUni,Melbourne,Australia Marchantiapolymorphagemmaehavebeenamodelforinvestigatinghow polarityisestablishedinbodyplanorganizationduringplantdevelopment. Gemmaewithinthegemmacupareheldinstasisviatheactionofseveral hormones.However,oncegemmaearedisplacedfromthecup,theyassesstheir positionrelativetolightandgravitysourcesanddifferentiateintoadorsiventral thallus.EarlyexperimentsbyMirbelinthefirsthalfofthe19thcentury demonstratedthedramaticinfluenceoflightindeterminingpolarity,and showedthatonceestablished,polarityisirreversible.Subsequently,towardsthe endofthe19thcenturyPfefferandothersconcludedthatwhilegravitycould havesomeeffectsunderlowlightconditions,lightatsufficientlevelscould overcometheeffectsofgravity.Furthermore,atimeframeforpolarity establishmentwasoutlines,withrhizoidinitiationpreceding,andseparable from,irreversiblepolarity.Thepotentialofeithersideofagemmatobecomethe dorsalsurfacewasproposedtobereflectionofthepresenceof,usually,two apicalcellsineachoftheincipientgemmameristems.Withthediscoveryof auxinasagrowthsubstanceinthefirsthalfofthe20thcentury,itsaction,and movement,wasconnectedwithpolarityestablishmentinMarchantiagemmae, withOttoproposingthat‘Itisconceivablethatlightcausestheproductionor activationofarhizoidgrowthinducingsubstancewhichisthentransported awayfromtheirradiatedsurface.’Withtheadventofmoleculargenetictools,we havereturnedtothegemmamodeltointegratetheactionofspecificgeneswith biologicalprocessesduringpolarityestablishment. 11 Moleculargeneticsofgemmaandgemma-cupdevelopmentintheliverwort Marchantiapolymorpha KimitsuneIshizaki GraduateSchoolofScience,KobeUniversity,Kobe,Japan Plantscontinuetoproliferatemeristemsandformneworgansintheir postembryonicgrowth,whichallowsthemtoadapttheirarchitecturetoeverchangingenvironment.Furthermore,manyplantsfrombryophytesto angiospermshaveanabilitytogenerateclonalprogenieswithfunctional meristemsthatdevelopdirectlyfromvegetativetissues.Thisprocess,so-called vegetativepropagation,hasbeenimportantforagricultureandhorticulture, however,littleisknownaboutthemolecularmechanism.Thebasallandplant Marchantiapolymorphaproducesclonalprogenies,gemmae,ontheir gametophytesasameansofvegetativepropagation.Eachgemmaoriginatefrom asingleepidermalcellatthebottomofthegemma-cup,anddevelopintoa maturegemmawithtwomeristemsatsymmetricalposition.Maturegemmaeare finallydetachedfromtheparentalthallusbyprogrammedcelldeathofthestalk cell.Wehavebeenfocusingontheprocessofgemmaandgemma-cup developmentasamodelofvegetativepropagation.Inthistalk,Iwouldliketo introduceourlatestdataonthedevelopmentofgemmaandgemma-cupinM. polymorpha,whichturnedouttosharesomeregulatorymechanismsincommon withaxillarymeristemformationinangiosperms. GenomeandGenomicsinMarchantiapolymorpha TakayukiKohchi1,KatsuyukiYamato2,KimitsuneIshizaki3,Shohei Yamaoka1,RyuichiNishihama1,JohnBowman4 1GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 2BOST,KindaiUniversity,Wakayama,Japan 3GraduateSchoolofScience,KobeUniversity,Kobe,Japan 4SchoolofBiologicalSciences,MonashUniversity,Melbourne,Australia ThegenomesequencingofMarchantiapolymorpha,proposedtotheCommunity SequenceProgramatJointGenomeInstitute,DepartmentofEnergy,USA(PI: Bowman)in2008,hasfinallyfinished,andthemakeupofitsgenomewillbe publishedin2016.ThehaploidsetofchromosomesofM.polymorphaconsistsof eightautosomesandasinglesexchromosome;anXchromosomeinfemale (n=8+X)andaYchromosomeinmale(n=8+Y).Theassembledsequences represent220Mbofthegenomeandcontain19,287protein-codinggenes.One ofthemostexcitingfindingsintheM.polymorphagenomeisthelowgenetic redundancyinregulatorygenes,suchasthoseinvolvedintranscriptional regulationandsignaltransduction.ItsgeneorganizationshowsthatM. polymorphahasexperiencednowhole-genomeduplicationduringitsevolution. Totakefulladvantageofthissimplicityinidentificationofgenefunctionand signalingnetwork,severalgenetictoolshavebeenestablished.Basedonsimple andefficientprotocolsofAgrobacterium-mediatedtransformation,notonly conventionalmoleculargenetictools,suchasintroductionofreporter constructs,overexpression,genesilencingandtargetedgenemodification,but alsogenomeeditingareavailable.Especially,theCRISPR/Cas9system, 12 combiningwithsequenceinformation,haploidyandclonalpropagationfrom singlecells,hasemergedasaconvincinggamechanger.Agenomedatabasehas beententativelymadeavailableforprimarygenomeanalysisatmarchantia.info, whichwillbeimprovedandmaintainedbythecommunity.Thetechnologiesand resourcesforM.polymorphaofferanexcellentexperimentalplatformtostudy theevolutionanddiversityofregulatorysystemsinlandplants. IdentificationofaRaf-likekinaseinvolvedinphotosynthesissignalingin Marchantiapolymorpha CharophyteAlgaeasModelSystems CharlesDelwiche UniversityofMaryland,CollegePark,UnitedStates Geneticmodelsystemsareorganismsthathavebeenstudiedingreatdetail,and forwhichtherearepowerfulmoleculargenetictechniquesandtoolsavailable.In theirbestapplication,modelsystemsprovideinsightsthatcanbeextendedto otherorganisms.Phylogeneticdistanceisoneofseveralfactorsthatinfluence suchtransferability;closelyrelatedorganismsaremorelikelytoshare properties.Unfortunately,despiterecentprogresswithgymnospermand bryophytemodelsystems,mostplantmodelsystemsareangiosperms,andthe phylogeneticdiversityofplantmodelsystemsremainsrelativelypoor.Outsideof thelandplants,ChlamydomonasandVolvoxstandoutasenormouslyimportant modelsystems,buttheydivergedfromlandplantswelloverabillionyearsago, andaresubstantiallydifferentinsomeimportantproperties.Thecharophyte greenalgaeareknowntobemuchmorecloselyrelatedtolandplants,andas sucharepotentiallyvaluableforunderstandingfundamentalplantproperties andtheoriginofaterrestrialflora.Amongthecharophytesareseveral organismsthatseempromisingasmodelsystems,butsubstantialdevelopment isstillneeded.Challengesincludeavailabilityofhigh-qualitycultures,techniques toconsistentlycompletethelifecycleinculture,methodsforhaploidgenetics, anddevelopmentofadiversityofmoleculargenetictools. Primitiveadaptationmechanismstolandenvironmentsrevealedbythe genomeofacharophytealgaKlebsormidiumflaccidum SatoshiKondo2,3,KoichiOhri2,3,YukoSasaki-Sekimoto2,3,Atsuko Kobayashi4,TsubasaKato5,NaokoYuno-Ohta5,TakashiNobusawa2,3, KinukaOhtaka1,MieShimojima1,2,HiroyukiOhta1 1GraduateSchoolofBioscienceandBiotechnology,TokyoInstituteof Technology,Kanagawa,Japan 2SchoolofLifeScienceandTechnology,TokyoInstituteofTechnology, Kanagawa,Japan 3CoreResearchforEvolutionalScienceandTechnology(CREST),JapanScience andTechnologyAgency(JST),,Tokyo,Japan 4TheEarth-LifeScienceInstitute,TokyoInstituteofTechnology,Tokyo,Japan 5AdvancedCourseofFoodandNutrition,NihonUniversityJuniorCollege, Shizuoka,Japan 13 WehavereportedthedraftgenomesequenceofKlebsormidiumflaccidum(Hori etal2014).Comparativegenomeanalysisrevealedthatthegenomeencodes morethanonethousandoflandplanttypegeneswhichmaybeassociatedwith itsadaptationtoharshlandenvironments.Here,Iwilltalkabouttheirunique intraandextracellularlipidcomponents.Bycomparinggenesinvolvedinthe lipidbiosyntheticpathwaysofArabidopsisthalianawithK.flaccidumgenomes, weidentifiedwax-relatedgenesinthisalga.Asimpleandeasyextraction methodwasdevelopedfortherecoveryofthesurfacelipids.Althoughthisalga haswaxcomponents,itssurfacelipidswerelargelydifferentfromthoseofland plants.WealsoinvestigatedaliphaticsubstancesinthecellwallfractionofK. flaccidum.Manyofthefattyacidsweredeterminedtobelipophilicmonomersin K.flaccidum,andaFouriertransforminfraredspectroscopicanalysisrevealed thattheirpossiblebindingmodewasdistinctfromthatofA.thaliana.We proposethatK.flaccidumhasacuticle-likehydrophobiclayercomposedoflipids andglycoproteins,withadifferentcompositionfromthecutinpolymertypically foundinlandplantcuticles. Whyweneedmorepolishedgenomesandbettersampling:lessonsfrom PhyscomitrellaandChara StefanRensing UniversityofMarburg,Marburg,Germany ThePhyscomitrelladraftgenomewaspublishedin2008andtaughtusagreat dealaboutmolecularadaptationstotheterrestrialhabitat.However,italso taughtusthatPhyscomitrella,similartoArabidopsis,isaninterestingbutnot simplisticmodelduetotheoccurrenceofgenomeduplications.Since2010we polishedthePhyscomitrellagenome,generatingpseudochromosomes.Iwilltalk aboutwhatwelearnedfromthat,andthatsuchfindingscouldbeneverrevealed byadraftassembly.Thebadsamplingofnon-seedplantsandcharophyte genomesinevitablyledandleadstoincorrectevolutionaryinferences.Iwill pointoutwhyweneedsignificantlymoresuchgenomes,andpresentsome preliminaryanalysesoftheCharabrauniidraftgenomeasanexample. Genome-editinginMarchantiapolymorpha:CharacterizationofCas9mediateddeletionsandY-chromosomereduction MartaTomaselli1,2,BernardoPollak1,JimHaseloff1 1DepartmentofPlantSciences,UniversityofCambridge,Cambridge,Saint Helena 2ScuolaSuperioreSant'Anna,Pisa,Italy Cas9-mediatedgenomeeditinghasarisenasoneofthemostpromisingtoolsfor genomeinvestigation.Recently,wehaveshownefficientpcoCas9-mediated editinginMarchantiaandnowseektoexpandourgenomeeditingtoolsetby attemptingtogenerateCas9-mediateddeletionsusingtwogRNAs.Inour research,wewouldliketoassesshowmuchDNAitispossibletodeletefromthe Y-chromosomewhilstretainingplantviability.Inordertodeletelargeportions ofDNA,wefocusedontheNOP1genelocus(Ishizakietal.,2013)andwe 14 analysedthegenerationofdeletionsbytargetingintronicandflankingintergenic regionsspanningupto160kb.Byscoringplantsexhibitingthenop1phenotype, itwaspossibletomeasureaccuratelytheefficiencyofCas9-mediateddeletions overNHEJactivity.Furthermore,wehavechosentheY-chromosomeasaproofof-concepttoperformchromosomereductionsinceitisthesmallestin Marchantiaandithasbeenwidelyannotated(Yamatoetal.,2007;Higoetal., 2016).WeplanonusingpcoCas9todeletelargeportionsofthechromosome, reducethesizeoftheY-chromosomeandbetterdefinethephysicalmapof featureslikethecentromere.Phenotypicobservationwillprovideafunctional measureofY-chromosomelociandtheirimpactonplantfitness. Transcriptionfactorsinvolvedinmalegermlinedevelopmentin Marchantiapolymorpha TakashiAraki Graduateschoolofbiostudies,KyotoUniversity,Kyoto,Japan MalegermlinedevelopmentinMarchantiapolymorphaoccursinantheridium andisinitiatedbyanasymmetriccelldivisionofantheridialcellswhich generatesaninnerspermatogenouscellprogenitorandanouterjacketcell progenitor.Aspermatogenouscellprogenitorundergoesmorethan10roundsof synchronoussymmetriccelldivisionswhichresultin10,000-foldproliferationof cuboidalspermatogenouscells.Afterthepenultimatecelldivision,a spermatogeouscelldifferentiatesintoaspermmothercell.Spermmothercell dividesinadiagonalplanetogeneratetwospermcells.Theresultantspermcells undergospermiogenesiswithinthecellwalltodifferentiateintoabi-flagellate antherozoid.Thus,themalegermlinedevelopmentinMarchantiadiffersfrom thatofangiospermsandinvolvesanextensivecellproliferationbysynchronous symmetriccelldivisionsandcomplexcellmorphogenesis.Whilemalegermline developmenthasbeenextensivelystudiedinangiosperms,littleisknownin basallandplantsincludingMarchantia.Toelucidatemolecularbasisofmale germlinedevelopmentinMarchantia,weperformedtranscriptomeanalysisof developingantheridiabyRNAseqandidentified14transcriptionfactorgenes whichwerespecificallyexpressedinantheridiumamongtestedgametophyte organsincludingMpDUO1,MpDAZ,andMpMS1.Ourfindingfromanalysisof expressionpatternandmutantphenotypewillbepresented. Genomesequencingcharophyceans,liverworts,andhornworts:making modelsystems TomoakiNishiyama1,HidetoshiSakayama2,KeikoSakakibara3,etal. 1KanazawaUniversity,Kanazawa,Japan 2KobeUniversity,Kobe,Japan 3RikkyoUniversity,Tokyo,Japan Wearetryingtosequenceasdiverseaspossiblestreptophytegenomesto understandhowlandplantsevolved.Gooddraftgenomesofaliverwortsspecies Jungermanniainfusca,andtheCharabrauniihavebeenobtained. 15 J.infuscabelongstotheotherbranchofliverwortsthanMarchantia,sometimes calledleafyliverworts,andmayserveasareferencetounderstandtheir diversification.AdraftgenomeofJ.infuscawasobtained,totallengthof383Mb withN50lengthof245kb.Genepredictionidentified27,157modelsin12,354 loci. Charaleanalgaeshowsespeciallycomplexorgandifferentiation,namely,green thalithatfacilitatesphotosynthesis,rhizoidsthatanchorthealgatothe basementandpresumablytransfernutrients,andreproductiveorgansincluding oogonia(female)andantheridia(male).Charabrauniiisarelativelysmall monoeicousalgainCharales,whichwecancultureinlaboratoryconditionand inducereproductiveorgansinseveralweeks.Weestablishedunialgalculturesof C.brauniiandsequencedtheirgenomes.Theassemblyweobtainedconsistedof 1.75Gbpin11,808scaffolds,halfofthetotallengthiscontainedin234scaffolds atleast2.26Mb.GenepredictionusingRNA-seqdataandhomologytoplant proteomesresultedin36,887genemodelsin35,883loci. Hornwortsaretheearliestbranchofbryophytesthatareseparatedfrom mosses/liverwortsandthusareofinteresttostudyforitsdevelopmentand genome.Anthocerosagrestiswasselectedasahornwortmodel,anditsculture includingsporophyteinductionhavebeenestablished.Genomesequencingas wellasRNA-seqofearlysporophytesareongoing. TheAnthocerosagrestisgenome PeterSzovenyi UniversityofZurich,Zurich,Switzerland Themonophyleticgroupofhornwortsisbelievedtorepresenttheimmediate sistergroupofallvascularlandplants.However,thistraditionalviewisstill debatedandcannotbesatisfactorilyresolvedowingtothelackofdetailed knowledgeonthegeneralbiologyandgenomicfeaturesofhornworts.Untilnow, advancementinthisfieldwasprimarilyhinderedbythelackofgenomic resourcesforahornwortmodelspecies.Hereweprovidethefirstinsightinto themajorfeaturesofthedraftgenomesequenceofthemodelhornwort, Anthocerosagrestis.WeshowthatA.agrestishasaremarkablysmallgenome, withfewrecentparalogs,whichmakesitapproriateforgeneticanalysis.Wealso provideanoverviewoftheA.agrestisgenespaceandapreliminarygene expressionatlaswhichshedlightontheregulationofmorphologicaland developmentaltraitsthatareeithersharedwithotherembryophytesorunique tohornworts.Furthermore,wereportourfirstresultsonthechromosomal-scale assemblyoftheA.agrestisgenomeusinglong-readdata.Finally,wesummarize ourachievementsandprovidealistofissuesthatneedtoberesolvedinthe future. 16 Alternationofgenerationsinlandplants DenisSaint-Marcoux,JaneLangdale DepartmentofPlantSciences UniversityofOxford,Oxford,UnitedKingdom Landplantshaveanalternatinglifecyclecomprisingahaploidgametophyte producinggametesbymitosisandadiploidsporophyteproducingsporesby meiosis.Thesporophyte,whichresultsfrommitoticdivisionsofthezygote,is absentinthealgalsistergrouptolandplants,theCharophytes.Tobetter understandhowthesporophyteevolvedwedevelopedatranscriptomic approachtocomparesexualreproductionbetweenearlydivergentlandplants andCharophytealgae,withanemphasisonzygotedevelopment.Intraspecific andpreliminaryinterspecificanalysisoftheresultswillbepresented,notablyin thelightofrecentadvancesmadetocharacterizethealternationofgenerations atthemolecularlevel. Sharedregulatoryfactorsforstemcellmaintenanceinthesimpleand complexmeristemsoflandplants RyuichiNishihama1,YukieMonden1,HiroyukiKirita1,Kimitsune Ishizaki2,TakayukiKohchi1 1GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 2GraduateSchoolofScience,KobeUniversity,Kobe,Japan Aroundthetimeoflandcolonization,plantsacquiredagrowthstrategy,called apicalgrowth,bywhichallorgansarederivedfromthemeristemsresidingat theapicesofplantbody.Inseedplants,meristemscontainmultiple undifferentiatedstemcells.Bycontrast,inbryophytes,thebasalmostlandplant lineage,meristemscontainasinglestemcell,calledtheapicalcell.Howthe complexmulticellularmeristemevolvedfromthesimplesingle-cellmeristem andwhetherthesemeristemssharethesameregulatorymechanismsare importantopenquestions.ThethalloidliverwortMarchantiapolymorphaisa suitablemodeltoaddressthesequestionsbecauseofitslowgeneticredundancy andtheavailabilityofvariouspowerfulmolecular-genetictools.Analysisof genesidentifiedbygeneticscreensforauxin-insensitivemutantsrevealedarole ofahomologofALTEREDMERISTEMPROGRAM1,MpAMP1,inthemaintenance ofapicalcells.Mpamp1mutantexhibitedamplificationofapicalcells,whichis similartotheenlargementoftheshootapicalmeristem(SAM)observedin Arabidopsisamp1mutants.InArabidopsis,cell-cellcommunicationbythe peptidesEPIDERMALPATTERNINGFACTORs(EPFs)andthereceptor-like kinaseERECTA(ER)playsaroleinthemaintenanceoftheSAM.Knockoutofthe M.polymorphasingleERorthologMpERresultedindisorganizationofcellsin themeristemand,insomecases,lossofapicalcellsingemmae.Promoter activitiesofMpERandanEPFgeneweredetectedinpartiallyoverlapping regionsinthemeristem.Thesedatasuggestthatthesimpleandcomplex meristemsshareatleastinpartsimilarregulatorynetworks. 