Download Homework 7 - Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Radio transmitter design wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Index of electronics articles wikipedia , lookup

Test probe wikipedia , lookup

Spark-gap transmitter wikipedia , lookup

CMOS wikipedia , lookup

Standing wave ratio wikipedia , lookup

Integrating ADC wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Multimeter wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Wilson current mirror wikipedia , lookup

Schmitt trigger wikipedia , lookup

Operational amplifier wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Electrical ballast wikipedia , lookup

Voltage regulator wikipedia , lookup

TRIAC wikipedia , lookup

Ohm's law wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Surge protector wikipedia , lookup

Power electronics wikipedia , lookup

Opto-isolator wikipedia , lookup

RLC circuit wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Current source wikipedia , lookup

Power MOSFET wikipedia , lookup

Current mirror wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
ENG17, Sec. 2 (Montgomery)
Spring 2014
Homework 7 [Solutions]
due by 11:45am, Tuesday 5/20/14 (in HW box in Kemper 2131)
1.
(P9.1) Consider the sinusoidal voltage
( )
(
)
a. What is the maximum amplitude of the voltage?
b. What is the frequency in hertz?
c. What is the frequency in radians per second?
d. What is the phase angle in radians?
e. What is the phase angle in degrees?
f. What is the period in milliseconds?
g. What is the first time after t = 0 that v = 80 V?
h. The sinusoidal function is shifted by 2/3 ms to the left along the time axis. What
is the expression for v(t)?
i. What is the minimum number of milliseconds that the function must be shifted to
the right if the expression for v(t) is 80sin1000πt V?
j. What is the minimum number of milliseconds that the function must be shifted to
the left if the expression for v(t) is 80cos1000πt V?
1 / 11
2.
(P9.4) A sinusoidal voltage is given by the expression
( )
(
)
Find:
a. f in hertz
b. T in milliseconds
c. Vm
d. v(0)
e. ϕ in degrees and radians
f. the smallest positive value of t at which v = 0; and
g. the smallest positive value of t at which dv/dt = 0.
2 / 11
3.
(P9.7) The rms value of the sinusoidal voltage supplied to the convenience outlet of a
home in Scotland is 240 V. What is the maximum value of the voltage at the outlet?
3 / 11
4.
(P9.9) The voltage applied to the circuit shown below at t = 0 is 20 cos (800t + 25°) V.
The circuit resistance is 80 Ω and the initial current in the 75 mH inductor is zero.
a. Find i(t) for t ≥ 0.
b. Write the expressions for the transient and steady-state components of i(t).
c. Find the numerical value of i after the switch has been closed for 1.875 ms.
d. What are the maximum amplitude, frequency (in radians per second), and phase
angle of the steady-state current?
e. By how many degrees are the voltage and the steady-state current out of phase?
4 / 11
5.
(P9.11) Use the concept of the phasor to combine the following sinusoidal functions into
a single trigonometric expression:
(
)
(
),
a.
(
)
(
),
b.
(
)
(
)
(
), and
c.
(
)
d.
(
).
5 / 11
6.
(P9.13) A 80 kHz sinusoidal voltage has zero phase angle and a maximum amplitude of
25 mV. When this voltage is applied across the terminals of a capacitor, the resulting
steady-state current has a maximum amplitude of 628.32 μA.
a. What is the frequency of the current in radians per second?
b. What is the phase angle of the current?
c. What is the capacitive reactance of the capacitor?
d. What is the capacitance of the capacitor in microfarads?
e. What is the impedance of the capacitor?
6 / 11
7.
(P9.16) A 10 Ω resistor and a 5 μF capacitor are connected in parallel. This parallel
combination is also in parallel with the series combination of an 8 Ω resistor and a
300 μH inductor. These three parallel branches are driven by a sinusoidal current source
whose current is 922 cos(20,000t + 30°) A.
a. Draw the frequency-domain equivalent circuit.
b. Reference the voltage across the current source as a rise in the direction of the
source current, and find the phasor voltage.
c. Find the steady-state expression for v(t).
7 / 11
8.
(P9.24) Three branches having impedances of 3 + j4 Ω, 16 – j12 Ω, and –j4 Ω,
respectively, are connected in parallel. What are the equivalent (a) admittance, (b)
conductance, and (c) susceptance of the parallel combination in millisiemens? (d) If the
parallel branches are excited from a sinusoidal current source where i = 8 cos ωt A, what
is the maximum amplitude of the current in the purely capacitive branch?
8 / 11
9.
(P9.27) Find the impedance Zab in the circuit shown below. Express Zab in both polar and
rectangular form.
9 / 11
10.
(P9.33) The phasor current Ia in the circuit shown below is
A.
a. Find Ib, Ic, and Vg.
b. If ω = 800 rad/s, write the expression for ib(t), ic(t), and vg(t).
10 / 11
11.
(P9.34) The circuit below is operating in the sinusoidal steady state. Find vo(t) if
is(t) = 3 cos 200t mA.
11 / 11