17 TheCpMinus1gene,specificallylocalizedonthemating-typeminus genome,isresponsibleforthesexdeterminationofheterothallic Closteriumperacerosum-strigosum-littoralecomplex HiroyukiSekimoto1,2,AyumiKomiya2,TomoakiNishiyama3 1FacultyofScience,JapanWomen'sUniversity,Bunkyo-ku,Tokyo,Japan 2GraduateSchoolofScience,JapanWomen’sUniversity,Bunkyo-ku,Tokyo, Japan 3AdvancedScienceResearchCenter,KanazawaUniversity,Kanazawa,Ishikawa, Japan Instreptophyta,mechanismofthesexdeterminationhasbeenlargelyunknown. Inthisstudy,wefocusedonClosteriumperacerosum-strigosum-littorale complex(C.psl.complex),whichisaunicellularcharophyceanalga.Heterothallic strainsofC.psl.complexhavetwomorphologicallyindistinguishablesexes: matingtypeplus(mt+)andmatingtypeminus(mt-).Sexualreproductionis easilyinducedwhencellsofthesetwosexesareculturedtogetherinnitrogendepletedmedium.Duringtheprocesses,theyfinallyformzygotes.However,the mechanismofsexdeterminationhadnotbeenclarified. Fromthetranscriptomedata,90contigsspecificallyexpressedinmt-cellswere selected.Comparingwithgenomicsequenceinformation,2contigs,whichwere highlylinkedtomt-phenotypeoftheprogenieswerefinallyobtained.Oneof themencodedaputativetranscriptionfactorandwasnamedCpMinus1. ToevaluatethefunctionofCpMinus1,aconstructforectopicexpressionwas preparedandintroducedintomt+strain.Among6stabletransformants,5 showedsexualreactionwithoutmatingpartners,likeasthecaseofhomothallic strains.Twotransformants(R5andR6)tendedtoformzygoteswithmt+strain butnotwithmt-strain.FromtheresultsofquantitativePCRandcomparative transcriptome,thegeneexpressionprofileofstrainR5wasdrasticallychanged tothatofmt-strains. Fromtheseresults,weconcludedthattheCpMinus1genewasresponsiblefor boththeexpressionofmt-phenotypeandthesuppressionofmt+phenotypein C.psl.complex. Regulationofcelldivisionpatternbythesoleactivator-typeauxin responsefactorinMarchantiapolymorpha HirotakaKato1,2,KimitsuneIshizaki1,3,RyuichiNishihama1,Dolf Weijers2,TakayukiKohchi1 1GraduateschoolofBiostudies,KyotoUniversity,Kyoto,Japan 2LaboratoryofBiochemistry,WageningenUniversity,Wageningen,Netherlands 3GraduateSchoolofScience,KobeUniversity,Kobe,Japan Asplantcellsareimmobileduetorigidcellwall,celldivisionpatterniscrucial forplantdevelopment.Theplanthormoneauxinregulatesmanydevelopmental processesincludingpatternformation,variousorgandevelopment,andtropic responsestolightorgravity.ARFtranscriptionfactorsplayapivotalrolein auxinsignaling,whichbindtothepromoterofauxin-responsivegenesand positivelyornegativelyregulatetheirexpression.However,itisstillunclearhow ARF-mediatedtranscriptionregulatescelldivisionpattern,becauseofhighly 18 complexandredundantauxinsignalingnetworkinangiosperms.Theliverwort Marchantiapolymorphahasverysimpleauxinsignalingsysteminvolvingonly threeARFs(MpARF1to3).Fromthescreeningofauxinresistantmutants,we identifiedT-DNAinsertionmutantsofMpARF1.Mparf1mutantsshowedauxin resistanceanddecreasedexpressionofauxinresponsivegenes,suggestingthat MpARF1functionsasanactivatorinauxinsignaling.Mparf1showedvarious developmentaldefectsincludinggemmadevelopment.InWT,gemmainitialfirst undergoesseveraltransversedivisionsfollowedbylongitudinaldivisionexcept forthebasalmostcellwhichformsstalkcellconnectinggemmaproperand gemmacup.WhileMparf1mutantsshoweddefectsinthetimingandpositionof thislongitudinaldivisions.Additionally,Mparf1gemmaprimordiaoftenhad multiplestalkcellsincontrasttoasinglestalkcellinWT.Theseresultssuggest thatMpARF1regulatescelldivisionpatternduringgemmadevelopment.Land plantsmightsharethecommonmechanismwhichregulatescelldivisionpattern throughtheauxinsignaling.Wewouldliketodiscussaboutthespecificityof three-typesARFs,aswell. ImpactofOstreococcusonplanktondynamics François-YvesBouget CNRSBanyuls,BanyulssurMer,France Prasinophytesalgaehavedivergedearlyatthebasisofthegreenlineage.Within Prasinophytes,theorderofMamiellales,comprisesOstreococcus,Bathycoccus andMicromonas,threegenerawhichdominateseukaryoticpicophytoplankton intheworldocean.Inrecentyearsmoleculartools,includinggenereplacement byhomologousrecombinationhavebeendeveloppedforOstreoccustauri,which hasbeendescribedhasthesmallestphotosyntheticeukaryoteswithaminimalist cellulararchitectureandareducedsequencedgenome(12.5Mb).Usinga combinationoffieldstudiesandexperimentalapproachesweunveiledseveral adaptationssuchastheday/nightregulationofironhomeostasisorthe regulationofcellularbiomassinresponsetoironlimitation,thatcontributesto theecologicalsuccessofOstreococcussp. ControlofDNAmethylationinMarchantia MarioArteaga-Vazquez,etal. INBIOTECA-UniversidadVeracruzana,Xalapa,Mexico DNAmethylationisaheritableepigeneticmodificationthatoccursatCG,CHG, andCHH(H=A,CorT)sitesandplayscrucialrolesduringplantdevelopment (LawandJacobsen,2010).TheRNA-dependentDNAmethylationpathway (RdDM)directsdenovoDNAmethylationinvolvedinthetranscriptional silencingoftransposableelements(TEs),repetitivesequences,maintenanceof genomeintegrityandtransgenerationalepigeneticinheritance(Matzkeand Mosher,2014).WequeriedthegenomeofMarchantiapolymorphaandthe transcriptomesofMarchantiapaleaceaandAnthocerossambesianusinorderto identifyputativeorthologsofcomponentsoftheRdDMpathway.Weidentified corecomponentsoftheRdDMmachineryinthesespeciesstronglysuggesting 19 thatRdDMisoperatingintheearliestdiverginglandplantlinages.Totestthis, wegeneratedagenome-widemethylomeofM.polymorphagametophytes.We observedthatwhilethepatternofDNAmethylationintransposonsclosely matchedthecannonicalpatterntypicalofhigherplants,wealsoobservedthat thebodyofMarchantiagenesisdevoidedofDNAmethylation(consistentwith recentworkbyTakunoetal.,2016),exceptforgeneslocatedonsex chromosomes,wheremethylationmightspreadfromnearbyTEs. Law,J.A.andJacobsen,S.E.(2010).Establishing,maintaining,andmodifyingDNA methylationpatternsinplantsandanimals.NatureReviewsGenetics11:204220. Matzke,M.A.andMohser,R.(2014).RNA-directedDNAmethylation:an epigeneticpathwayofincreasingcomplexity.NatureReviewsGenetics15:394– 408. IdentificationofmiRNAsandtheirtargetsintheliverwortMarchantia polymorphabyintegratingRNA-Seqanddegradomeanalyses Shih-ShunLin NationalTaiwanUniversity,Taipei,Taiwan Bryophytescomprisethethreeearliestdiverginglineagesoflandplants. Marchantiapolymorpha,acomplexthalloidMarchantiopsidaliverwortthathas beendevelopedintoamodelgeneticsystem,occupiesakeyphylogenetic position.Therefore,M.polymorphaisusefulinstudiesaimingtoelucidatethe evolutionofgeneregulationmechanismsinplants.Inthisstudy,weused computational,transcriptomic,smallRNA,anddegradomeanalysesto characterizemicroRNA(miRNA)-mediatedpathwaysofgeneregulationinM. polymorpha.ThedatahavebeenintegratedintotheopenaccessContigViewsmiRNAplatformforfurtherreference.Inadditiontocorecomponentsofthe miRNApathway,178uniquemiRNAsequences,10ofwhichcouldbeclassified into7miRNAfamiliesthatareconservedinembryophytes,wereidentified.A combinationofcomputationalanddegradomeanalysesallowedustoidentify andexperimentallyvalidate323targets.Insomecases,thetargetgenesare orthologoustothoseofotherembryophytes,butinothercases,theconserved miRNAstargeteitherparalogsormembersofdifferentgenefamilies.Several miRNA/targetrelationships,whichhaveimportanttargetsinM.polymorpha,as theirrespectiveArabidopsishomologsexertcrucialfunctionsindevelopmental processes,werefurtherevaluatedinthisstudy.Weprovideafoundationfor furtherinvestigationsoftheRNA-mediatedsilencingmechanisminM. polymorphaaswellasoftheevolutionofthisgenesilencingpathwayin embryophytes. 20 Evolutionandmolecularcontrolofplant"Generationswechsel" RalfReski1,2,NellyHorst1 1UniversityofFreiburg,Freiburg,Germany 2BIOSS–CentreforBiologicalSignallingStudies,Freiburg,Germany Characteristicallylandplantsexhibitalifecyclewithanalternationof generationsandthusalternatebetweenahaploidgametophyteandadiploid sporophyte.Atmeiosisandfertilizationthetransitionsbetweenthesetwo ontogeniestakeplaceindistinctsinglestemcells.Thisgeneralprinciplewas discoveredbythetwobotanistsHofmeisterandStrasburger,anditwas Hofmeister(1851)whocoinedthetermGenerationswechselforit. Theevolutionaryinventionofanembryoandthusanuprightmulticellular sporophyteintheancestoroflandplantsformedthebasisfortheevolutionof increasinglycomplexplantmorphologiesshapingEarth’secosystems.Recent researchemployingthemossPhyscomitrellapatensrevealedthehomeoticgene BELL1asamasterregulatorofthegametophyte-to-sporophytetransition(Horst etal.2016).Here,wediscussthesefindingsinthecontextofclassicalbotanical observations. References: HofmeisterW.(1851):VergleichendeUntersuchungenderKeimung,Entfaltung undFruchtbildunghöhererKryptogamen(Moose,Farne,Equisetaceen, RhizokarpeenundLykopodiaceen)undderSamenbildungderConiferen.Verlag F.Hofmeister,Leipzig:179pp. HorstN.A.,KatzA.,PeremanI.,DeckerE.L.,OhadN.,ReskiR.(2016):Asingle homeoboxgenetriggersphasetransition,embryogenesisandasexual reproduction.NaturePlants2,15209. Interactionsofliverwortswithfilamentouspathogens SebastianSchornack,CarolinAlfs,TemurYunusov UniversityofCambridge,SainsburyLaboratory,Cambridge,UnitedKingdom Fossilevidencesupportsanancientassociationoffilamentousmicrobesand earliestlandplants.Bystructuralsimilaritythesefossilassociationshavebeen classifiedasbeneficialarbuscularmycorrhizafungi-likeorasdetrimental oomycete-likemicrobes.Extantliverwortsrepresentearlydescendantsofthe firstlandplantsandfrequentlymaintainfilamentousmicrobeassociationssuch GlomeromycotaandMucoromycotinafungi.Thestudyofbeneficialfilamentous plantmicrobeinteractionsisanemergingfieldofinterest.However,notall filamentousmicrobesabletocoloniseliverwortsarebeneficial.Weassesseda numberofliverwortsandhornwortsfortheirabilitytobeinfectedbyoomycete pathogensanddocumentedobservedmicroscopicstructuresincluding intracellularhyphalextensions.Weproposetoutiliseourestablishedoomyceteliverwortsystemtostudyearlydescendentlandplantgenesinvolvedin colonisationprocessesandtoassesstheirgeneralorspecificcontributionto pathogenicormutualisticsymbiosis. 21 TheLiverwortMarchantiapolymorphaasaModelforFungalEndophyte Interactions JessicaNelson DepartmentofBiology,DukeUniversity,Durham,UnitedStates Symbiosesbetweenplantsandfungiareancientandarethoughttohave facilitatedtheinitialcolonizationoflandbyplantancestors.Theliverwort Marchantiapolymorphaprovidesaninterestingmodelforstudyingtheimpacts ofsuchfungalassociationsnotonlybecauseofitsearly-branchingpositionin landplantevolutionandhypothesizedsimilarityofstructuretoearlylandplants, butalsobecauseofitsproductionofasexualpropagulesthatcanbeaxenically cultivated.UsingM.polymorpha,Ihavedevelopedasystemfortestingthe functioningofendophyticfungiinbryophytes.Endophytes,microbesthatlive insidehealthyplanttissues,areubiquitousinmodernlandplants.Fromstudies ofangiospermfungalendophytes,weknowthattheycanaffectplantsuccessby improvingplantgrowth,competitiveness,diseaseresistance,ortoleranceof abioticstressconditions.Studyingbryophyteendophytecommunitiescan provideanevolutionarilysignificantcomparisontoTracheophytemodels, especiallysincebryophytefungalendophytecommunitiesaresimilartothosein vascularplants.Tobuildmyexperimentalsystem,Ihaveisolatedfungalcultures fromsurface-sterilizedtissuesofM.polymorphacollectedfromtheeasternand northwesternUnitedStatesandestablishedaxenicculturesoftheliverwort.I havetestedtheeffectsofeachof100isolatedAscomycetefungiongrowthof replicatedaxenicclonesofM.polymorphaunderstandardizedlaboratory conditions.Ihaveobservedpositive,negative,andneutraleffects,rangingfrom lethalfungitoonesthatstronglyenhanceplantgrowth.Iamcontinuingwork withthissystemtoinvestigateendophytehostspecificityandidentifypossibly mechanismsbehindtheobservedeffects. Marchantiaasanopensystemforengineeringplants. BernardoPollak,JimHaseloff,etal. UniversityofCambridge,Cambridge,UnitedKingdom Plantsarealreadycultivatedgloballyatlowcost,harvestedonthegiga-tonne scale,androutinelyusedtoproduceaverywiderangeofbiostuffs,fromfibres, wood,oils,sugar,finechemicals,drugsandfood.SyntheticBiologyoffersnew toolsforthedesignandreprogrammingofmetabolismandarchitecturein plants.Thesenewapproachescouldhavefar-reachingconsequencesfor agricultureandsustainability. WearedevelopingtheliverwortMarchantiapolymorphaasasimplesystemfor syntheticbiologyexperiments.Marchantiaischaracterisedbymorphological simplicity,matchedbysimpleunderlyinggenomestructure.Itseaseofculture, transformationandanalysismakeitanidealsystemforplantdevelopmentand syntheticbiology.TheOpenPlantresearchinitiativehascreatedahubfor interdisciplinaryexchange,betweenthefundamentalandappliedsciencesfor plantagricultureandbioproduction.Itsaimistoestablishsystemsfortheopen exchangeofnewplanttoolsandDNAcomponentsthatwillpromoteinnovation 22 andinternationalscientificexchange.Theseincludeacommonsyntaxfor exchangeandassemblyofplantDNApartsinMarchantia,quantitativeanalysis ofwholeplantgrowthatthecellularscaleandgenomeengineering. OpenPlantbringstogetherawiderangeofengineers,scientistsandpolicy developerstoexplorenewtechnologiesandpossiblemodelsforsustainable agriculture,bioproductionandlanduse.Opentoolsprovideanopportunityto democratiseandimproveinternationaltechnologytransfer,educationand researchtraining. 23 POSTERS Numberedbyalphabeticalorder 1.Heavymetal(Cd,Cu,PbandZn)accumulation,distributionand toleranceintheliverwortMarchantiapolymorphaL AngelaAres,MisaoItouga,YukariKato,HitoshiSakakibara RikenCSRSYokohama 12300045,1Chome-7-22Suehirocho,TsurumiWard,Yokohama,Kanagawa Prefecture230-0045,Yokohama,Japan Inthelastfewdecades,bryophyteshavebeenintensivelyusedinenvironmental studieswithheavymetal,especiallybyusingthemasbiomonitorsofairandsoil pollution.ThethallousliverwortMarchantiapolymorphaL.,describedasaheavy metaltolerantspecies,hasbeenalsousedasanenvironmentaltool.However, studiesontissuelocalisationandtolerancehasnotbeeninvestigatedin-depth forthisplant.Here,wedescribethetime-doseaccumulationpattern,tissue localisation,andtoxiceffectevaluationofheavymetals(Cd,Cu,PbandZn)inM. polymorphaininvitroconditions. AnalysiswithICP-MSshowedthatelementaccumulationwasincreasedwith timeanddose.Thehighestaccumulationat0.2mMofmetaltreatmentwas foundforCd,i.e.,1220gg-1,andat2mMwasfoundforZn,i.e.,2900gg-1. Regardingtheelementdistributionalongthethallus,alargerproportionof elementwasdetectedinoldertissues,speciallyforPb(80%ofthetotal concentration).HistochemicalstainingofthethalluscrossectionswithDithizone indicatedthatrhizoids,lowerepidermisandhyalineparenchymamust constitutethepreferentialsitesforelementaccumulation,protectingthehigher epidermisfromthecontaminantexposure.Theresultsexibitedthatdespitethe highheavymetalconcentrationsusedinthisstudy,nogeneraltoxicreponses werefoundinthemetaltreatedplants.Thehighretentioncapacityandtolerance showninthisstudyindicateM.polymorphacanbeconstituteasagoodmodel forstudyingheavymetaltoleranceinplants,especiallyconsideringitsunique phylogeneticposition. 2.Marchantiapolymorpha:usinganemergingplantmodelsystemforthe studyofcellwallmechanics GiuliaArsuffi,SiobhanBraybrook TheUniversityofCambridge,TheSainsburyLaboratory,Cambridge,United Kingdom Cellwallmechanicsplaysacentralpartinplantmorphogenesis.Cellwall composition,inturn,definesthemechanicalpropertiesofthecellwall.Therole ofpectininshapingcellwallrigidityisbecomingclearerthankstotheinsights providedbystudiesinAngiosperms.Theseplants,however,representonlya smallproportionoflandplants.Obtainingacompletepictureofthecellwall diversityandfunctionalityisonlypossibleifotherplantphylaandalgaearealso examined. 24 ThenumberofmoleculartoolkitsavailableinMarchantiaisgrowingrapidlyand itfacilitatesthestudyoftheeffectsofPMEs,PMEIsandauxinontherelationship betweenthecellwallandgrowth.Thefirststepstodefinetheimpactofpectin rigidityontoMarchantiamorphogenesisinvolvethecomparisonofpectin methylesterificationstatusbetweengrowingandnon-growingtissueaswellas differentialgeneexpressionanalysis.Withtheupcomingreleaseofitsgenome, wepredictthatthisorganismwillbecomeanestablishedmodelfortheevolution ofthecellwallinrelationtoplantdevelopment. References Levesque-Tremblay,G.,Pelloux,J.,Braybrook,S.A.,andMüller,K.(2015).Tuning ofpectinmethylesterification:consequencesforcellwallbiomechanicsand development.Planta791–811. Ishizaki,K.,Nishihama,R.,Yamato,K.T.,andKohchi,T.(2015).MolecularGenetic ToolsandTechniquesforMarchantiapolymorphaResearch.PlantCellPhysiol.0, 1–9. 3.Evolutionoflightsignaling:TheroleoftheCOP1/SPAcomplexin Physcomitrella OliverArtz1,StephenDickopf1,KristianUlrich2,StefanRensing2,Ute Hoecker1 1BotanicalInstitute,UniversityofCologne,Cologne,Germany 2UniversityofMarburg,Marburg,Germany Beingthemajorsourceofenergyforplants,lightinfluencestheirgrowthlikeno othersignal.Hence,plantsevolvedasophisticatedsignalingnetworktotranslate theouterlightsignalintoanappropriatedevelopmentalresponse.In Arabidopsis,theCOP1/SPAE3ubiquitinligaseisakeynegativeregulatorof light-dependentgrowthinhigherplants.COP1andmembersoftheSPAfamily directlyinteractwithaplethoraoftranscriptionfactorsinvolvedin photomorphogenesis,therebypromotingtheirdegradationviathe26S proteasomeindarkness.Light-activatedphotoreceptorsphysicallyinteractwith theCOP1/SPAcomplextodrasticallyinhibititsE3ubiquitinligaseactivity, whichinturnleadstoanaccumulationoftargettranscriptionfactors. WeaimtounderstandtheevolutionaryconservationoftheCOP1/SPAcomplex inearlydivergentlandplantsusingPhyscomitrellaasamodelorganism.While theorthologofAtCOP1fromPhyscomitrellaPpCOP1acancomplementacop1 mutantphenotypeinArabidopsis,expressionofPpSPAbdoesnotrescuethe phenotypeofArabidopsisspamutants.TocharacterizetheroleofCOP1/SPAin Physcomitrella,spamutantsweregeneratedandvisualaswellasmolecular phenotypesarecurrentlyassessed.Inaddition,wetestthefunctionalityofa PpCOP1/PpSPAcomplexbyanalyzingtheabundanceofputativedegradation substratesunderdifferentlightconditions. 4.ExpressionofFluorescentReportersfromtheChloroplastGenomeof Marchantiapolymorpha 25 ChristianR.Boehm1,MinoruUeda2,YoshikiNishimura2,Toshiharu Shikanai2,3,JimHaseloff1 1UniversityofCambridge,Cambridge,UnitedKingdom 2DepartmentofBotany,GraduateSchoolofScience,KyotoUniversity,Sakyo-ku, Kyoto,Japan 3CREST,JapanScienceandTechnologyAgency,Chiyoda-ku,Tokyo,Japan Recently,theliverwortMarchantiapolymorphahasreceivedincreasing attentionasabasalplantmodelformulticellularstudies.Itseaseofhandling, well-characterizedplastome,andprovenprotocolsforbiolisticplastid transformationqualifyM.polymorphaasanattractiveplatformtostudythe evolutionofchloroplastsduringthetransitionfromwatertoland.Inaddition, chloroplastsofM.polymorphaprovideaconvenienttest-bedforthe characterizationofgeneticelementsinvolvedinplastidgeneexpressiondueto theabsenceofmechanismsforRNAediting.Whilere-portergeneshaveproven valuabletothequalitativeandquantitativestudyofgeneexpressionin chloroplasts,expressionofgreenfluorescentprotein(GFP)inchloroplastsofM. polymorphahasprovenproblematic.Wereportthedesignofacodon-optimized gfpvariant,mturq2cp,whichallowedsuccessfulexpressionofacyanfluorescent proteinundercontrolofthetobaccopsbApromoterfromthechloroplast genomeofM.polymorpha.Wedemonstratetheutilityofmturq2cpin(i)early screeningfortransplastomiceventsfollowingbiolistictransformationofM. polymorphaspores;(ii)visualizationofstromulesaselementsofplastid structureinMarchantia;and(iii)quantitativemicroscopyfortheanalysisof promoteractivity. 5.FunctionalPTBphosphatetransportersarepresentinstreptophyte algaeandearlydiverginglandplant. ClémenceBonnot1,HélèneProust1,3,BenoîtPinson2,GiuliaMorieri1, HolgerBreuninger1,ClémentChampion1,AlexanderHeatherington1, StevenKelly1,LiamDolan1 1DepartmentofPlantSciences,OxfordUniversity,SouthParksRoad,OX13RB Oxford,Unitedkingdom,Oxford,UnitedKingdom 2IBGC-CNRS-UMR5095,UniversitédeBordeaux,1RueCamilleSaintSaens, 33077Bordeaux,France.,Bordeaux,France 3Presentaddress: InstituteofPlantSciencesParisSaclayIPS2,CNRS,INRA,UniversitéParis-Sud, UniversitéEvry,UniversitéParisSaclay,Batiment630,91045Orsay,France., Orsay,France Plantsabsorborthophosphate(Pi)throughPi-transporterproteinslocatedinthe plasmamembraneofcellsattheinterfacewiththeexternalenvironment. PHOSPHATETRANSPORTER1(PHT1)proteinstransportPithroughH+/Pi-cotransportacrosstheplasmamembraneofrootcellsinangiosperms.The presenceofPHT1genesinearlydiverginglandplantsandstreptophytealgae suggeststhatPHT1proteinfunctioninallstreptophytelineages.However,PiuptakedependonNa+-influxinstreptophytealgaeimplyingthatNa+/Pisymportersfunctionattheplasmamembraneofstreptophytes.Herewereport 26 thediscoveryofPHOSPHATETRANSPORTERB(PTB)instreptophytealgaeand landplants. Previouslyidentifiedinchlorophytealgaeonly,thePTBproteinsare hypothesisedtouptakePibyNa+/Pi-symport.ConsistentwitharoleinPiuptakefromtheenvironment,streptophytePTBproteinsarepredictedtobe plasmamembraneproteinsandthesteadystatelevelsofmRNAsofmostPTB genesinthebryophyteMarchantiapolymorphaandinthestreptophytealga Coleochaetenitellarumarehigherlow-Pithaninreplete-Pienvironmentsandin M.polymorpharhizoidsthaninM.polymorphathallus.TheexpressionofM. polymorphaPTBproteinsintheSaccharomycescerevisiaepho2mutant, defectiveinhigh-affinityPi-transport,rescuesgrowthinlow-Pienvironments. ThesedatademonstratethatPTBproteinsareplasmamembranePitransportersandsuggestthatPTBandPHT1proteinsoperateinparallelinearly diverginglandplantsandstreptophytealgae.Thisdualsystemmightattestthe progressivetransitionbetweentwoPi-uptakemechanismsandadaptationtodry habitatduringlandcolonization. 6.AssemblyofRNAeditingcomplexesinMarchantiapolymorpha MatthiasBurger1,ShoheiYamaoka2,YorikoMatsuda2,TakayukiKohchi2, MizukiTakenaka1 1MolecularBotany,UniversityofUlm,Ulm,Germany 2GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan RNAeditinginvascularplantorganellesaltersCtoUatspecificsites.PPR proteinswithC-terminalEorE-DYWdomainshavebeenidentifiedasspecific recognitionfactorsforuniqueeditingsites.TheDYWdomainhasbeenproposed tofunctionasaneditingenzyme,sincethisdomainhassimilaritytocytidine deaminases.However,cytidinedeaminaseactivityoftheDYWdomainhasnot yetbeenprovenbyinvitroassayswithrecombinantproteins.Thiscouldbedue tonon-functionalfoldingoftheproteinsexpressedinE.coliortheabsenceof indispensableco-factors. MarchantiapolymorphadoesnothaveRNAeditingineitherorganelleandnoE orE-DYWcontainingPPRproteins.Thereforethisplantoffersaunique opportunitytoattempttoreconstituteRNAeditinginitsorganelleswiththeaim toanalyzeandunderstandtheRNAeditingmachinery.Asaninitialexperimental stepwefocusonRNAeditingfactorMEF30anditstargetcytidineinthecob mRNA,whichiseditedinArabidopsisbutnotinMarchantia.Weslightly modifiedMEF30andfuseditwithdifferentE-DYWdomainstotargetthespecific CinthenativecobtranscriptsinMarchantiamitochondria.Expressionofthe modifiedMEF30proteinsinMarchantiadidnotedittheCinthecobmRNA, suggestingthatadditionalco-factorsarenecessaryforafunctionalRNAediting machinery.Toinvestigatethispossibilityweintendtoadditionallyexpress candidateco-factorsidentifiedbygeneticanalysisinArabidopsisinMarchantia andreconstituteminimumRNAeditosomestointroduceRNAeditingin Marchantiamitochondria. 7.AnalysisofthemolecularnetworkregulatedbyMpTCP2 SarahKopischke,AndreaBusch,SabineZachgo DepartmentofBotany;OsnabrueckUniversity,Osnabrueck,Germany 27 Inhigherangiosperms,thelargeplant-specificTCPtranscriptionfactorfamilyis involvedinaplethoraofdevelopmentalprocessesandbythatlikelycontributed totheevolutionofmorphologicalnovelties,boostingangiospermdiversification. TheTCPfamilyisdividedintotheCINandthePCFsubclass.Inhigher angiospermsCINclassTCPgenescontributetotheregulationofcell proliferationandbythatguideflowermonosymmetry(1)anddiverseother developmentalprocesses. Incontrasttoangiosperms,wheremorethan20TCPgeneshavebeenidentified inArabidopsisandrice,MarchantiaharboursonlytwoTCPcopies,belongingto eachsubclass.InordertounderstandthebasalfunctionoftheCINclassgene MpTCP2,MpTCP2-expressionwasde-regulated.Transgenicplantswhere MpTCP2iseitheroverexpressedundertheMpEFα-promoterorknockedoutvia theTALEN-approachshowmorphologicaldeviationsfromthewild-type. InordertodetecttargetgenesofMpTCP2,wesubjectedRNAfromwild-typeand transgenicplantstoRNA-Seqanalyses.ThepotentialimpactofMpTCP2on Marchantiadevelopmentwillbediscussed.Comparisonwithalreadydescribed TCPtargetgenesfromhigherangiosperms(2)willshedlightonthefunctional evolutionofthissubclassofTCPtranscriptionfactors. 1.BuschA.,ZachgoS.(2007)Controlofcorollamonosymmetryinthe BrassicaceaeIberisamara.PNAS104:16714. 2.BuschA.,HornS.,ZachgoS.(2014)Differentialtranscriptomeanalysisreveals insightintomonosymmetriccorolladevelopmentofthecruciferIberisamara. BMCPlantBiology14:285. 8.EffectsofsugarsontherhizoiddevelopmentofMarchantiaPolymorpha ZhongChen NationalInstituteofEducation,NanyangTechnologicalUniversity,Singapore, Singapore Marchantiapolymorphaisabryophyteandisagoodmodeltostudythe evolutionoflandplants.Marchantiahasrhizoidsinsteadofrootswhichis hypothesisedtobetheequivalenttotheroothairsofahigherplant.Glucosehas beenshowntoincreaserootlengthandthenumberofroothairsintheflowering plantArabidopsisthaliana.Glucoseisalsoknowntoregulategenesaffectedby thephytohomoneindole-aceticacid(IAA).Itisofinteresttoobserveifsugars andphytohormonesarecapableofinfluencingtherhizoiddevelopmentin Marchantiaasitmaysuggestthatthesefeaturesareconserved.Marchantiathalli weregrowninmediawithdifferentsugars,increasingsucroseconcentrationand amixtureofsucroseandphytohormones.Ourstudiesshowthatsucrose,glucose andmaltosepromoterhizoidgrowth.Rhizoidformationwasalsoobservedwith increasingconcentrationsofsucrose.InhibitingIAAbiosynthesisusing5-methyltryptophan(5-MT)resultedinreducedrhizoidformationeveninthepresenceof highconcentrationsofsucrose.Thissuggeststhatthereisalinkbetweensugars andthephytohormoneIAAandcollectivelytheyareregulatingtherhizoid growthinMarchantia. 28 9.Discoveringthemolecularmechanismsofsymbiosisinaliverwort model AislingCooke1,GuruRadhakrishnan1,Pierre-MarcDelaux1,2,Giles Oldroyd1 1JohnInnesCentre,Norwich,UnitedKingdom 2LaboratoiredeRecherchesenSciencesVégétales,Toulouse,France Arbuscularmycorrhizalsymbiosisisafeatureofthemajorityoflandplants, includingtheearliestdivergingclade,theliverworts.Themodelliverwort, Marchantiapolymorpha,doesnotformarbuscularmycorrhizal(AM) associationsbutarelatedspecies,Marchantiapaleacea,readilyformsAM associationsinsoilandinvitro.M.paleaceahasasimplegenomestructure,is easilypropagatedandcanbetransformedrapidly.ThismakesM.paleaceaan idealmodelforstudyingAMsymbiosisinbothextantbryophytesandearlyland plants. Despiterecentprogress,themolecularmechanismsofsomeaspectsofAM symbiosis,particularlycellinfection,remainpoorlyunderstood.Modelspecies usedtostudyAMsymbiosis,includingthelegumesLotusjaponicasand Medicagotruncatula,andthecerealrice,arerelativelybulkyandhavelong transformationtimes.WebelievethatM.paleaceaisbettersuitedtohighthroughputscreeningandtransformationthanthesespecies.UsingM.paleacea asamodelmayspeeduptheprocessofgenediscoveryinAMsymbiosis. WeaimtouseM.paleaceainahigh-throughput,reversegeneticscreenforgenes involvedincellinfectionandarbusculeformation.Weintendtotestthe functionalconservationofgeneswediscover,inadditiontogeneswithknown rolesinAMsymbiosis.AlthoughtheM.paleaceagenomedoesnotcontainclear orthologuesofallknownAMsymbiosisgenes,studieshavedemonstratedthat importantgeneticcomponentsofAMsymbiosis,suchasCCaMK,arefunctionally conservedbetweenliverwortsandangiosperms.Thisindicatesthatdiscoveries madeinM.paleaceamayalsoapplytoangiosperms. 10.RegulationofUV-InducedFlavonoidProductioninMarchantia polymorpha KevinDavies1,NickAlbert1,WilliamClayton1,2,SimonDeroles1,Kathy Schwinn1,BrianJordan2 1TheNewZealandInstituteforPlant&FoodResearchLimited,Palmerston North,NewZealand 2LincolnUniversity,Christchurch,NewZealand Plantsarethoughttohavecolonizedthelandaround500millionyearsago.One ofthemajorchallengesthefirstpioneersfacedwasprotectionagainstUV radiation.AkeydefencemechanismofangiospermsisUV-inducibleflavonoid production.ThisiscontrolledthroughtheUVR8photoreceptorpathwayandthe MYB-bHLH-WDRtranscriptionalcomplexthatdirectlyactivatestheflavonoid biosyntheticgenes.However,itisanopenquestionwhetherthisisauniversal systeminplantsthatmayhaveevolvedduringlandcolonization.Astheclosest livingrelativesofthefirstlandplants,Bryophytescanhelptoinformuson systemsthathaveanearlyevolutionaryorigin.WearedefiningtheUVtolerance mechanismsoftheliverwortMarchantiapolymorphaandcomparingthemwith 29 thoseofangiosperms,withafocusontheflavonoids.Marchantiaproduces flavones,whichareakeyUV-inducedflavonoidofmanyangiosperms,andared pigmentthoughttoberelatedtoanthocyanins(RicciodininA).However,the biosyntheticpathwaystothesecompoundsinliverwortshavenotbeendefined. WehaveusedRNAseqanalysisofUV-treatedplantsandBlastinterrogationof transcriptomeandgenomeresourcestoidentifybiosyntheticandregulatory genecandidatesforthemarchantiaflavonoidpathway.Thesearebeing characterizedusingtransgenicover-expression,CRISPRmutagenesisand functionalanalysisingeneticallydefinedangiospermmutants.Resultstodate includetheidentificationofaUV-inducedtranscriptionfactorthatwhenoverexpressedinmarchantiaconfersconstitutiveproductionoflargeamountsof flavonoids. 11.Kinesin-4mediatedshorteningofmicrotubuleoverlapsdefines membraneaccumulationsitesduringplantcytokinesis JeroendeKeijzer1,HenkKieft1,ChaniëlBakker1,TijsKetelaar1,Gohta Goshima2,MarcelJanson1 1LaboratoryofCellBiology,WageningenUniversity,Wageningen,Netherlands 2DivisionofBiologicalScience,GraduateSchoolofScience,NagoyaUniversity, Nagoya,Japan Celldivisioninalllandplantsisfinalizedwiththeconstructionofanewcellwall segment,calledthecellplate.Itsassemblyfromsmallvesiclesstartsinthecell centerandcontinuescentrifugally.Thisprocessisguidedbythephragmoplast:a microtubule-based,bipolarstructurethatdevelopsfromthespindle.Inthe phragmoplastcenter,microtubulesfromoppositesidesformshortregionsof antiparalleloverlap.Simultaneousobservationoftheseoverlapsandthe vesicularmaterialdeliveredtothedevelopingcellplateusingthemoss Physcomitrellapatens,hintedthattheremightbeafunctionalassociation.Tight controloveroverlaplengthcouldthusservetopatterntheformingcellplate. Therefore,mechanismspotentiallycontributingtooverlaplengthcontrolwere examined.Wemeasuredratesofmicrotubulegrowth,anactivityextending overlaps,andmicrotubulesliding,aprocessthatdecreasesoverlaplengthand drivesmicrotubuleflux.Bytrackingregionsofphoto-activatedmicrotubule filamentswefoundthatthefluxvelocityismarkedlyslowerthanthebulk microtubulegrowthvelocity,implyingmicrotubulegrowthislocallydownregulatedwithinoverlaps.WethereforefunctionallyanalyzedP.patenskinesin4proteins,whichhaveanestablishedroleininhibitingmicrotubulegrowthin animalcells.Knockoutofkinesin-4increasedphragmoplastmicrotubuleoverlap lengththroughoutcytokinesis.Underthiscondition,theinitialrecruitmentof vesiclestooverlapswasmorediffuse,cellplateconstructionwasdelayed,and completedcellplateswerethickerandirregular.Theseresultsthusdemonstrate thatkinesin-4mediatedlengthcontrolofmicrotubuleoverlapsplaysakeyrole inpatterningofthecellplatebythephragmoplast. 30 12.Evolutionofthearbuscularmycorrhizalsymbiosisinlandplants GuruRadhakrishnan1,NicolasVigneron2,LeonieLuginbuehl1,Giles Oldroyd1,Pierre-MarcDelaux2 1JohnInnesCentre,Norwich,UnitedKingdom 2LaboratoiredeRechercheenSciencesVégétales,UMR5546,Universitéde Toulouse,UPS,CNRS,Castanet-Tolosan,France Theplantlineagefacedtwomajortransitionsoverthelast450millionyears:the colonizationoflandandthetransitionfromagametophyte-toasporophytedominantlifestyle,resultinginthedivergenceofvascularplants.Thesetwo eventsrequiredtheevolutionofnewmechanismsandtherecruitmentof existingpathwaysinanewdevelopmentalcontext.Thefossilrecordandits broadhostrangesuggestthattheArbuscularMycorrhizalsymbiosisevolvedin firstlandplantsandwasoneofthecriticalinnovationsthatallowedplantsto successfullycolonizelands.Interestingly,whilenewdevelopmentalfeatures evolved,suchastherootsinLycophytesandEuphyllophytes,AMsymbiosishas beenrecruitedandmaintained.StudyingtheevolutionofAMsymbiosisinland plantsthusoffersauniqueopportunitytounderstandhowkeyinnovations evolveandarerecruitedduringplantevolution.Usingacomprehensive phylogeneticanalysisonmorethan200transcriptomesandgenomesofland plantsandgreenalgae,weidentifiedtheevolutionarypathleadingtothe emergenceofsymbioticgenenetworksinlandplants1.Whilegenesassociated withinfectionandcolonizationevolvedinlandplants,genesassociatedwith symbioticsignalingwerealreadypresentintheiralgalancestor,predatingthe appearanceofAMsymbiosis.Finally,modificationsofthesegenenetworks occurredinvascularplants,offeringnewsymbioticoptions.Iwillpresentour recentprogressinthefunctionalvalidationofthisevolutionarymodel. 1Delauxetal.Algalancestoroflandplantswaspreadaptedforsymbiosis.PNAS 112(43):13390-5(2015) 13.MarpoDB:Marchantiapolymorpharesourceforplantsyntheticbiology MihailsDelmans,BernardoPollak,JimHaseloff UniversityofCambridge,Cambridge,UnitedKingdom Opengenomicresourcesprovidefundamentaltoolsforresearcherstofind, visualiseandretrievesequencesofinterestfortheirinvestigations.Whilemany resourcesoffergenome-levelmapstounderstandthecontextinwhichthe sequencesareembedded,fewofthemprovideadedicatedintuitiveinterfaceto accessandretrievegene-levelinformationforthetailoredgeneticengineering purposes. Marchantiapolymorpha,withitssmallsize,simplemorphology,easeof propagationandtransformation,aswellas,smallergenefamiliescomparedto higherplants,isanadvantageousplatformforplantsyntheticbiology.The ongoingcommunityefforttosequencetheM.polymorphagenomewillprovide anessentialdatasourceforgenomicresearch.However,theconventionalformat ofthecurrentM.polymorphagenomeresourceisnotanidealfitforsynthetic biologypurposes. 31 HerewepresentMarpoDB,aprojectindevelopmentthatisaimedatbuildingan interactivedatabaseofM.polymorphagenesandgeneticelementswithafocus onsyntheticbiologyapplications.Currently,MarpoDBfeaturesanintuitiveuser interface,keywordsearch,visualisationofgenemodelsandsequences, representationofhomologsandproteindomains,one-clicksequenceexport,and aminimalAPI.Inourfurtherworkweareplanningtoexpandsearchmethods, e.g.byBLAST;andtoimplementprotocolsfordynamicuserimportofsequences andexperimentalresults.WeinviteuserstoprovidefeedbackonMarpoDB, whichisaccessibleathttp://www.marpodb.io. 14.Trackingstress-relatedgenesinearlylandplants DavidDraperMunt1,2,IsabelMarques2,CeciliaSérgio1,ManuelaSimSim1,SeanGraham2 1CentrodeEcologia,EvoluçãoeAlteraçõesAmbientais(CE3C-Centrefor Ecology,EvolutionandEnvironmentalChanges),C2,CampoGrande,1749-016, Lisboa,Portugal 2UBCBotanicalGarden&CentreforPlantResearch,andDepartmentofBotany, UniversityofBritishColumbia,3529-6270UniversityBlvd,VancouverBCV6T 1Z4,Vancouver,Canada Theoriginofstressrelated-genesiscrucialforclarifyingsomeoftheremaining mysteriesconcerningtheadaptionofplantstodifferentenvironments. Theoverallgoalofthispost-doctoralprojectistocharacterizethe transcriptomesof10selectedearlylandplants(bryophytes)measuringthe transcriptionalresponsefollowingstressandprovidingaphylogenomic frameworkfortheevolutionofstress-relatedgenes.Weproposetogeneratea broad-scaletranscriptomeassemblyusingthegametophyteoffiveliverworts: Asterellaafricana(Aytoniaceae),Exormothecapustulosa(Exormothecaceae), Saccogynaviticulosa(Geocalycaceae),Plagiochilamaderensis(Plagiochilaceae) andPorellacanariensis(Porellaceae);threemosses:Echinodiumspinosum (Echinodiaceae),Isotheciumprolixum(Lembophyllaceae),Homalialusitanica (Neckeraceae);andtwohornworts:Anthoceroscaucasicus(Anthocerotaceae), Phymatocerosbulbiculosus(Phymatocerotaceae).Alltargetspeciesare consideredthreatenedinPortugalandareexpectedtosufferfromthenegative effectsoffutureclimatechange.Predictingtheiransweruponstressistherefore essentialtocreateconservationactionsthatassurethesurvivalofthesespecies. Analysisofthedenovoassembledtranscriptomeswillprovideabetter understandingofthemechanismsassociatedwithstress,thephenomenaof climatechangeinvegetativedesiccation-toleranceandpotentiallyidentifyacore setofstress-relatedtranscripts. Thisproject,recentlystarted,willrepresentabroad-scale,transcriptome-level studyconductedwithinbryophytes,providingnovelphylogenomicresourcesfor studyingbryophyteecology,behaviorandevolutionarydiversification. 32 15.FunctionalanalysisoftheClassIVHomeodomainLeucine-Zippergene familyinthebasalliverwort,Marchantiapolymorpha StevieNicoleFlorent MonashUniversity,Melbourne,Australia TheterrestrialcolonisationbytheViridiplantae450millionyearsagowasoneof themostcriticaleventsinevolutionaryhistory.However,forpreviouslyaquatic organisms,terrestrialestablishmentrequiredaplethoraofadaptationsto counterthecomplicationsofanovelenvironment.Onecriticaladaptationwas waterretentioninanincreasinglydryenvironment.Theaerialepidermiswas notonlyrequiredtoactasapermeableinterfacebetweenthesessileplantand environment,buttonowalsoactasaprotectivebarrieragainstdesiccationand pathogenattack.Establishmentofepidermalidentityandtheevolutionofa hydrophobicextracellularcuticularlayercoveringtheaerialepidermiswere thusrequiredforthesuccessfulterrestrialcolonisationofgreenlife. Despitetheimportanceoftheseouterlayers,littleisknownregardingtheir evolutionarydevelopment.Themonophyleticnatureoflandplantsallowsbasal lineagestobeusedassimplemodelsystemsforstudyingtheevolutionofthe morecomplexfeaturesofhigherplants.Therefore,Iamexaminingtheroleofthe ClassIVHomeodomainLeucine-Zipper(C4HDZ)genefamilyinthebasal liverwort,Marchantiapolymorpha.TheC4HDZgenesaremasterregulatorsof epidermalidentityandcuticlebiosynthesis.TheyareStreptophyte-specific,with 16membersinArabidopsisthaliana,butonlyoneorthologexistsinMarchantia. ConsideringtheevolutionarypositionofMarchantia,andtherecentavailability ofitsgenome,itisanidealmodelspeciestoprovideinsightintocuticle evolution,andtodeterminehowepidermalidentityisestablishedinMarchantia. 16.ThesingleClassCARFinMarchantia(MpARF3)isrequiredtobalancea ratiooftotipotentanddifferentiatedcellsandmayantagonizewiththe auxinsignallingpathway. EduardoFlores-Sandoval1,MagnusEklund2,JohnBowman1 1MonashUniversity,Melbourne,Australia 2UppsalaUniversity,Uppsala,Sweden MpARF3isaclassCAUXINRESPONSEFACTOR(ARF)thatisatargetofthe conservedplantspecificmicroRNA160(miR160).MpARF3wasmutagenizedin MarchantiapolymorphausingCRISPR-CAStechnology,resultinginplantsthat failtogrowatthesameratesaswildtype.Severalindependentlinesfailto producemorethantwo(2.4+/-1.7;N=20)apicalnotchesafter~30daysof growthincomparisontotheaverage18notches(18+/-3.5;N=7)observedin thewildtype.Over-expressionoftheMIR160locus,recapitulatedthisphenotype andshowedprematuredifferentiationofairchambersperarea.Conversely,a mutantalleleofmiR160delayedtheproductionofairchamberscomparedtothe wildtypeandshowedanincreaseinthenumberofapicalnotches(branches) perarea.ThissuggeststhatMpARF3promotesaswitchtowardundifferentiated cellstates.WeectopicallyexpressedMpARF3underdifferentpromoters, resultinginplantsthatrevertedtosporelingtogemmaling-likecellstates, resemblingmutantswithacompromisedauxinbiosynthesisorauxinresponse pathway(Eklundetal2015;Flores-Sandovaletal2015).BothlossofMpMIR160 33 andectopicexpressionofMpARF3resultinauxinresistantplants,suggesting thatclassCARFsmayhavehadanancientroleantagonizingtheauxinsignalling pathway.Doublemparf1-/mparf3-mutantshavealessseverephenotypethan auxinbiosynthesisandresponsemutants,suggestinginvolvementofotherARFs inauxinresponse.Wecontinuetoproposeacontext-dependentroleofARF ratiostobalancebetweentotipotentanddifferentiatedcellstatesafteranauxin maximaisproduced. 17.Redox-analysisoftheevolutionaryconservedTGA/ROXY/NPR transcriptionalregulatorynetwork NoraGutsche1,MichaelHoltmannspoetter1,MartinO`Donoghue1,2, SabineZachgo1 1DepartmentofBotany,OsnabrückUniversity,Osnabrück,Germany 2TEAGASC,Horticulture,Ashtown,Ireland InArabidopsisthalianaplant-specificbZIPTGAtranscriptionfactors(TF) interactwithland-plantspecificCC-typeglutaredoxins(ROXYs)inthenucleus andROXYsmightaffectTGAactivitybycysteineresiduemodulation(1). Recently,redox-sensitiveDNA-bindingoftheTGATFPERIANTHIAwasshown, mediatedbyfivecysteines,whichneedtobeinareducedstateforthestrong interactionwithcis-elements(2).BesidesROXYs,alsotheNONEXPRESSOROF PRGENES1(NPR)co-factorfamilyactsintheTGA-dependentexpressioncontrol indevelopmentalandstressresponsepathways(3). Allthreegenefamiliesexpandedstronglythroughoutland-plantevolutionlikely contributingtotheadaptiontonewchallengescoincidingwiththeland colonization.Interestingly,onlytwoROXYsexistintheliverwortMarchantiaand bothcomprisetheC-terminalmotifs,whicharecrucialformediatingaPAN interactionwithTGAproteins,suggestingthattheTGA/ROXY/NPRnetwork alreadyexistsinbasalland-plants.WethereforeuseMarchantiatoexplorethe respectivegenefunctionsandtheimpactofredox-controlonthisinteraction network. 1.Li,S.,Lauri,A.,ZiemannM.,BuschA.,Bhave,M.andZachgo,S.(2009):Nuclear activityofROXY1,aglutaredoxininteractingwithTGAfactors,isrequiredfor petaldevelopment.ThePlantCell21:429-441. 2.Gutsche,N.andZachgo,S.:TheN-terminusofthefloralArabidopsisTGA transcriptionfactorPERIANTHIAmediatesredox-sensitiveDNA-binding(under revision). 3.Li,S.andZachgo,S.(2009):Glutaredoxinsindevelopmentandstressresponse ofplants.AdvancesinBotanicalResearch52,Burlington:AcademicPress:333361. 34 18.RegulationofmeristemactivitybyCLEpeptidehormonesin Marchantia YukiHirakawa1,2,ShinichiroSawa1 1NagoyaUniversity,Nagoya,Japan 2MonashUniversity,Melbourne,Australia Manypeptidehormonefamilieshavebeenfoundasregulatorsofplant developmentanddefenseresponses.CLE(CLV3/ESR)familypeptidesare12-13 amino-acidpeptides,encodedin32CLEgenesinArabidopsis.Peptidesofone groupincludingAtCLV3affectthegrowthanddevelopmentofoverallplant morphologybyinhibitingtheactivityofapicalmeristems,whilethepeptidesin anothergroupsuchasAtCLE41affectvasculardevelopmentbypromoting meristemactivityinvasculature.Thetwogroupsofpeptidesareperceived throughspecificreceptors. WefoundtwoCLEgenesinMarchantiapolymorpha,designatedasMpCLE1and MpCLE2.Thesequencesimiliarityofthepeptidehormoemotifimpliedthatthe twogenesmayrepresentthetwosubfamiliesfoundinArabidopsis.When overexpressedinMarchantia,bothMpCLE1andMpCLE2reducedthethallus growth,whichmaybeduetotheiractivityontheapicalnotch.Usingapicalnotch markers,wefoundthatMpCLE2butnotMpCLE1increasedthesizeofapical notch.Thisactivitywasdependentonthereceptororthologgene,suggesting specificligand-receptorpairmayregulatethesizeofapicalnotch,thusthereisa surprisingsimilaritiesintheregulationofmeristemactivityinMarchantiaand Arabidopsis.Wewillalsoreporttheresultsofpeptidetreatmentassays. 19.Analysisofthegenesforplantspermiogenesisusingaliverwort Marchantiapolymorpha AsukaHigo1,KatsuyukiYamato2,TomokazuKawashima3,Kimitsune Ishizaki4,TakayukiKohchi1,FredericBerger3,TakashiAraki1 1GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 2DepartmentofBiology-OrientedScienceandTechnology,KinkiUniversity, Kinokawa,Japan 3GregorMendelInstituteofMolecularPlantBiology,Vienna,Austria 4GraduateSchoolofScience,KobeUniversity,Kobe,Japan Inlandplants,therearetwotypesofmalegamete:oneisanon-motilespermcell whichisdeliveredtoaneggcellbyapollentube,theotherisamotilespermcell withflagella.Toelucidatethemolecularmechanismforthedevelopmentof motilespermcellsinplants,weusedtheliverwort,Marchantiapolymorpha. ToknowgenesformalegameteformationinMarchantia,wecomparedthe transcriptomeofdevelopingantheridiawiththatofthalliandarchegoniophore receptaclesbyRNAsequencing.Among23,500predictedprotein-codinggenes ofMarchantia,wefound731geneswerehighlyexpressedinantheridia.Male germcelltranscriptomeofMarchantiasharessomecommonfeatureswiththat ofanimalsandangiosperms.RNAinsituhybridizationshowedthatmanyflagella genesandantheridium-specificalphaandbetatubulingenesweretransiently expressedinspermcellsatthebeginningofspermiogenesis,andthenthegene foraprotamine-likespermnuclearproteinwasexpressed. 35 Among14transcriptionfactorswhichwerehighlyexpressedinantheridium,we examinedsomeofthemindetail.TheMarchantiaorthologofDUOPOLLEN1 (DUO1),akeyregulatorinspermcelldifferentiationinArabidopsis,was specificallyexpressedaroundthespermcelldifferentiationandMpduo1ko plantsfailedtogenerateantherozoids.Spermiogenesiswascomparedbetween wildtypeandMpduo1kobytransmissionelectronmicroscopyandthe expressionofspermiogenesisgeneswasexamined.Downstreampathwaysare currentlybeingcomparedbetweenMarchantiaandArabidopsis.Theresults revealedconservedaswellasdivergeentaspectsofDUO1functioninmotileand non-motilespermcelldifferentiation. 20.RevisionofKlebsormidiumflaccidumGenemodels(version1.1) KoichiHori1,JyunpeiUmetsu2,HiroshiMori1,KenKurokawa3,4,Hiroyuki Ohta 1,4 1TokyoInstituteofTechnology,SchoolofLifeScienceandTechnology,Japan 2TokyoInstituteofTechnology,GraduateSchoolofBioscienceand Biotechnology,Japan 3NationalInstituteofGenetics,CenterforInformationBiology,Japan 4TokyoInstituteofTechnology,TheEarth-LifeScienceInstitute,Japan Thecolonizationoflandbyplantswasakeyeventintheevolutionoflife,making themodernterrestrialenvironmenthabitablebysupplyingvariousnutrients andsufficientatmosphericoxygen.Duringthecolonizationofland,thetransition speciesofaquaticalgaemusthaveacquiredarangeofadaptivemechanismsto copewiththeharshfeaturesofterrestrialenvironments,suchasdrought,highintensitylight,andUVradiation.Itisgenerallyacceptedthattheancestor(s)of currentterrestrialplantswascloselyrelatedtopresent-daycharophytes.The charophyticalgaeKlebsormidiumisanearlydiverginglineageofcharophytes, andusuallyconsistofmulticellularandnon-branchingfilamentswithout differentiatedorspecialisedcells.Klebsormidiumspeciesthereforehave primitivebodyplans,andmostspeciesthathaveadaptedtolandalsocan surviveinfreshwater. WereportedthedraftgenomeanalysisofthecharophytealgaeKlebsormidium flaccidum,andidentifiedandannotated16,063proteincodinggenes(Version 1.0)inthenucleargenomes(Horietal.,2014).However,V1.0genemodelswere insufficientasreferencesequenceforRNA-seqanalysisbecausenountranslated region(UTR)wereincluded.Thus,weprovided17,060revisedgenemodels includingUTRsequences(Version1.1)basedonnewIlluminaRNAsequence data.UTRsequenceswereaddedto10,935genemodels.The90percentof Illuminareads(69bp,singleread)werealignedtoV1.1cDNAsequences.These improvedgenemodelsarehelpfulforunderstandingtheadaptationmechanism ofK.flaccidumtolandenvironmentsbytranscriptomeanalysis. 36 21.MicroscopyofPhyscomitrellapatensspermatozoids NellyHorst1,ReskiRalf1,2 1PlantBiotechnology,FacultyofBiology,UniversityofFreiburg,Schaenzlestr.1, 79104Freiburg,Germany 2BIOSS–CentreforBiologicalSignallingStudies,79104Freiburg,Germany ThemossPhyscomitrellapatensistheflagshipnon-seedplantmodelspecies.As anearly-diverginglandplantithasprovenvaluablefortheelucidationofthe originandevolutionofdevelopmentalpathwaysinlandplants.Thedevelopment andmorphologyofmostgametophyticandsporophyticlifestagesiswelldescribed,providingthebasisforthephenotypicanalysisofmutantsorin responsetotreatments.Thenotableexceptionistheanalysisofthebiflagellated spermatozoids,whichwasrarelyaddressedinPhyscomitrellaresearch.A maturemossantheridiumiscomposedofalayerofjacketcellsforminganurnlikestructureholdingthespermatozoids.Upontheruptureoftheantheridium apicalcell,themotilespermsarereleased.Requiringfreewater,theyreachthe archegoniumandfertilizetheeggcellwithin.Here,wepresentprotocolsforthe observationoffixed,aswellaslivespermsutilizingastandardmicroscopeat intermediatemagnifications.Withthesenecessarytoolsforanalysisofthe spermsnowavailable,weexpecttostimulateresearchongenesfunctioningin Physcomitrellaspermatogenesis. 22.DNAmethylationisnecessaryformaintainingdifferentiatedcellsin Marchantiapolymorpha YokoIkeda1,RyuichiNishihama2,ShoheiYamaoka2,MarioA.ArteagaVazquez3,DanielGrimanelli4,RobertA.Martienssen5,TakayukiKohchi2, TakashiHirayama1 1InstituteofPlantScienceandResources,OkayamaUniv.,Kurashiki,Japan 2GraduateSchoolofBiostudies,KyotoUniv.,Kyoto,Japan 3InstitutodeBiotecnologiayEcologiaAplicada,UniversidadVeracruzana,Xalapa Veracruz,Mexico 4InstitutdeRecherchepourleDéveloppement,UMR5096,Montpellier,France 5ColdSpringHaborLaboratory,NY,UnitedStates DNAmethylationisoneoftheepigeneticmodificationsthataffectsgene expressionandcontributestransposonsilencinginmanyorganisms.Therefore, DNAmethylationhasanimportantroleforreproduction,development,growth anddiversityoftheorganisms.However,littleisknownaboutDNAmethylation functioninplantevolution.Marchantiapolymorphaisoneofthemodelspecies forstudyingplantevolution,andisabasallineageoflandplants.Weidentified severalDNAmethylasegenesandDNAmethylation-relatedgenesinMarchantia genomeandstartedtoanalyzethefunctionofDNAmethylationinMarchantiaby mutantanalysisusingCRISPR/Cas9genomeeditingsystem.Marchantiahasone orthologofArabidopsisMET1DNAmethyltransferase,MpMET.Mutationsin MpMETcauseddecreaseofDNAmethylationinMarchantiagenome.Mpmet mutantshowedseveremorphologicalchangeandgrowthdefect.Themutant generatedmanyadventitiousshootlikestructures,suggestingthatDNA methylationisnecessaryformaintainingdifferentiatedcellsinMarchantia. 37 23.Evolutionarilyconservedlight-dependenttranscriptionalregulatory mechanismintheliverwortMarchantiapolymorpha KeisukeInoue1,RyuichiNishihama1,KimitsuneIshizaki2,Takayuki Kohchi1 1GraduateSchoolofBiostudeis,KyotoUniversity,Kyoto,Japan 2GraduateSchoolofScience,KobeUniversity,Kobe,Japan Phytochromesareredlight(R)andfar-redlight(FR)receptorsinplantsthat playimportantrolesinmanyaspectsofplantgrowthanddevelopment.Ithas beenreportedthatphytochromesmainlyfunctioninthenucleusandregulatea setofgenesbyinhibitingnegatively-actingbasichelix-loop-helixtranscription factorsnamedPHYTOCHROMEINTERACTINGFACTORs(PIFs)inArabidopsis thaliana.AlthoughR/FRphotoreversibleresponsesanddistributionof phytochromegenesarewelldocumentedindiverselineagesofplants,whether phytochromesignalingismediatedbygeneregulationbesidesangiosperms remainslargelyunclear.HereweshowthattheliverwortMarchantia polymorpha,anemergingmodelbasallandplant,hasonlyonephytochrome gene,MpPHY,andonlyonePIFgene,MpPIF,andthattheymediatetypicallow fluenceresponses,whicharereversiblyelicitedbyRandFR,andregulatelightresponsivegeneexpression.Mpphyislight-stableandtranslocatesintothe nucleusuponirradiationwitheitherRorFR,demonstratingthatthesingle phytochromeMpphyexhibitscombinedbiochemicalandcell-biological charactersoftypeIandtypeIIphytochromes.Mpphyphotoreversiblyregulates gemmagerminationanddownstreamgeneexpressionbyinteractingwithMpPIF andtargetingitfordegradationinanR-dependentmanner.Ourfindingssuggest thatthemolecularmechanismsforlight-dependenttranscriptionalregulation mediatedbyPIFtranscriptionfactorwereestablishedearlyinlandplant evolution.M.polymorphahasaverysimpleformofRsignaling,whichconsisting ofasinglephytochromeandasinglePIF,andthereforecanbeagoodmodel plantforphytochromeresearch. 24.Celltype-specificreorientationofatraffickingpathwayledto acquisitionofneworganellesduringlandplantevolution TakehikoKanazawa1,AtsukoEra1,2,MasaruFujimoto3,Tomohiro Uemura1,RyuichiNishihama 4,KatsuyukiYamato5,KimitsuneIshizaki6,TomoakiNishiyama7,Takayuki Kohchi4,AkihikoNakano1,8,TakashiUeda1,9,10,etal. 1GraduateSchoolofSciences,TheUniversityofTokyo,Tokyo,Japan 2NationalInstituteofGenetics,Shizuoka,Japan 3GraduateSchoolofAgriculturalandLifeSciences,TheUniversityofTokyo,, Tokyo,Japan 4GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 5FacultyofBiology-OrientedScienceandTechnology,KinkiUniversity, Wakayama,Japan 6GraduateSchoolofScience,KobeUniversity,Kobe,Japan 7AdvancedScienceResearchCenter,KanazawaUniversity,Ishikawa,Japan 8LiveCellSuper-resolutionImagingResearchTeam,RIKENCenterforAdvanced Photonics,Saitama,Japan 9NationalInstituteforBasicBiology,Aichi,Japan 38 10JapanScienceandTechnologyAgency(JST),PRESTO,Saitama,Japan Membranetraffickingisafundamentalsystemresponsibleforcorrecttargeting ofproteins,lipids,andpolysaccharidesamongsinglemembrane-bounded organellesandtheplasmamembrane(PM).Thissystemisregulatedby evolutionarilyconservedmachinery,suchasRABGTPasesandSNAREproteins, whichregulatetetheringandfusionoftransportvesicleswithtargetmembranes, respectively.SYP1isasubfamilyofSNAREproteins,whosenumbersencodedin genomeshavegraduallyincreasedduringevolutionoflandplants.TheSYP1 membersarefunctionallydiversifiedinseedplants.Forexample, KNOLLE/SYP111isaSYP1memberspecificallyinvolvedincellplateformation inArabidopsisthaliana.Anothermember,SYP121,isshowntofunctioninplant immunityandregulationofthepotassiumchannelactivity.Marchantia polymorphapossessesfourSYP1members,threeofwhichwerepredominantly localizedtothePMwhentaggedwithafluorescentproteininthalluscells. Intriguingly,oneSYP1member,MpSYP12B,wasobservedonanorganelle uniquetoliverworts,theoilbody.MpSYP12Bwasspecificallyexpressedinoil bodycells,andtheotherSYP1memberswerealsotargetedtotheoilbodywhen expressedbytheMpSYP12Bpromoter.WealsoidentifiedthatoneofthePMresidentSYP1memberswasrequiredforcytokinesisinM.polymorpha, expressionbywhosepromoterwassufficienttotargettheothertwoPMresidentSYP1memberstoformingcellplates.Ourdataindicatethatacommon strategyofcelltype-specificreorientationofatraffickingpathwaywasemployed toestablishtwodistinctivesubcellularstructures/organelles,thecellplateand theoilbodyduringlandplantevolution. 25.TheactivityofmossATG8homologssuggeststhatautophagicfluxis reducedduringspermatogenesisinatg5mutantlines ChandraShekarKenchappa,VictoriaSanchezVera,KatarinaLandberg,Eva Sundberg,MattiasThelander SwedishUniversityofAgriculturalSciences,Uppsala,Sweden Duringtheprocessofspermmaturationinmossesthecellundergoesadrastic cytoplasmicreductionleadingtothefinalslendershapeofthematuresperm.In thisprocessamembranevesiclecomplexhasbeenconsideredtobeinvolvedbut nothinghasbeensuggestedatthemolecularlevel(1).Autophagy(self-eating)is ahighlyconservedcellularprocessthatleadstothedegradationoforganelles, proteinaggregatesandothercytoplasmiccomponents(2).Itismediatedbyaset ofATGgenesanditwasrecentlydemonstratedthatPpATG5isrequiredfor starvationinducedautophagyinPhyscomitrellapatens(3).ATG8proteinsare knownfromothersystemstobeincorporatedintoautophagosomemembranes andtaggedversionsofthisproteincanthereforebeenusedtovisualizethese structuresandmonitorautophagy.ForPpATG8genesshowingthehighest antheridiaexpression,translationalGFP-basedreporterlinesdrivenbythe nativepromotersweregeneratedinbothwildtypeandPpatg5background. PreliminaryconfocalmicroscopystudiesindicateahighlyspecificspatiotemporalexpressionpatternofPpATG8genesduringgametogenesisaswellas theincorporationofthePpATG8-GFPfusionproteinintospecificsubcellular structuresinaPpATG5dependentmanner.Theseresultswillbepresentedin 39 detailandpossiblemechanismsforautophagy-dependentcytoplasmicreduction willbediscussed. References: 1.MillerC.C.J.andDuckettJ.G.(1985).GameteResearch.13:253-270. 2.HeC.andKlionskyD.J.(2009).AnnualReviewsinGenetics.43:67–93. 3.MukaeKetal.(2015).PlantSignalingandBehaviour.2015;10(11). 26.Resequencingthe‘classic’Marchantiapolymorphachloroplastgenome HannaKijak1,MichałRurek2,WitoldNowak3,MirosławaDabert3, IreneuszOdrzykoski1 1DepartmentofGenetics,FacultyofBiologyAdamMickiewiczUniversityin Pozna?,Pozna?,Poland 2DepartmentofMolecularandCellularBiology,FacultyofBiologyAdam MickiewiczUniversityinPozna?,Poznan,Poland 3MolecularBiologyTechniquesLaboratory,FacultyofBiologyAdamMickiewicz UniversityinPozna?,Pozna?,Poland MarchantiapolymorphaL.isacomplexofthreegeneticallydistincttaxaof subspecific(orspecific)rank.Ourrecentsequencingstudiesofbarcoding markersfromseveralEuropeanpopulationsrevealedsubstantialdivergence betweenM.polymorphaL.andhomologoussequenceof‘Marchantia polymorpha’(NC_001319).Itwassuggestedthatcalluslineusedfororiginal sequencingbelongtoMarchantiapaleaceassp.diptera.Thisfindingwas confirmedrecentlybyVillarealetal.(2015)inalargescalephylogeneticstudyof Marchantiophyta. Inthisstudyweshowresultsofsequencingofthefullchloroplastgenomefrom thesingleMarchantialine(MC-89)whichbelongstoM.polymorphassp. ruderalis.This‘weedy’taxoniswidelydistributedworldwideandprobably maintainedinmanylaboratoriesas‘M.polymorpha’. WeusedIonTorrentPGMsystemforsequencingoftwolibrarieson314Rchip. ResultingfragmentsweremappedtotheMarchantiapolymorphachloroplast genome(NC_001319)usedasareference.Oursequenceis120730bp-longand coversnearly99%ofthefullchloroplastgenome.Wewereabletomap132out of134predictedgenes,including88protein-coding,36tRNAand8rRNAgenes. TheidentitybetweenM.polymorphassp.ruderalissequenceandareferencewas estimatedto96,1%.Wedetectedsubstitutions,aswellasshortindelsandsome differences,e.g.withinrbcLgene(27substitutionsincluding7non-synonymous) canbeusedasdiagnosticmarkersforidentificationoflaboratorylines. Thisstudywaspartiallysupportedbythegrantno.N303800340fromthe NationalScienceCentre,Poland. 40 27.IdentificationofaRaf-likekinaseinvolvedinphotosynthesissignaling inMarchantiapolymorphaEriKoide1,MikaTerai1,YukoNomura2,Izumi Yotsui2,NoriyukiSuetsugu1,HirofumiNakagami2,3,RyuichiNishihama1, TakayukiKohchi1 1GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 2CenterforSustainableResourceScience,RIKEN,Yokohama,Japan 3MaxPlanckInstituteforPlantBreedingResearch,MPIPZ,Cologne,Germany Plantsproducesugarsandchemicalenergybyphotosynthesisandgrowup.To optimizetheirgrowthanddevelopment,greenplantsmustmonitor photosyntheticactivityandregulatevariousfundamentalcellularresponses. However,signalingmechanismsthatcoordinateplantgrowthanddevelopment withphotosynthesisremainstillpoorlyunderstood.Toidentifynovelfactorsin photosynthesissignaling,weperformedphosphoproteomicanalysisinthe liverwortMarchantiapolymorpha,whichissuitableforsystems-biological approachesduetolowgeneticredundancy.Usinglight-irradiatedsampleswith orwithoutaphotosynthesisinhibitor,weidentifiedphosphopeptideswhose abundancechangeddependingontheactivityofphotosynthesis.Wefocusedon proteinkinasesascandidatesofphotosynthesissignalingfactorsandchosea Raf-likekinase,namedPHOTOSYNTHESIS-RELATEDRAF(PRAF),forfurther analysis.KnockoutoftheMpPRAFgeneresultedinvariousgrowthdefects,such asdwarfism,decreaseingemmacups,andreducedrhizoidelongation. PhosphoproteomicanalysisusingtheMpprafknockoutmutantrevealedthat phosphorylationlevelsofmanyofthephosphopeptidesidentifiedaboveshowed MpPRAF-dependentchanges,suggestingthatphotosynthesismodifies phosphorylationlevelsofthosepeptidesviaMpPRAF.Someoftheseinclude proteinsinvolvedinphotosynthesis,sugarmetabolism,andcellgrowth.These resultssuggestthatMpPRAFisakeyphotosynthesissignalingcomponentto controlplantgrowthanddevelopment. 28.Evolutionofplantcircadianclocks Anna-MalinLinde1,EricPederson1,MagnusEklund1,NilsCronberg2,Ulf Lagercrantz1 1UppsalaUniversity,Uppsala,Sweden 2LundUniversity,Lund,Sweden Theimportanceoftimingofbiologicalprocessestotheday-nightcycleis reflectedintheubiquityandindependentevolutionofcircadianclock mechanismsindifferenttaxa.Theendogenouscircadianclockallowsthe organismtosynchronizeprocessesbothtodailyandseasonalchanges.Many processessuchasphotosynthesisthatexhibitadailyrhythmareunderthe controlofacircadianclock.Thecircadiansystemisalsoimportanttotrack seasonalchanges,e.g.theanticipationofspringorautumntoinduce reproductionorwinterdormancy.Itisintriguingthatthegeneralmechanisms forcircadianclockfunctionseemstobeconservedoverkingdoms,whilethe genesexertingthesefunctionsaredifferent.Withinphotosyntheticorganismitis clearthatalgalcircadianclockscontainlargelydifferentgenesascomparedto angiospermplants.Tounderstandtheevolutionoftheplantcircadianclock 41 furtherstudiesofcircadianclockmechanismsinnon-vascularplantsare required.Wehavesurveyedtheoccurrenceofclockgenesinplantswithafocus onnon-vascularplant.Toelucidatethefunctionofclockgenesinearlyland plants,wefocusongenesidentifiedinMarchantia. Homologstomostcoreclockgenesinvascularplantsarepresentalreadyin Charophytes.Interestingly,someofthesecoregeneshavebeenlostindifferent Bryophytelineages.ExceptforthelossofCCA1/LHY,theMarchantiagenome codesforonehomologeachofthecoreclockgenesthatinvascularplants generallyarefoundinsmallgenefamilies.Dataonthefunctionofthesocalled eveningcomplex(ELF3,ELF4andLUX)inMarchantiawillbepresented. 29.RegulationoftheCytokininnetworkinthePhyscomitrellapatens lifecycle Ann-CathrinLindner1,MarcelaHernandez-Coronado1,CarlosOrtizRamirez1,KlausvonSchwartzenberg2,JörgBecker1 1InstitutoGulbenkiandeCiência,Oeiras,Portugal 2BiocenterKleinFlottbek,UniversityofHamburg,Hamburg,Germany Phytohormonesarelongknownkeyregulatorsinfloweringplantdevelopment andreactiontobioticandabioticstresses.Cytokininsareoneofthemajor Phytohormones,generallypromotingcelldivisionanddifferentiation. Bryophytes,suchasPhyscomitrellapatens,areamongtheearliestdivergent membersofthegreenlineagethatshowadistinctphysiologicalreactionto cytokinins.CytokinininitiatestheformationofbudsduringPhyscomitrella development,buttheiroverallfunctionthroughouttheentirelivecycleremains poorlyunderstood. Cytokininmetabolismandsignallinghavebeenwidelystudiedonafunctional levelinfloweringplants.Thegrowingnumberofavailablegenomesrevealsthat thebasiccomponentsofthecytokininsystemarealreadycodedforonthelevel ofearlystreptophyticalgae.Tounderstandtheroleofthishormoneduringthe adaptationtotheterrestrialhabitatwecharacterisedthecytokininsystemin Physcomitrellaonafunctionallevel.Thedenovobiosynthesisofcytokinins knowninfloweringplantsisnotrealizedinthesamewayinPhyscomitrellaand therearestrongindicationsforaBryophytespecificsynthesispathway. Furthermore,fullknockoutoftheclassicalcytokininsreceptorshasrevealedthat thedevelopmentofPhyscomitrellabeyondtheprotonemastagenecessitatesthe cytokininsignal,thusunderliningtheimportanceofthisregulatorymechanism inearlylandplants. WhilepreviousstudiesmainlyfocusedontheearlystagesofPhyscomitrella developmentthePhyscomitrellageneexpressionatlas,coveringtheentire lifecycle,allowsforthefirsttimetogetaninsightintotheimpactandregulation ofcytokininhomeostasisduringtheentirePhyscomitrelladevelopment. 42 30.EvolutionaryanalysisofFeacquisitionsystemin Marchantiapolymorpha JingChiLo1,MunkhtsetsegTsednee1,Ying-ChuLo1,Shun-ChungYang2, Jer-MingHu3,KimitsuneIshizaki4,TakayukiKohchi4,Der-ChuenLee2, Kuo-ChenYeh1 1AgriculturalBiotechnologyResearchCentrer,AcademiaSinica,Nanking,Taipei, Taiwan 2InstituteofEarthSciences,AcademiaSinica,Nanking,Taipei,Taiwan 3InstituteofEcologyandEvolutionaryBiology,NationalTaiwanUniversity, Taipei,Taiwan 4GraduateSchoolofScience,KobeUniversity,Kobe,Japan 5GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan Iron(Fe)isessentialforplantgrowthbuttoxicinexcess.Toacquireappropriate Fe,higherplantshavedevelopedtwouniquestrategies,thereduction-based StrategyIofnon-graminaceousplantsforFe2+andthechelation-basedStrategy IIofgraminaceousplantsforFe3+.Recentstudiesalsoshowedthatalgaecould takeupbothferricandferrous.Nevertheless,theuptakemechanismofFehas beenleastinvestigatedinbryophytes,theearliestdivergingbranchofland plants.Inthisstudy,weelucidatedtheFeuptakemechanismusedinthe liverwortMarchantiapolymorpha.Fefractionationanalysisdemonstratedthat M.polymorphausedthereduction-basedstrategyI.Enhancedactivitiesofferric chelatereductaseandprotonATPase,belongingtoStrategyIofFe2+uptake, weredetectedunderFe-deficientcondition.Ontheotherhand,mugineicacid familyphytosiderophores,thekeycomponentsofStrategyII,anditsprecursor nicotinanaminewerenotfoundinM.polymorpha.FiveZIP(ZRT/IRT-like protein)homologsinM.polymorpha--MpZIP1,MpZIP2,MpZIP3,MpZIP4and MpZIP5--wereidentifiedandspeculatedtobeinvolvedinFeuptake.The expressionofthesefiveZIPgeneswasinspected.Theknockdownexpressionof MpZIP3inM.polymorphaconferredreducedgrowthunderFe-deficient conditions,whiletheoverexpressionofMpZIP3ledtoelevateFecontentsunder excessFecondition.IncontrasttoArabidopsis,therearetwoFeregulatedFIT transcriptionfactorsinM.polymorpha.Weconcludethatvascularlessplant liverwortsuseStrategyIforFeacquisition.Thechelation-basedStrategyIImay beevolveduniquelyingraminaceousplantsundertheterrestrialenvironment. 31.DissectingthetransportmechanismofTMO7proteininArabidopsis root. Kuan-JuLu1,BertDeRybel1,2,HildavanMourik1,DolfWeijers1 1DepartmentofBiochemistry,WageningenUniversityandResearchCentre (WUR),Wageningen,Netherlands 2VIBDepartmentofPlantSystemsBiology,UGent,Gent,Belgium Cell-cellcommunicationisanimportantprocessformulticellularorganismsto coordinatecellidentitiesandpatternformation.Directproteintransport (especiallytranscriptionfactors)betweencellsisacriticalmechanismto establishcellidentityinplants1.Inaddition,arecentpublicationreportedthe movementofaphoto-convertiblefluorophorethroughplasmodesmata,anERcontainingmicrochannelconnectingplantcells,inPhyscomitrellapatens, 43 suggestingacell-cellproteintransportmechanismispreservedduringevolution oflandplants2.However,withacriticalroleindevelopment,westillhave limitedknowledgeofproteintransportmechanism.Previously,TARGETOF MONOPTEROS7(TMO7),anon-canonicalbasichelix-loop-helix(bHLH) transcriptionfactor,wasidentifiedtoinvolveinthedeterminationof hypophysis,thefundercellofrootapicalmeristem,bydirectproteintransportin Arabidopsisembryo3.TogaincomprehensiveinformationofTMO7transport, weobservedsimilartransportphenomenoninArabidopsisseedlingrootand confirmedthetransportofTMO7isthroughplasmodesmata.Bycomparingthe mobilityofsmallbHLHproteins,weshowedthatTMO7familyproteinscontain specificmobilefeatureandaretransportedinanactivemannerinArabidopsis root.Twooftheimportantmobilecis-elementsarefurtheridentified.Inthis meeting,Iwillpresentmycurrentworkondissectingthepossibletransport mechanismofTMO7andthefuturedirectiontoexploretheevolutiononprotein transportinearlylandplants. 1.Otero,S.,Helariutta,Y.&Benitez-Alfonso,Y.CurrOpinPlantBiol29,21-28. 2.Kitagawa,M.&Fujita,T.JPlantRes126,577-585. 3.Schlereth,A.etal.Nature464,913-916. 32.MarchantiapolymorphaasamodelplantforCalvincyclegene regulation LynniciaMassenburg1,BernardoPollak2,MihailsDelmans2,JimHaseloff2, SteveLong1,DonOrt1 1UniversityofIllinois,Urbana,UnitedStates 2UniversityofCambridge,Cambridge,UnitedStates TheexpressionofCalvincyclegenesinplantsiswellknowntoberegulatedby light,sugarandplantdevelopment(Rainesetal.,1999).However,oneCalvin cyclegeneinMarchantia,anearlyliverwortplant,isnotregulatedbylight (Suzukietal.,1999).Otherearlyplantssuchasmossesalsoexhibitlittletono lightregulationofbryophytephotosynthesisrelatedgenes(Argüello-Astorga& Herrera-Estrella,1998).Thisstudyseekstouncoverthelightregulationofthe CalvincyclegenesSBPase,FBPaseandRbcS.IfCalvincyclegeneexpressionis independentoflight,Marchantiapolymorphamaybeestablishedasan evolutionarymodel.Suchamodelcangivecluesontheevolutionaryshift towardslightregulationinplants.However,thediscoveryoflightregulationof CalvincyclegeneswilladvanceMarchantiaasanidealsimplisticmodelof photosyntheticmetabolismandgeneexpressioninhigherplants. References Argüello-AstorgaG.&Herrera-EstrellaL.(1998)EvolutionofLight-Regulated PlantPromoters.AnnualReviewofPlantPhysiologyandPlantMolecular Biology,49,525-555. RainesC.A.,LloydJ.C.&DyerT.A.(1999)Newinsightsintothestructureand functionofbutneglectedCalvincycleenzyme.50,1-8. SuzukiT.,TakioS.,TanakaK.,YamamotoI.&SatohT.(1999)DifferentialLight RegulationoftherbcSGeneExpressioninTwoCellLinesoftheLiverwort Marchantiapaleaceavar.diptera.PlantandCellPhysiology40100-103. 44 33.Membranetraffickingsystemplaysimportantrolesinspermfunction ofMarchantiapolymorpha NaokiMinamino1,TakehikoKanazawa1,AtsukoEra1,2,Ryuichi Nishihama3,KatsuyukiYamato4,KimitsuneIshizaki5,TakayukiKohchi3, AkihikoNakano1,6,TakashiUeda1,7,8 1DepartmentofBiologicalSciences,GraduateSchoolofSciences,TheUniversity ofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo,Japan 2CenterforFrontierResearch,NationalInstituteofGenetics,Mishima,Shizuoka 411-8540,Japan 3GraduateSchoolofBiostudies,KyotoUniversity,Kitashirakawa-oiwake-cho, Saky,Japan 4FacultyofBiology-OrientedScienceandTechnology,KinkiUniversity, Nishimitani,Kinokawa,Wakayam,Japan 5GraduateSchoolofScience,KobeUniversity,1-1Rokkodai,Nada-ku,Kobe65, Japan 6LiveCellSuper-resolutionImagingResearchTeam,RIKENCenterforAdvanced Photonics,2-1Hirosawa,Wako,Saitama35,Japan 7JapanScienceandTechnologyAgency(JST),PRESTO,4-1-8HonchoKawaguchi, Saitam,Japan 8DivisionofCellularDynamics,NationalInstituteforBasicBiology,Nishigonaka 38,Myodaiji,Okaz,Japan Charales,bryophytes,pteridophytes,andsomegymnospermsutilizespermas themalegamete.Duringspermatogenesis,spermmothercellsundergodynamic morphologicaltransformationincludingremovalofthecytoplasm,and formationofmicrotubule-basedstructuressuchastheaxonemeandspline, whosemechanismsremainalmostunknown.Membranetraffickingfulfills exchangeofvariousproteinsandlipidsamongsinglemembrane-bounded organellesineukaryoticcells.RABGTPasesandSNAREproteinsare evolutionarilyconservedkeymachineriesofmembranetrafficking,which regulatetargetingandfusionoftransportvesiclestotargetmembranes.To explorerolesofmembranetraffickinginplantspermatogenesis,wearestudying dynamicsandfunctionsofRABGTPasesandSNAREproteinsduring spermatogenesisinMarchantiapolymorpha.Observationoffluorescentlytagged RABGTPasesandSNAREproteins,aswellasanelectronmicroscopicanalysis, demonstratedthattheunnecessarycytoplasmwasremovedinacellautonomouswayinM.polymorpha,unlikethespermatogenesisinanimals involvingphagocyticremovaloftheexcesscytoplasmbysurroundingSertoli cells.Furthermore,throughasystematicanalysisofRABGTPasesinM. polymorpha,weidentifiedtwoRABGTPases,MpRAB2bandMpRAB23,which werespecificallyexpressedinantheridiophores.MpRAB2bcontainsadomain withsimilaritytoasubunitoftheintraflagellartransport(IFT)complexattheCterminus.MpRAB23isorthologoustoanimalRAB23,whichisconservedin organismsharboringmotileflagellaand/orcilia.Analysesofknockoutmutants revealedthatMpRAB2bandMpRAB23wererequiredfornormalsperm functionsinM.polymorpha.Ourdataindicatethatmembranetraffickingplays criticalrolesinplantspermatogenesis. 45 34.Aproteomicapproachtoidentifyproteinsassociatedwithintercellular spaceformationduringair-chamberdevelopmentinMarchantia polymorpha MiyaMizutani1,KimitsuneIshizaki1,2,YoichiroFukao3,Masayuki Fujiwara4,AkihideMasuda1,RyuichiNishihama1,TakayukiKohchi1 1Grad.Sch.Biostudies,KyotoUniv.,Kyoto,Japan 2Grad.Sch.Sci.,KobeUniv.,Kobe,Japan 3Coll.LifeSci.,RitsumeikanUniv.,Shiga,Japan 4Inst.Adv.Biosciences,KeioUniv.,Yamagata,Japan Manyplanttissueshaveintercellularspaces(ICSs),whichareoftencriticalfor gasexchange.However,themolecularmechanismofICSformationislargely unknown.TheliverwortMarchantiapolymorphadevelopsmultilayeredtissue units,airchambers,onthedorsalsurfaceofthethallus.Theairchamberhasa largeICScontainingphotosyntheticfilamentsdevelopedfromthesub-epidermis, andanairporeisformedatthecenteroftheepidermis.Wehavebeenfocusing onamutantofM.polymorphanopperabo1(nop1),whichshowsimpairedairchamberformation.Air-chamberdevelopmentisinitiatedbyICSformationat theapicalnotchareaofthethallus,andICSformationwasimpairedinnop1.The NOP1geneencodesaplasmamembrane-localizedPlantU-Boxproteinthat showsanE3ubiquitinligaseactivity,butitssubstratesremainunknown.Inthis study,weusedaffinitypurificationandmassspectrometryanalysistoidentify proteinstargetedfordegradationbyNOP1and/oritsassociatedproteins.TheUboxdomainofNOP1wasbiochemicallyandgeneticallyshowntobeessentialfor theubiquitinligaseactivityandICSformation,respectively.Weidentified proteinsthatwereassociatedwithCitrine-taggedwild-typeand/orU-boxdeletedNOP1,butnotCitrineitselfusingafractionenrichedwithmicrosomes andchose30candidateproteinsincludingthoseinvolvedincytoskeletal regulation,cellulosesynthesis-relatedproteins,receptor-likekinases,and membranetrafficking-relatedproteins.Currently,knockoutmutantsofthese genesarebeinggeneratedbytheCRISPR/Cas9system,andsomemutants exhibitedabnormalair-chamberformation.Wewillpresentafunctionalmodel forthesegenesinICSformationofM.polymorpha. 35.Phytohormonemetabolomeinbryophytes“brushesup”an evolutionarylinkbetweenvascularplantsandliverworts LenkaZáveskáDrábková1,PetreI.Dobrev2,VáclavMotyka2 1DepartmentofTaxonomy,InstituteofBotany,CzechAcademyofSciences, Pruhonice,CzechRepublic 2LaboratoryofHormonalRegulationsinPlants,InstituteofExperimental Botany,CzechAcademyofSciences,Prague,CzechRepublic Bryophytesrepresentaverydiversegroupofnon-vascularplantssuchas mosses,liverwortsandhornworts,whichformtheoldestextantlineageofland plants.Asfortheearlydiverginglineageofallothergroupsoflandplants, determinationofendogenousphytohormonemetabolome(hormonome)in bryophytescanprovidesubstantialinformationforunderstandingearlyland plantevolution.Takingadvantageofhighperformanceliquidchromatography electrospraytandem-massspectrometry(HPLC-ESI-MS/MS),weperformeda 46 comprehensivescreenofthirtynaturallyoccurringrepresentativesof bryophytesfortheirphytohormoneprofileswiththeaim(1)tounravelthe occurrenceofdifferentclassesofgrowthandstresshormonesand(2)tospecify potentialrelationsbetweenthehormonomeandphylogeneticpositionof bryophyteswithintheplantkingdom.Thesetofscreenedsamplesincludedsix liverwortsbelongingtothreeorders(Pelliales,Jungermanniales,Porellales)and twenty-fourmosses–representativesofsixorders(Sphagnales,Tetraphidales, Polytrichales,Dicranales,Bryales,Hypnales).Asrevealedforthegrowth hormones,somecommontraitssuchasweakconjugationofbothcytokinins (CKs)andauxins,intensiveproductionofcisZ-typeCKsandstrongoxidative degradationofauxinswerepronouncedinallbryophytes.Alongside,the apparentdifferencesinconjugationand/ordegradationstrategiesbetween liverwortsandmossesmay“brushup”aforgottenevolutionarylinkbetween vascularplantsandliverworts.Ontheotherhand,theprofilesofstress hormonesinbryophytesrespondedmorelikelytochangesinenvironmental conditionsbeingratherassociatedwithplantsurvivalstrategythanwithplant evolution. SupportedbytheCzechScienceFoundation(16-14649S) 36.Beyondgenomics:evolutionaryanalysisofco-expressionnetworks revealsbiasedorganizationofgenemodulesinplants. MarekMutwil,etal. MPIMP,Potsdam,Germany Background:Molecularevolutionarystudiescorrelategenomicandphylogenetic datawithbiochemicalormorphologicalfeaturesoforganisms.However,these featuresarecomposedofdynamicgenemodulesarrangedincomplexgene networks,whichcannotbecapturedbysequence-basedanalyses. Results:Wecombinedgenomic,phylogeneticandgeneexpressiondatatostudy evolutionarypropertiesofgeneco-expressionnetworksofthemoss PhyscomitrellapatensandoftheangiospermsArabidopsisthalianaandrice.To exemplifytheadvantagesofcombininggenomicdatawithgenenetworks,we showthatanancestralcellwallsynthesismodulewasduplicatedindependently inmossesandangiosperms.Genome-widenetworkanalysesrevealedthatgene familiesderivedfromthesameevolutionaryperiodshowapreferencetobe connected,andconversely,youngandoldgenefamiliestendtobedisconnected, indicatingthatsubregionsofthenetworksemergedataspecifictimein evolution.Recentlyduplicatedgenestendtodisplaylowerdistanceinthe networks,suggestingthatatleast10millionyearsareneededforrecent duplicationstoreachexpressiondivergence.Toelucidatewhynewgenefamilies arepreferentiallyconnectedinthenetworks,weshowthatnewgenestendtobe chromosomalneighbors,whichcouldmediatecoordinatedexpression.Finally, newgenestendtobechromosomalneighborswithtransposons,whichtogether withthelocalhoppingbehaviouroftransposons,couldmediatetheobservedcoexpressionofnewgenes. 47 37.AnalysisofprimitiveauxinresponseinaCharophytealga, Klebsormidiumflaccidum KinukaOhtaka1,KoichiHori2,HiroyukiOhta1,2,3,4 1TokyoTech,GradSchBiosci&Biotech,Japan 2TokyoTech,SchLifeSci&Tech,Japan 3JST,CREST,Japan 4TokyoTech,Earth-LifeScienceInstitute,Japan Thecolonizationoflandbyplantswasakeyeventintheevolutionoflife,making themodernterrestrialenvironmenthabitablebysupplyingvariousnutrients andsufficientatmosphericoxygen.Itisgenerallyacceptedthattheancestor(s)of currentterrestrialplantswascloselyrelatedtopresent-daycharophyta. Klebsormidiumflaccidum belongstotheCharophyta,anditsdraftgenomehas beensequencedbyourlabtoelucidateearlytransitionstepofbiologicalsystems fromaquaticalgaetolandplants.Furthermore,wedetectedauxin(indole-3aceticacid,IAA)inK.flaccidumbyhormonomeanalysis.K.flaccidumalsohas someputativegenesinvolvedinauxinresponse(Horietal.,2014).Thusitis estimatedthatthereisprimitiveauxinsignallingpathwayinK.flaccidum.Inthis study,weaimedtoclarifyprimitiveauxinresponsein K.flaccidum. ExogenousIAAsupplyinhibitedgrowthofK.flaccidum.Therefore,weanalyzed celldivisionandcellelongationofK.flaccidum withtheIAAtreatmentin detail.TheresultssuggestedthatIAAaffectedonnotonlycelldivisionbutalso cellelongationinK.flaccidum.Here,wereporttheseresultsandanalysisofRNASeqwithIAAtreatmentinthischarophyticalga. 38.Sex-specificmiRNAsinMarchantiapolymorpha. HalinaPietrykowska1,KajaMilanowska1,JakubDolata1,Przemysław Nuc1,WojciechKarłowski2,ArturJarmołowski1,ZofiaSzweykowskaKulińska1 1DepartmentofGeneExpression,InstituteofMolecularBiologyand Biotechnology,AdamMickiewiczUniversityinPoznan,Poznan,Poland 2DepartmentofComputationalBiology,InstituteofMolecularBiologyand Biotechnology,AdamMickiewiczUniversityinPoznan,Poznan,Poland MicroRNAsareimportantregulatoryelementsofeukaryoticgeneexpression.At leasttenconservedmiRNAfamilieshavebeenreportedtoplayakeyroleduring flowerdevelopmentinthehigherplants.Toinvestigatewhethersex-specific miRNAsarepresentintheMarchantiapolymorpha,weappliedthehighthroughputsequencingtechniqueandsequencedsRNAsfromfourdifferent tissues:vegetativefemalethalli,archegoniophores,vegetativemalethalliand antheridiophores.13familiesofconservativemiRNAswereidentified.Among themarealsoflower-specificmiRNAs:miR172,miR529/156,miR160, miR166/165,miR319/159,miR167,miR169,miR390,miR399.Thepresenceof theseselectedconservativemiRNAswasverifiedbynorthernhybridization.The levelofmaturemiR160andmiR166aisstronglyhigherinantheridiophoresand archegoniophoresascomparedtovegetativethalli,whereasthelevelof miR529a,b,cinantheridiophoresandarchegoniophoresismuchlower. Inourpreviousstudiesweidentified42novelmiRNAfamiliesintheliverwort Pelliaendiviifolia.AnalysisofM.polymorphasRNAsequencingrevealedthe 48 presenceof18miRNAfamilieswhichwerepreviouslydescribedasPelliaspecific.miR8190,miR8170,miR8184werehighlyexpressedin archegoniophoresandantheridiophores.miR8185andmiR8166werepresent onlyinantheridiophores.AdditionallymiR8163andmiR8181werepresentat thelowerlevelinthereproductiveorgansthanvegetativethalli.Using degradomesequencingtechnique,newtargetsforthesemiRNAswereidentified. Moreover,usingAgrobacterium-mediatedtransformationweobtainedmutants overexpressingmiR8185,miR8170andmiR8163.Analysesofthesemutants withrespecttosexorgandevelopmentwillbediscussed.Thisresearchis supportedbyNationalScienceCentregrant-UMO-2014/13/N/NZ3/00321and KNOWRNAResearchCentreinPoznań-(No.01/KNOW2/2014) 39.Spatialratiometricanalysisofgeneexpressionforquantificationof promoteractivityinMarchantiapolymorphagemmae BernardoPollak,JimHaseloff DepartmentofPlantSciences,UniversityofCambridge,Cambridge,United Kingdom Accurateandconsistentmethodsformeasuringgeneexpressionare fundamentaltostudyandcharacterisegeneticelementsusedforectopic expression.Inparticular,developmentofrobustmeasurestodescribegenetic elementsisessentialforthedesignandmodellingofsyntheticgenenetworks.In eukaryoticmulticellularsystems,geneactivitycaneitherberestrictedspatially toparticulartissuesorhaveubiquitousexpression,atraitwhichisinpart controlledbythepromoterwhichdrivesthatgene.Furthermore,transcriptional activitycanbeaffectedbythegeneticcontextinwhichthecircuitislocatedas wellasbyextrinsicfactorssuchasmetabolicstate.Herewepresentamethodfor studyingpromoteractivitiesinplantsthroughratiometricnormalisationwhich yieldsmeasuresforspatialexpression.Weusemeasuredpromoteractivityover areferencepromoterinvivothroughdual-nuclearfluorescentprotein expressioninMarchantiapolymorphagemmaewithfluorescentlabelled membranes.Spatialratiometricanalysisallowsextrudingmeasuresforintrinsic propertiesofpromotersandmaptheiractivitiestocellsandtissues.Thisenables comparingpromotersinarangeofdifferentcontexts,thereforeimprovingour descriptionoftissue-specificpromoteractivityinmulticellularsystems. 40.PlaNet2–toolstostudyevolutionarypropertiesofgeneco-expression networks. SebastianProost,MarekMutwil MaxPlanckInstituteofMolecularPlantPhysiology,Potsdam-Golm,Germany Background:Duetotherecentdecreaseinsequencingcosts,RNA-seqhas rapidlygainedpopularityasatooltomeasuretheexpressionlevelsofthenearcompletesetoftranscriptsinvariousplantorganisms.Expressiondatafor variousconditionshasbecomeavailablefornumerousplantspecies,spanninga broadphylogeneticrange;fromsinglecellularalgaeover(spike-)mossesand ferns,tonumeroushigherplants,includingcrops.Whilethisprovidesawealthof informationandanunprecedentedopportunitytostudygenefunctionand 49 evolutionofbiologicalpathways,thetoolstodosoinabroadevolutionary contextarecurrentlylacking. Results:Wearedevelopingaplatformthatallowsresearchersworldwideto browseco-expressionnetworksforovertenplantspeciesthroughanintuitive webinterface.Byfurtherintegratingfunctional,comparativeandphylogenetic data,theevolutionofgenemodulescanbestudiedandhelpexplainwhenand hownovelbiologicalfeaturesemerged. Varioussearchfunctionsallowuserstoretrievegenes,familiesandgene modulesofinterestandinteractivelyexplorethedatawithpowerful visualizations.Theinitialapplicationofourmethodshowedhowacellwall synthesisgenemoduleemergedintheancestoroflandplants,andbecamemore complexthroughindependentduplicationsindifferentlineages. Conclusion:Ournewplatformopensupahostofnewtoolstostudycoexpressionnetworksinaphylogeneticandevolutionarycontext,inferfunction forunknowngenes,transferknowledgefrommodeltonon-modelspecies,and prioritizegenesforfurtheranalysis.Byprovidingauser-friendlyweb-interface, ourplatformwilloffernon-bioinformaticiansanaccess-pointtoperformthese comparative,evolutionaryanalyses. 41.Symbiosissignallinginearlylandplants GuruRadhakrishnan1,Pierre-MarcDelaux1,2,AislingCooke1,Jitender Cheema1,GilesOldroyd1 1JohnInnesCentre,Norwich,UnitedKingdom 2LRSVLaboratoiredeRecherchesenSciencesVégétales,Toulouse,France Bryophytes,theearliestknownextantlandplants,arealsooneofthemanyplant speciesthatareabletohostArbuscularMycorrhizal(AM)fungi.Occurrenceof AMsymbiosisinbryophytesisextensiveinhornwortsandliverwortsbutis absentinallstudiedmosses. Thus,thewell-studiedmodelmossPhyscomitrellapatenscannotbeusedfor studyingAMsymbiosisinbryophytes.Thesequencingoftheliverwort Marchantiapolymorphaandthemoleculartoolsthathavebeenrecently developedforitsuseasamodelsystemhaveenabledresearcherstostudy variousplantfunctionsusingthisplant. ButasM.polymorphadoesnotformAMassociations,wecouldnotadoptM. polymorphaasamodeltostudyLiverwort-AMsymbiosis.Toovercomethis limitation,wesequencedthegenomeofarelatedspeciesthathaspreviously beenshowntoformAMsymbiosis,Marchantiapaleacea,tolookforknown symbiosissignallinggenes. Throughphylogenetics,wefoundthatformostgenesinvolvedinthesymbiosis signallingpathwayorthologsexistbothinM.polymorphaandM.paleacea.Afew genesdidnothaveanydirectorthologsinM.polymorphabutdidsoinM. paleacea.ThelossofthesegenescouldexplainwhyM.polymorphadoesnot formAMsymbiosis,whileM.paleaceadoes.AlthoughAMsymbiosisoccursin differenttissuesinbryophytescomparedtohigherplants,thepresenceof orthologousgenesoftheSYMpathwayseemstosuggestthatthesegenesmight functioninsimilarwaysacrossallplants. 50 42.EvolutionofEXO70subunitofexocystcomplexanditsrolein morphogenesisofPhyscomitrellapatens AnamikaRawat1,2,LucieBrejšková1,2,MichalHála1,2,Fatima Cvrčková1,ViktorŽárský1,2 1LaboratoryofCellMorphogenesis,DepartmentofExperimentalPlantBiology, FacultyofScience,Vini?ná5,CharlesUniversity,Prague,CzechRepublic 2InstituteofExperimentalBotany,AcademyofSciencesoftheCzechRepublic, Prague,CzechRepublic Exocystisanevolutionaryconservedoctamericproteincomplex,importantfor targetedsecretioninyeast,mammalsandalsoplants.Oneofitssubunit,EXO70, encodedbysinglecopygeneinyeastandmammals,hasnumberofparalogsin plants.PhylogeneticstudyofEXO70sofselectedlandplantsshowedallEXO70s toclustertogetherintothreebasicancestralclasses,whichlaterdiversified duringtheevolutionaryprocessgivingrisetomassiverangeofparalogsinland plants-indicatingtheimportanceofEXO70sinevolutionforplant terrestrialization.PreviousEXO70’sresearchillustratestheirimportancein differentaspectsofplantcellmorphogenesis.Herewefocustoexploretherole ofoneofthe13EXO70sinP.patens. Theknock-outmutantinthisEXO70genewasfoundtohavecompromised growth,alteredprotonemalmorphology,withonlychloronemaandsome differentiatingcaulonema-likefilamentsinnormalgrowthconditions.The divisionplanesduringbudsformationalsodiffered,formingrelativelynormal butstuntedgametophores,whichdonotformsporophytes. ThesephenotypicdeviationsdemonstratetheinvolvementofmossEXO70in regulatingthepolarity,celldifferentiationandmorphogenesisinmodelearly landplant. Acknowledgement:ThisworkissupportedbytheGACR/CSFproject15-14886S andpartofincomesoftheteamarecoveredbytheMSMTCRprojectLO1417. 43.EvolutionofClassIHD-Ziptranscriptionfactorsinstreptophytes FacundoRomani,JavierEdgardoMoreno InstitutodeAgrobiotecnologíadelLitoral,SantaFe,Argentina Plantsaresessileorganismsthathaveevolvedadaptationmechanismsto environmentalchangesduringevolution.Transcriptionfactors(TF)arekey proteinsarticulatingenvironmentperceptionandcellularresponses.The combinationofahomeodomainwithaleucinezippermotif(HD-Zip)isexclusive tostreptophytesandhaveledtotheappearanceofawidelydistributedTF familyinplants[1].WefoundthatclassIHD-Zipsareimplicatedinmodulating hormonalsignalingduringdroughtasacommonmechanisminmostofthe members[2],thatinArabidopsisare17.Here,wepresentevidencesupporting thestudycaseofclassIHD-Ziptotesttheevolutionarychangesassociatedwith thetransitionofplantstoland.SimilartootherHD-Zipclasses,weidentified putativeclassIHD-Zipexpressedgenespresentincharophyceangreenalgae withasinglecommonancestorinlandplants[3].Phylogeneticanalysesare consistentwithlandplantdiversificationduringevolution.Wefoundevidence showingdifferentgeneduplicationeventsalongspecificplantdivisionsthathave 51 givenrisetothecurrentcladesofclassIHD-Zipinangiospermslikelydueto neofunctionalization.Duplicationeventsinmossesappearedtobeunique.In addition,weidentifyahighlyconservedC-terminalregioninmossesthatcould befunctionallyrelevant.Finally,weidentifiedacoupleofHD-ZipIgeneloss events,relatedtomonocotsplantsthathavemovedbacktoaquatic environment. [1]ArielFDetal.2007.TrendsPlantSci.12:419-426 [2]RomaniFetal.2016.Plantsci.doi:10.1016/j.plantsci.2016.03.004 [3]ZalewskiCSetal.2013.Mol.Biol.Evol.30(10):2347–2365 44.Evolutionaryanalysesonecologicaldifferentiationofacosmopolitan freshwateralgaCharabraunii(Charales,Streptophyta) HidetoshiSakayama1,DasiukeMiyata1,SyouKato2,TomoakiNushiyama3 1KobeUniversity,Kobe,Japan 2WetlandsInternationalJapan,Tokyo,Jamaica 3KanazawaUniversity,Kanazawa,Japan Ecologicaldifferentiationandreproductiveisolationaregenerallythoughttobe mutuallyassociated,ininitialstagesofspeciation.Aquaticplantsoftenshow considerablediversification,asaresultofadaptationtoawiderangeof ecologicalenvironments.Toelucidatethemolecularbasisofspeciation,we focusedonthealgalspeciesCharabrauniithathasaworldwidedistributionand growsinawiderangeofdiversehabitats.Recently,wecarriedoutgenetic analysesbasedonchloroplastandnuclearDNAmarkersusingC.brauniisamples collectedfromvarioushabitatsandlocalitiesinJapan.Ouranalyses demonstratedthatthesamplesexaminedexhibitedcompletehabitat-based dimorphismandwereessentiallycomposedoftwoecologicallydifferentiated types(ricefield-typeandlake/pond-type),althoughtheywerenot reproductivelyisolated.Thedimorphismisheritableandcanbedistinguishedin laboratorycultureconditions.Sincewerecentlysequencedthewholegenome sequencesoftwostrainsofC.braunii,representingthetwoecotypes,and revealedalargenumberofSNPsbetweenthem,weareplanningtoconduct genotyping-by-sequencing(suchasRADsequencing)andQTLmapping approachesusingalargenumberofindividualscollectedfromdifferent ecologicalniches,includingricefieldsandlakes/ponds,throughouttheworld,to identifyecologicallyimportantphenotypicdifferencesandgenesaffectedby naturalselection. 45.TranscriptomeanalysisofPhyscomitrellapatensegg,insightsof evolutionofeggdevelopmentandplantreproduction VictoriaSanchez-Vera1,RafaelMuñoz-Viana1,AnjaSchmidt2,Katarina Landberg1,MattiasThelander1,UeliGrossniklaus2,LarsHennig1,Eva Sundberg1 1DepartmentofPlantBiology,UppsalaBioCenter,SwedishUniversityof AgriculturalSciencesandLinneanCenterforPlantBiology,SE-75007,Uppsala, Sweden 2DepartmentofPlantandMicrobialBiology,UniversityofZürich,Zollikerstrasse 107,CH-8008,Zurich,Switzerland 52 Eggdevelopmentinearlylandplantshasbeenstudiedsincethesixtiesby classicalexperimentalapproacheslikehistology,morepreciselytransmission electronmicroscopy(TEM),andbiochemicalassays(1),(2),(3),(4),(5). Nowadays,newtechniquesappliedtosinglecellanalysisarechangingourway ofstudyingcellularprocesses.Byapplyinglaser-assistedmicro-dissection followedbyRNA-sequencingwehavebeenabletoanalyzethePhyscomitrella patenseggtranscriptomeattwodevelopmentalstages.Comparisonofthesedata totheeggtranscriptomeofthelatedivergingseedplantArabidopsis(6)has allowedustoidentifyputativeevolutionaryconservedgenesaswellasgenes apparentlyspecificforP.patenseggdevelopment.WealsoperformedTEM analysisoftheP.patenseggatdifferentdevelopmentalstagesthatallowedusto confirmsomeoftheprocessessuggestedbythetranscriptomedataset. 1.LalM.andBell.P.R.(1977).AnnalsofBotany,41,127-131. 2.LalM.etal.(1982).NewPhytologist,92(3),441-452. 3.ZinsmeisterandCarothers.(1974).AmericanjournalofBotany,61,499-512. 4.DiersL.(1966).JournalofCellBiology,28,527-543. 5.BarbierC.(1972).ComptesrendusdesSeancesdelÁcademiedesSciences, SerieD,274,3222-3225. 6.WuestS.E.etal.(2010).CurrentBiology,20,506-512. 46.MarchantiapolymorphaEnhancertraplines SusanaSauret-Gueto,BernardoPollak,LindaSilvestri,BethForsythe,Jim Haseloff DepartmentofPlantSciences,UniversityofCambridge,DowningStreet,CB2 3EA,Cambridge,UnitedKingdom MarchantiapolymorphaisamajornewchassisforSyntheticBiologyduetoits relativelysimplestructure,prostrategrowth,cellulardevelopmentalprocesses exposedtothesurface,easeofinvitropropagation,easeofgeneticmanipulation, haploidgenomeandsimplegeneticarchitecture.AttheOpenPlantLabin Cambridge,weareestablishingworkflowsforhighthroughputtransformation andscreeningofMarchantialines.WeaimatquantitativelytestingDNAparts andgeneticcircuitsfortheengineeringofMarchantia.Importantly,totarget geneexpressioninspecificcelltypesweneedtomapcelllineagesduring gemmaedevelopment.Inthisregard,wearegeneratingGAL4enhancertrap (ET)lines,whichcontainaconstructcomprisingaGAL4-VP16transcriptional activatorandaVenusgene(withanuclearlocalizationsequence)underthe controlofGAL4upstreamactivationsequences(UAS).Theconstructisrandomly locatedinthegenome,andreportstheactivityofendogenousregulatory sequencesinthevicinityoftheconstructinsertion.Moreover,theETlines containaconstructtomarkcelloutlinesandcanbecombinedwithconstructs forratiometricanalysisofgeneexpression.EachETlineexpressionpatterncan bevisualizedbyimagingVenusinspaceandtimethroughoutgemmae development.Someoftheselineswilltagspecificcelltypesandreveal developmentaltransitions,andinaddition,canlaterbeusedtogenetically manipulateparticularcelltypes. 53 47.ThePhyscomitrellapatensSHI2proteinmodulatestheexpressionof genesinvolvedinhormonalhomeostasisandcellwallmodificationwhen transientlyinduced EricPedersen2,StefanSchwarzbach1,UlfLagercrantz2,Mattias Thelander1,KatarinaLandberg1,EvaSundberg1 1DepartmentofPlantBiology,UppsalaBioCenter,LinneanCentreofPlant Biology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden 2PlantEcologyandEvolution,EvolutionaryBiologyCentre,UppsalaUniversity, Uppsala,Sweden MembersoftheplantspecificSHI/STYtranscriptionfactorfamilyhavebeen showntoactivateauxinbiosynthesisinbothArabidopsisandthemoss Physcomitrellapatens,suggestinganevolutionaryconservedfunctionofthese proteins.AlthoughdownstreamtargetsofSTY1inArabidopsishavebeen identified,thegenetargetsofthePpSHI'shavenotpreviouslybeenstudied.Here wehaveutilizedaninduciblesystemandtranscriptomesequencingtoidentify putativedirectorindirecttargetsofPpSHI2.Wecoulddemonstratethatmajor transcriptionalchangesareinduceduponPpSHI2activation,andthatalarge numberofauxinbiosynthesisgenesbecomeactivatedinprotonemaltissues.In addition,thetranscriptionofgenesinvolvedintheregulationofauxintransport, cytokininandabscisicacidsynthesisandsignalling,aswellasprocessesrelated tocellsurvival,cellwallmodificationsandcelldivisionareaffectedin protonemaand/orgametophores.ThissuggeststhatPpSHI2activityis importantforgrowthanddifferentiationduringthedevelopmentofthehaploid gametophytestage. 48.TakakiaandHaplomitrium,asthemodelforstudyingtheearliest evolutionoflandplants MasakiShimamura1,TomoakiNishiyama2,KeikoSakakibara3 1HiroshimaUniversity,Higashi-Hiroshima,Japan 2KanazawaUniversity,Kanazawa,Japan 3RikkyoUniversity,Tokyo,Japan ThegeneraTakakiaandHaplomitriumrepresenttheearliestlineageswithinthe mossesandtheliverworts,respectively.Thesegenerahavebeenattracting researchersduetoenigmaticmorphologiessuchas,(1)havingthebothleafyand leaflessrhizomalshoots,(2)thearchegoniaandtheantheridiawithout protectivestructure,and(3)theabsenceofrhizoids.Suchunusualcharacters hadmadeitdifficulttoclassifytheseenigmatictaxa.Informerclassification system,Takakiahadbeenrecognizedasaprimitiveliverwortcloselyrelated Haplomitrium,becauseofthegametophyticmorphologicalsimilarities.We hypothesizethatallorsomeofthesecharactersmightrepresentearliestfeature oflandplantsandTakakiaandHaplomitriummightbe"livingfossils"ofearly landplants.Actually,thebasicbodyplanconsistingofthepositiveandthe negativegeotropicshootsseemstobesimilartothoseoffossilizedSilurianDevonianplants.Thefeatureofleaflessrhizomalshootscoveredwith mycorrhizalfungiisalsosimilartothoseoftherootlessSilurian-Devonian plants.ThesimilarityinsporophytemorphologybetweenlivingTakakiaanda 54 Silurian-Devonianplant,Tortilicaulishasbeenalsosuggested.StudiesinTakakia andHaplomitriumshouldfillthelargemorphologicalgapbetweenthewellestablishedmodelsofaleafymoss(Physcomitrella)andathalloidliverwort (Marchantia)andshedlightontheearliestevolutionofthelandplantbodyplan. Wewillsummarizethetaxonomy,morphologyandevolutionarybiologyof TakakiaandHaplomitriumandintroduceourongoinggenomeproject. 49.Antheridiaandarchegoniaconnectedgeneexpressioninsimple thalloidliverwortPelliaendiviifoliaspB IzabelaSierocka1,SylwiaAlaba2,HalinaPietrykowska1,PatrycjaPlewka1, WojciechKarlowski2,ArturJarmolowski1,ZofiaSzweykowska-Kulinska1, 2 1DeapartmentofGeneExpression,InstituteofMolecularBiologyand Biotechnology,FacultyofBiology,AdamMickiewiczUniversityinPoznan, Poznan,Poland 2DepartmentofComputationalBiology,InstituteofMolecularBiologyand Biotechnology,FacultyofBiology,AdamMickiewiczUniversityinPoznan, Poznan,Poland WehavechosenPelliaendiviifoliaspeciesB,adioeciousliverwortfromclass Jungermaniopsida,toprofilethedifferencesingeneexpressionbyRNA-seq approachbetweenthemaleandfemalethalliproducingornotproducingsex organs.72DEGswereselectedwiththehighestdifferencesinexpression.Outof tengenesup-regulatedinsperm-producingmalethalli,eightarealsoexpressed inthevegetativemalethalli;outof62up-regulatedgenesinarchegoniaproducingfemalethalli,46arealsoexpressedinthevegetativefemalethalli. Additionally,thepreviouslyidentifiedmale-orfemale-specificallyexpressed genesbyRDA-cDNAtechniquewerealsoDEGsintheRNA-seqdata.Tocheck whethertheexpressionofselectedgenesisrestrictedtothe antheridia/archegoniabearingpartsofthalliweisolatedthesexorgans separatelyfromthevegetativepartsandusedforRT-qPCRanalysis.Onlyten geneswerevalidatedtobeenrichedinarchegoniaandtwoinantheridiaof femaleandmalethalli,respectively.Togettheinformationabouttheregulatory motifswithinthepromotersequencesofidentifiedgenesgenomewalking techniquewasusedforseveralcases.Interestingly,oftenencounteredelements commontoseveralpromotersoffemale-specificallyexpressedgenesarethe lightresponsiveelementsandthemotifsfoundintheplantstorageprotein genes. Ourstudiesprovidepossibilitytolearnaboutthegeneexpressionregulation withintherepresentativeofgenusPellia,whichisrecognizedastheoneofthe mostbasallineageofsimplethalloidliverworts.Theworkwassupportedbythe FoundationforPolishScience,grantsno.POMOST/2012-5/7andMistrz3/2014. 55 50.Towardstheoriginofauxintransportinearlylandplantevolution; fromcharophytestobryophytes RomanSkokan1,2,EvaMedvecká3,PetrSkůpa2,JiříFriml4,JanPetrášek1, etal. 1DepartmentofExperimentalPlantBiology,FacultyofScience,Charles University,Vini?ná5,12844,Prague,CzechRepublic 2InstituteofExperimentalBotany,ASCR,Rozvojová263,16502,Prague,Czech Republic 3MendelCentreforGenomicsandProteomicsofPlantsSystems,CEITECMU- CentralEuropeanInstituteofTechnology,MasarykUniversity,62500,Brno, CzechRepublic 4InstituteofScienceandTechnologyAustria(ISTAustria),3400, Klosterneuburg,Austria Planthormoneauxinactsinaconcentration-dependentmannertoregulate manyaspectsofplantdevelopment.Althoughthereisstilllittleknownaboutthe originsofauxinbiosynthesis,transportandsignaling,recentgenomicdata indicateitaroseearlyinplantevolution,insimplefreshwatergreenalgae,the charophytes.Asshownhere,auxintransportassaysincharophyticalga Spirogyrasp.providedevidencefortheexistenceofcarrier-mediatedauxin transport,whichislesssensitivetophytotropins(NPA).Klebsormidium flaccidumhomologofPIN-FORMEDgene(KfPIN)codingforauxineffluxcarrier wasclonedanditsexpressionintobaccoBY-2cellsrevealeditsauxintransportingactivitywithdecreasedsensitivitytoNPA.GFP-taggedversionsof KfPINshowedplasmamembranelocalizationintobaccoBY-2cells,suggesting itspreferentialroleincelltocellauxintransport.Ourresearchisnowfocusedon theexpressionofKfPINincharophyticmodels,suchasClosteriumandChara,as wellascloningofothercharophytichomologsofauxineffluxandinfluxcarriers todemonstratetheirlocalizationandfunctionintheseorganisms.Inparallel,we alsoaimtoinvestigatesomeauxincarrierhomologsofarecentlyintroduced modelliverwortMarchantiapolymorpha.Togetherthesedatamayhelpus understandtowhatextenttheauxinhomeostaticmechanismsarecrucialforthe proliferationoffreshwateralgaeandhowthismechanismwaselaboratedand changedduringthetransitiontoland. SupportedbytheMinistryofEducation,YouthandSportsofCzechRepublic, projectMSM/LO1417. 51.UVradiationinearlylandplants:ThephotoreceptorofUV-Bradiation (UVR8)intheliverwortMarchantiapolymorpha SorianoGonzalo1,Martínez-AbaigarJavier1,Núñez-OliveraEncarnación1, JenkinsGarethI.2 1FacultyofScienceandTechnology,UniversidaddeLaRioja,MadredeDios53, 26006Logroño(LaRioja),Spain,Logroño,Spain 2InstituteofMolecular,CellandSystemsBiology,CollegeofMedical,Veterinary andLifeSciences,UniversityofGlasgow,GlasgowG128QQ,UK,Glasgow,United Kingdom ThestudyoftheUV-Bphotoreceptorprotein(UVR8)inbryophyteshasa considerableevolutionaryimportance,becausetheseorganismswereprobably 56 thefirsttrueplantscolonizinglandand,consequently,hadtocopewithhigher UVlevelsthanthoseexperiencedintheprimordialaquaticsystems.In bryophytes,UVR8hasonlybeenmentionedinthemodelmossPhyscomitrella patens(1),butnodataareavailableforthetwootherevolutionarylineagesof bryophytes(liverwortsandhornworts). OurresearchisfocusedonthestudyofthepresenceandfunctionalityofUVR8 photoreceptorinthemodelliverwortMarchantiapolymorpha.Wehavefirst demonstratedthataUVR8-likenucleotidesequenceispresentinthisliverwort. Then,wehavecheckedifthereisanychangeinthestructuralandphotoreceptor aminoacidsofUVR8proteinincomparisonwithotherspecies,andhave evaluateditsfunctionalitytakingintoaccountitsintracellularlocationandthe mono-anddimerizationbehaviorinresponsetodifferentradiationconditions, usingtobaccoplantstransfection.WecanconcludethatUVR8inM.polymorpha hassomestructuralandfunctionalpeculiaritiesincomparisonwithotherplants. 1.Wolfetal.,PlantPhysiology153:1123-1134(2010) 52.Functionalgenomicsofplantinnateimmunityinthemoss Physcomitrellapatens SabrinaStanimirovic,MortenPetersen,JohnMundy SectionforFunctionalgenomics,DepartmentofBiology,Universityof Copenhagen,Copenhagen,Denmark Plantsandanimalshaveinnateimmunesystemswithsurface-localized,pattern recognitionreceptors(PRRs)thatrespondpathogen-associatedmolecular patterns(PAMPs).MAPkinasecascadesconsistingofaMAPkinasekinasekinase (MAPKKK),aMAPkinasekinase(MAPKK)andaMAPkinase(MAPK)transmit andamplifysignalsfromactivatedPRRstothenucleus. ThegenomeofthehigherplantArabidopsisthalianaencodes20MAPK,4of which(AtMAPK3/4/6/11)areinvolvedinsignalinguponPRRactivation.Several oftheseA.thalianaMAPKsarealsoimplicatedinabioticstressresponsesandin developmentalprocesses.Inapparentcontrast,Physcomitrellapatenshasonly8 MAPKswhichmayrepresenta‘basal’setofplantcascades.Wearetherefore usingthismossasacomparativegenomicmodeltounderstandtheevolution andregulationofinnateimmunityinplants.P.patensissusceptibleto pathogenicfungi,oomycetesandbacteria,whichactivatemossdefenses includingtheexpressionofdefenserelatedgenes.However,littleisknownabout howP.patensperceivespathogensandactivatesresponses,andmossPRRsor MAPKshavenotbeenanalyzed.Wehavenowidentified2MAPKsandother componentsofaP.patenscascademediatingimmunityfromPAMPreceptorsto transcriptionaltargetgenesrequiredfordefense.Inaddition,wehavemadeand characterizedknockoutmutantsof3otherMAPKgenes(RAK1,MAPK3and MAPK5)andanalyzingtheirphenotypesandputativefunctionsinresponseto variousstressors. 57 53.Receptor-likekinasesasancestralregulatorsofcellelongationand morphology SusannaStreubel,LiamDolan,SuviHonkanen DepartmentofPlantSciences,UniversityofOxford,Oxford,UnitedKingdom Afeaturethatclearlydistinguishesplantsfromanimalsisarigidcellwall,the maincomponentofwhichiscellulose.Amongstothers,itenablestheformation ofvariousfunctionallyshapedorgans.Thesearearesultofcelldivision, specificationandcellexpansion,whichgoalongwithconstantcellwall restructuring.Itisaprocessthatyethadtobecontrolledcarefullyintheearliest existingplantsandwhichthereforeinvolvesproteinsthatarehighlyconserved. AfamilyofsucharetheCrRLK1-likeproteins.Infloweringplants,theycontrol variousdevelopmentalprocessesincludingcellelongation.However,the questionabouttheirfunctionalmeaningsintheancestralembryophyteshadnot yetbeenaddressed.Concludingfrommicroscopicphenotypicstudiesand analysisofgeneexpressionpatterns,afirstlightcouldbeshedonthisopen question.StudyingtheliverwortMarchantiapolymorpha,wefoundthatthe CrRLK1-likeTHESEUSandtheRLCKPTIregulatemorphologyandelongationof theunicellularrhizoids,inearlydevelopment.Strikingly,theiroverallexpression indicatesabroaderdevelopmentalmeaningcomparedtothefunctionallyand locallyspecifiedrolesoftheircloserelativesinthefloweringplantArabidopsis thaliana.Thisfirstcharacterisation,therefore,promisesgreatpotentialfor uncoveringtheevolutionofanimportantproteinfamily,theReceptor-like kinases.Whatismore,itallowsustoworkouthowgeneticnetworkshave developedinthecourseoflandplantevolution,usingMarchantiapolymorphaas apowerfulgeneticmodel. 54.FunctionalAnalysisoftheGibberellinSignalingModuleinthe LiverwortMarchantiapolymorpha RuiSun,KeisukeInoue,RyunosukeKusunoki,RyuichiNishihama,Shohei Yamaoka,TakayukiKohchi GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan Theterpenephytohormonegibberellins(GAs)andtheirchemicalhomologs participatebroadaspectsofplantgrowthanddevelopment.Inangiosperms,GA regulatesgeneexpressionbybindingtothereceptorGIBBERELLININSENSITIVE DWARF1(GID1),whichinteractswithandtriggersthedegradationoftheDELLA repressor,furtherreleasingdownstreamgeneexpression.Previouslythe bioactiveGAspeciesandthesignalingmodulewerefoundinlycophytesand ferns,butnotinthemossPhyscomitrellapatens,suggestingthatthefunctional pathwaywasassembledafterthedivergenceofvascularplants(Hiranoetal., 2007;Marshalletal.,2003;Yasumuraetal.,2007).However,thisworkingmodel hasnotbeentestedwithothernon-vascularspecies.Herewefocusonthe liverwortMarchantiapolymorpha,tryingtoprovideadditionalhintsforthe evolutionofGAsignalinginearlylandplants.EightGID1-likeproteins (MpGID1Ls)andoneDELLAhomologwereidentifiedfromMarchantiagenome, andphylogeneticanalysessuggestedanearlydivergenceofbothgenes.We testedtheprotein-proteininteractionsbetweenMpDELLAandMpGID1Ls,inthe presenceorabsenceofGAspecies.Geneticanalyseswerealsocarriedoutfor 58 MpDELLA,givingcluesforitsancientfunctions.Additionally,treatmentwiththe GAbiosynthesisinhibitoruniconazoleaffectedthegrowthofyoungMarchantia thallus,suggestingapossiblebiologicalfunctionforterpenemetabolites. 55.Thesingle-copyauxinreceptorgeneMpTIR1playspivotalrolesin developmentoftheliverwortMarchantiapolymorpha HidemasaSuzuki,HirotakaKato,ShoheiYamaoka,RyuichiNishihama, TakayukiKohchi Grad.Sch.Biostudies.,KyotoUniv.,Kyoto,Japan Planthormoneauxinplayspleiotropicrolesthroughoutthelifecycleofland plants.RecentstudiesinArabidopsisthalianahaverevealedthatauxinbindsto theF-boxproteinsTIR1/AFBs,whichinturntargetthetranscriptional repressorsAUX/IAAsfordegradation,andthusregulatestheactivityoftheARF transcriptionfactors.TheliverwortMarchantiapolymorphahasasimplesetof thosegenesinitsgenome.Inthisstudy,weinvestigatedtheroleofMpTIR1,a singlehomologofArabidopsisTIR1,inplantdevelopmentofM.polymorpha.By bacterialexpressionandsubsequentpull-downassay,weshowedthatMpTIR1 interactswithMpIAA,whichisalsoasinglehomologofArabidopsisAUX/IAAin M.polymorpha,inanauxin-dependentmanner.OverexpressionofMpTIR1 causedhypersensitivitytoexogenousauxin,whileknockoutofMpTIR1 conferredresistancetoauxin.Promoter-GUSreporteranalysissuggeststhat MpTIR1isexpressedinvarioustissuesofM.polymorpha,includingsporelings, thalli,gemmacups,archegoniophores,antheridiophores,anddeveloping sporophytes.TheMpTIR1knockoutplantsshowedcellmass-likeplantbody withnoobvioustissuedifferentiation.Byusinganinducedknockoutsystemof M.polymoropha,wealsoshowedthatknockoutofMpTIR1intheimmature plantscausedseveredefectsinthedevelopmentofthallusandgemmacup.Our findingssuggestthatMpTIR1functionsasanauxinreceptortopositively regulateauxinsignaling,andplayspivotalrolesinplantdevelopmentand differentiationofM.polymorpha. 56.RNAprocessinginplastidsandmitochondriawithalimitednumberof pentatricopeptiderepeat(PPR)proteinsinMarchantiapolymorpha MizukiTakenaka1,MatthiasBurger1,ShoheiYamaoka2,YorikoMatsuda2, KatsuyukiT.Yamato3,KimitsuneIshizaki4,TakayukiKohchi2 1Mol.Bot.Univ.Ulm,Ulm,Germany 2Grad.Sch.Biostudies,KyotoUniv.,Kyoto,Japan 3Dep.Biotech.Sci.KinkiUniv.,Kinokawa,Japan 4Grad.Sch.Sci.Sci.,KobeUniv.,Kobe,Japan ComparisonofMarchantiaorganellegenomesequenceswithotherplantspecies revealedthatthemitochondrialandchloroplastgenomesofMarchantiaencode moregenesthanmostfloweringplantsandthattheorganellargenome structuresareconservedinearlyterrestrialplants. Invascularplantorganelles,PPR(pentatricopeptiderepeat)proteinsplayakey roleinvariousRNAprocessingstepsincludingRNAstabilization,transcript activation,intronsplicing,5’and3’processing,RNAeditingandtranslation initiationbysequencespecificbindingtomRNAs.InMarchantia,74genescode 59 forPPRproteins.ThisnumberofPPRgenesismuchsmallerthanthosefoundin themossPhyscomitrella(114),inPicea(1717)andinArabidopsis(496).The conservedstructureoftheorganellargenomesbetweenMarchantiaandother terrestrialplantssuggeststhatthelimitednumberofPPRproteindiversityin Marchantiamustsufficetomanageproper,i.e.analogousRNAprocessingin mitochondriaandchloroplasts.WehereanalyzethecomplementofPPRproteins inMarchantiawithafocusonfunctionalandevolutionaryaspects.To understandthefunctionofeachPPRgeneinMarchantia,weinitiatedthe constructionofCRISPR/CAS9mutantlinesforallPPRgenesinMarchantia polymorpha.Wewillpresentanddiscusstheestablishmentandphenotypic analysisofseveraloftheselinesmutatedinindividualMarchantiaPPRgenes. 57.Evo-devoofplantcelldifferentiation HanTang1,TijsKetelaar1,JoopVermeer1,2,MarcelJanson1 1LaboratoryofCellBiology,WageningenUniversity,Wageningen,Netherlands 2PlantCellBiology,DepartmentofPlantandMicrobialBiology,Universityof Zürich,Zürich,Switzerland Celldifferentiationandtheestablishmentofcellpolarityareatthebasisoforgan formationinplants.Differentiatedcellsmaintaintheirabilitytore-differentiate intoothercelltypesinresponsetochemicalormechanicalstimuli.Although reorganizationofthecytoskeletonisahallmarkofcelldifferentiation,functional linksbetweenthecytoskeletonandcellpolarityarelittleunderstood.Inthis studyweaimtocorrelatechangesincytoskeletalorganization,cellpolarityand shapeinregeneratingcellsofthelowerplantPhyscomitrellapatens.Wewill takeadvantageofthesinglecelllayeredgeometryofmossleafsandthehigh efficiencyofhomologousrecombinationtovisualizechangesincellular organizationindetail.Tostudytheorderofsequentialeventsduring differentiationintoprotonematissue,wewillimagecellsincutleafsections.We aregeneratinglinessimultaneouslyexpressingfluorescentmarkersforthe cytoskeletonandcellpolarity.Currently,weareabletosuccessfullytrackthe reorganizationofbothmicrotubulesandactinfilamentsduringtheprocessof leafcellregeneration.Alreadyearlyintheregenerationprocess,microtubules becomefragmented,whereasactinfilamentsaccumulatespecificallyatthesite ofprotonemaoutgrowth.Thereappearstobeamoreefficientregenerationin cellsthataresurroundedbydeadcells.Thus,wewillfurthermechanically perturbcellstoinvestigatehowcellpolarityisaffectedbystrainofthecellwall. Ourworkwillshedlightonevolutionaryconservedmechanismsofcell differentiation. 58.Exploringtheunknown:Developmentalflexibilityofrootsystem architectureinresponsetoedaphicconditions DimitriosTemplalexis,GerasimosDaras,StamatisRigas,Polydefkis Hatzopoulos DepartmentofBiotechnology,AgriculturalUniversityofAthens,Athens,Greece Contrarytoanimals,plantscannotmovetoavoidharshenvironmental conditions.Duringthecourseofevolution,theyhavethereforegainedplasticity forbetteradaptation.Rootsplayacriticalroleinplantadaptationastheysense 60 externalcuesanddrivenbyendogenoushormonalsignalstheycanreprogram theirdevelopment.Auxinisthemajorhormonethatcontrolsrootdevelopment. HatzopouloslabhasalonghistoryondecipheringtheroleofTRH1K+ transporterinauxinhomeostasisattheroottipofmodelplantArabidopsis.[1] Thistransportermayactasabiosensoroftheenvironmentandthroughauxin homeostasiscouldregulaterootdevelopmentalaspectsincludingroothair morphogenesisandrootgravitropism.[1][2]Thisworkshopwouldbeagreat opportunitytointroducemyselftonewplantmodelspeciesandcomprehendthe roleofauxininthedevelopmentofroot-likestructures.Inaddition,Imay becomefamiliarwithendogenousmolecularbiosensorsresponsivetoabiotic stress.Thesebiosensorswillshortlybeimportantforcropyieldduetoclimate change.Wehavetolearnfromearlylandplantstosustaintheconstantly increasingworldpopulation. References 1.DarasG.etal.,(2015).PlantScience231:131-137. 2.RigasS.etal.,(2013).NewPhytologist197:1130–1141. 59.MpFRH1,anovelmiRNA,regulatesrhizoidformationthroughMpRSL1 downregulationinanegativefeedbackloop AnnaThamm1,SuviHonkanen1,MarioArteaga-Vazquez2,LiamDolan1 1DepartmentofPlantSciences,UniversityofOxford,Oxford,UnitedKingdom 2InstitutodeBiotecnologiayEcologiaAplicada(INBIOTECA),Universidad Veracruzana,XalapaVeracruz,Mexico AT-DNAmutagenesisscreenidentifiednovelregulatorygenescontrolling rhizoidformationintheliverwortMarchantiapolymorpha.ThebHLH transcriptionfactorMpRSL1(ROOTHAIRDEFECTIVE6-LIKE)wasidentifiedas akeyregulatorofepidermaloutgrowthincludingrhizoidformation(Proustet al.,2016).Here,wereportanovelmiRNA,MpFRH1(FEWRHIZOID1)which functionsasanegativeregulatorofMpRSL1. PlantsoverexpressingMpFRH1(p35S::FRH1)aredefectiveinrhizoidformation, resemblingthephenotypeofMprsl1plants.WecouldshowthatMpRSL1 transcriptisdownregulatedinMpFRH1GOF-plants,whileMpFRH1transcriptis upregulatedinMpRSL1overexpressionlinesanddownregulatedinMprsl1lines. TheseresultsindicatethatMpFRH1isanegativeregulatorofMpRSL1,while MpRSL1positivelyregulatesMpFRH1expression.SequencingofaM. polymorphasmallRNAlibraryledtotheidentificationofMpFRH1asaputative miRNAwithapredictedcleavagesite160bpupstreamofthebHLHdomainof MpRSL1,whichcouldbeconfirmedthroughaRACE-PCRassay. Tounderstandhowthisinteractionregulatesrhizoidformationwearecurrently characterisingthespatial-temporaldistributionofbothregulators.Using promoterreporterlineswewereabletoshowthatbothMpFRH1andMpRSL1 areexpressedinrhizoidprecursorcells,whilenotranscriptionoccursin adjacentcells.BasedonthesefindingswehypothesizethatMpFRH1and MpRSL1controlrhizoidformationthroughanegativefeedbackloopinrhizoid precursorcells.In-situhybridisationofMpRSL1andMpFRH1aswellasmiRNA activityassaysarecurrentlyinprogresstofurthercharacterisetheinteractionof MpRSL1andMpFRH1. 61 60.CriticalroleoftheR2R3-MYBgeneGEMMACUP-ASSOCIATEDMYB1for vegetativepropagationintheliverwortMarchantiapolymorphaL. ShigeyukiTsukamoto1,TomomiSugaya2,KatsuyukiT.Yamato3,Ryuichi Nishihama4,HiroyoshiKubo5,HidehiroFukaki1,TetsuroMimura1,Takayuki Kohchi4,KimitsuneIshizaki1 1Grad.Sch.Sci.,KobeUniv.,Kobe,Japan 2Dept.ofBasicBiol.,SOKENDAI.,Japan 3B.O.S.T.,KindaiUniv.,Japan 4Grad.Sch.Biostudies,KyotoUniv.,Japan 5Fac.Sci.,ShinshuUniv.,Japan Manyplantshaveanabilitytogenerateclonalprogeniesdirectlyfromsomatic cellsofvegetativeorgans,however,littleisknownaboutthemolecular mechanism.TheliverwortMarchantiapolymorphaperformsvegetative propagationviagemmaegeneratedinthegemmacupsformedonthedorsalside ofthallus.Toinvestigateregulatorygenesinvolvedintheprocessesofgemma andgemma-cupdevelopment,wecomparedRNA-seqdatafromgemma-cups containingdevelopinggemmaewiththosefromthalluswithoutanygemma-cup. Throughthecomprehensivetranscriptomeanalysis,weidentifiedthegene encodinganR2R3-MYBtranscriptionfactor,designatedasGEMMACUPASSOCIATEDMYB1(GCAM1),whichwassignificantlyup-regulatedingemmacupcontainingdevelopinggemmae.ThepromoteractivityofGCAM1was detectedinthebaseofdevelopinggemma-cupanddevelopinggemmae. TargeteddisruptionofGCAM1conferredacompletedefectingemmacup formation,indicatinganessentialroleofGCAM1ingemmacupdevelopment. GCAM1overexpressionlinesformedclumpsofundifferentiatedcellsthatgrew intoanincreasednumberofthalliafterawhile,suggestingthatGCAM1would haveanabilitytorepresscelldifferentiationandproliferatecellswithstemcelllikepotential.Phylogeneticanalysissuggestedtheorthologousrelationshipof GCAM1toArabidopsisREGULATORSOFAXILLARYMERISTEMS(RAX)and tomatoBlindthatareknowntobeinvolvedinaxillarybudformationin angiosperms.Ourresultssuggestedthatthecommonregulatorymechanism sharedbetweenvegetativepropagationinliverwortsandaxillarybudformation inangiosperms. 61.RegulatorymechanismsandbiologicalfunctionsofArabidopsisand MarchantiaheterotrimericG-protein DaisukeUrano TemasekLifeSciencesLaboratory,Singapore SignaltransductionnetworkscontrolledbyheterotrimericGTP-bindingprotein (G-protein)emergedinaeukaryoticancestor.WhileanimalG-proteinsbecome activatedbyextracellularligandssuchashormonesandneurotransmitters throughGprotein-coupledreceptors(GPCRs),theregulatorymechanismsand physiologicalfunctionsofG-proteinpathwaysdiffergreatlyinothereukaryotes andremainpoorlyunderstood. HeterotrimericGproteinshavethreesubunits:Gα,GβandGγ.ExchangeofGDP forGTPontheGαsubunitleadstoG-proteincomplexdissociation,andtheGTPboundGαandGβγdimerinteracttomodulateactivitiesofdownstreameffectors. 62 IntrinsicGTPhydrolaseactivityoftheGαsubunitGαreturnsittotheGDPbound,basalstate.RegulatorofGSignaling(RGS)acceleratesGTPhydrolysisby Gα,thussuppressingG-proteinactivity.Plantgenomesencodenoneofthe canonicalGPCRsandeffectorsofanimals.AbsenceofGPCRsiscompensatedby thespontaneousactivationofGproteins.Arabidopsisutilizesa7TMreceptor RGStocontroltheactivationstateofthe“self-activating”G-protein.This deviationisinheritedbroadly,whileexcludedinMarchantiapolymorpha,which lacksthe7TM-RGSgene.NeverthelessnullallelesforGproteingenesshow analogousphenotypicdefectsinArabidopsisandliverwort,providingamodel caseforinvestigatinghowsignalingnetworksadaptedplasticallytodeletionsof certainnetworkcomponents. ThisprojectaimstoelucidateplantG-proteinnetworksbyanalyzing evolutionarytrajectoriesofenzymatickinetics,developmentalandphysiological roles,andtranscriptionprofilesdownstreamofheterotrimericG-protein,leading toinsilicoreconstructionofdirectionalnetworkscontrolledbytheG-protein complex. 62.ConservationofuniquepolarproteinsinPhyscomitrellapatensand Arabidopsisthaliana MaritzavanDop,JeroendeKeijzer,CharlotteSiemons,DolfWeijers WageningenUniversity,Wageningen,Netherlands Inplants,cellpolarityisaveryimportantfeatureinvolvedindevelopment, defenseandnutrienttransport.Proteinsaretargetedtospecificpartsofthecell andplasmamembranetocarryoutfunctionsthatarenotneededelsewhere. Someoftheseproteinsaresoimportanttoplants,thattheirlocalizationand functionhasbeenconservedthroughoutevolution.WeidentifiedafamilyofDUF proteinsinArabidopsisthalianawithuniquepolarlocalizationandbehavior. Theseproteinshavebeenhighlyconservedinevolutionfromearlylandplantsto floweringplants.ToinvestigateifthelocalizationfoundinArabidopsisisan ancientfeatureofDUFs,westudiedfourPpDUFsinPhyscomitrellapatens. Indeed,oneofthefourcandidatesisexpressedinthegametophoreand gametophorebuds,andshowsastrikinglysimilarpolarlocalizationcomparedto ArabidopsisDUFs.TogetcluesaboutthefunctionofourDUFproteins,we identifiedinteractorsofthreeAtDUFsandfoundthatmostinteractorsare shared.Wenextaskedifnotonlythelocalization,butalsothefunctionofDUFs hasbeenconserved.Toanswerthisquestion,wewillsoonperformIP-MSon PpDUF.BecauseArabidopsisandPhyscomitrellacontainmultipleDUFs,wewill alsoinvolveathirdmodelsystem:Marchantiapolymorpha.Thisliverwortonly hasoneDUF,whichisexcellentforlocalizationandknock-outstudies.Itwillalso helptoanswerthequestionwhetherthepolarityandfunctionofDUFsaretruly ancientfeaturesthatalllandplantshaveincommon. 63 63.Cytokininregulationinstreptophyticalgaeasancestorsoflandplants– phytohormoneoriginsinsearchofarole KlausvonSchwartzenberg1,BartelsSebastian1,AlwineWilkens1,Dieter Hanelt1,Ann-CathrinLindner1,2 1UniversitätHamburg,Hamburg,Germany 2InstitutoGulbenkiandeCiência,Oeiras,Portugal Thereisgrowingevidencethatgenomesofstreptophyticalgae(Charophytes) canencodeforallmajorcomponentsofthecytokininsystemcomprising elementsofbiosynthesis,metabolismandtwocomponentsignaling.The questionraiseswhatfunctionalrolescytokininsholdinbasalstreptophyticalgae andinhowfarthiscomplexhormonalregulationcontributedtotheconquestof land. OurgroupmaintainstheMicroalgaeandZygnematophyceaeCollectionHamburg (MZCH)specialisedonZygnematophyceaeandDesmidiaceaebutalsocontaining otherCharophytesaswellasChlorphytes(http://www.mzch-svck.unihamburg.de/?action=welcome).WeuseMZCHasaresourcetounravel functionaloriginsofphytohormoneregulationbycytokininsandhavestartedto analysecytokininmetabolismintheCharophytesMicrasteriasradiansand KlebsormidiumflaccidumincomparisontothemossPhyscomitrellapatens. Firstresultsindicatedifferencesinthekineticsoftheconcentrationof extracellularcytokinins(isopentenyladenineandbenzyladenine)duringfeeding experiments.Resultsarepartlysupportedbyanalysesofgenomicdata.Inthe pastourgrouphascontributedtothefunctionalunderstandingofthecytokinin systeminP.patens. 64.Pavingtheroadtoland:Evolutionofwater-conductingcellsand supportingcellsinlandplants BoXu1,2,MisatoOhtani2,3,MasatoshiYamaguchi4,KiminoriToyooka3, MinoruKubo5,RyosukeSano2,MitsuyasuHasebe6,7,TakuDemura2,3 1DepartmentofPlantSciences,UniversityofCambridge,Cambridge,United Kingdom 2GraduateSchoolofBiologicalSciences,NaraInstituteofScienceand Technology,Nara,Japan 3RIKENCenterforSustainableResourceScience,Kanagawa,Japan 4InstituteforEnvironmentalScienceandTechnology,SaitamaUniversity, Saitama,Japan 5CenterforFrontierScienceandTechnology,NaraInstituteofScienceand Technology,Nara,Japan 6NationalInstituteforBasicBiology,Aichi,Japan 7SchoolofLifeScience,GraduateUniversityforAdvancedStudies,Aichi,Japan Howchangesofgeneticmechanismledtotheinnovationofadaptivetraits duringoriginoflandplantsstillremainopen.Oneofthosequestionsis associatedwiththeinnovationofspecializedcellsforwaterconductionand mechanicalsupport,whichenabledthetransitionfromaquatictoterrestrial environment.RecentresearchesrevealedthatagroupofNACtranscription factorsVNS(VND/NST/SND)orchestratethedevelopmentofthesecellsin vascularplants.However,theevolutionofthesecellsisstillunclear.Herewe 64 studiedNACproteinencodinggenesinthemossPhyscomitrellapatens,which arehomologoustoVNSfamilyinvascularplants.Ourresearchshowedthatlossof-functionmutantsexhibitedtheabnormalwater-conductingcells(hydroids) andsupportingcells(stereids),leadingtoawiltingphenotypewhenexposedto theconditionwithlowerhumidity.Inaddition,overexpressionofthesegenes inducedprogrammedcelldeathinP.patens,andfurtherRAN-seqanalysis showedtheconservationoftranscriptionalregulationofwater-conductingand supportingcellsbythesetranscriptionfactorsbetweenmossandvascular plants.OurfindingssuggestthediversificationofNACproteinstofacilitatewater conductionandconfermechanicsupportwasthepivotaleventforearlyplantsto adapttorelativelydrylandconditionandsubsequentlytoconquertheterrene byplants. 65.ThetranscriptionfactorBONOBOplaysacentralroleintransitionfrom vegetativetoreproductivegrowthintheliverwortMarchantiapolymorpha ShoheiYamaoka1,KeisukeInoue1,RyuichiNishihama1,Katsushi Yamaguchi2,ShujiShigenobu2,KimitsuneIshizaki3,KatsuyukiT.Yamato4, TakayukiKohchi1 1GraduateSchoolofBiostudies,KyotoUniversity,Kyoto,Japan 2FunctionalGenomicsFacility,NIBB,Okazaki,Japan 3GraduateSchoolofScience,KobeUniversity,Kobe,Japan 4BOST,KindaiUniversity,Kinokawa,Japan Landplantsinitiatetransitionfromvegetativetoreproductivegrowthbysensing lightsignalssuchasdaylengthandlightqualityandactivatingthedownstream regulatorymechanismsthatchangeapicalmeristemidentity.Ourpreviousstudy showedthattheliverwortMarchantiapolymorphausesMpGI,MpFKF,and MpPIF,homologsofArabidopsisGIGANTEA,FLAVIN-BINDINGKELCH-REPEAT F-BOX1,andPHYTOCHROMEINTERACTINGFACTOR,forgrowth-phase transitioninalong-day-andfar-red-dependentmanner.Here,weshowthatthe transcriptionfactorBONOBOplaysacentralroleingrowth-phasetransitionin M.polymorpha.BONOBOwasidentifiedbywholegenomeandtranscriptome sequencinganalysisofaM.polymorphamutantplant,hpt2040,which constitutivelydevelopsgametangiophoresintheabsenceoffar-redlight. InducedactivationofBONOBOledtogametangiophoredevelopmentinboth femaleandmaleplants,whiletargeteddisruptionofBONOBOallowedtheplants tomaintainvegetativegrowth.TheBONOBOgeneexpressionwasup-regulated underlong-dayconditionsinthepresenceoffar-redlight.Singledisruptionsof MpGI,MpFKF,orMpPIFledtosignificantreductionoftheBONOBOexpression, whileinducedactivationofBONOBOledtogrowth-phasetransitioninthe absenceofeitherofthosegenes.OurfindingssuggestthatBONOBOplaysa centralroleinthecontrolofgrowth-phasetransition,anditsgeneexpressionis regulatedinthedownstreamofMpGI,MpFKF,andMpPIFinM.polymorpha. 65