Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
(x, y) (- x, y) (- x, - y) x cos y sin x cos y sin x cos y sin (x, - y) sin tan cos sin sin tan tan cos cos Sect 5.1 Verifying Trig identities Reciprocal 1 sin csc 1 cos sec 1 tan cot 1 cot tan 1 sec cos 1 csc sin Co-function Pythagorean sin 90 cos sin 2 cos 2 1 cos 90 sin tan 90 cot 1 tan 2 sec 2 1 cot 2 csc 2 cot 90 tan sec 90 csc csc 90 sec Quotient sin tan cos cos cot sin Even/Odd sin sin cos cos tan tan cot cot sec sec csc csc If tan 5 and is in quadrant II, find each function value. 3 (a) sec Negative answer. What Trig. Identity has tan and sec? sec 2 1 tan 2 sec2 1 53 2 sec 1 2 sec 2 sec 25 9 34 9 (b) sin Positive answer. What Trig. Identity has tan and sin? sin y 5 tan cos x 3 r 2 x2 y2 r x2 y2 r 32 5 34 2 34 3 y 5 5 34 sin r 34 34 S A T C (c) cot Positive answer. What Trig. Identity has tan and cot? 1 cot tan 1 cot tan cot 1 tan 1 cot 53 1 3 3 5 1 5 5 3 Write cos(x) in terms of tan(x). sec 2 1 tan 2 1 1 tan 2 2 cos 1 cos 2 1 1 tan 2 Secant has a relationship with both tangent and cosine. cos cos 1 1 tan 2 1 tan 2 1 tan 2 Rationalize the denominator. 1 cot 2 x Write in terms of sin(x) and cos(x), and simplify the expression so 2 1 csc x that no quotients appear. csc 2 x 1 cot 2 x cot 2 x csc 2 x cot 2 x csc 2 x 1 cot 2 x 1 csc 2 x cot 2 x 1 csc 2 x 1 2 2 csc 2 x sin x 1 sin x 1 2 2 2 2 cot x x cos cos 2 x sin x cos x sin 2 x sec 2 x Sect 5.2 Verifying Trig identities Guidelines to follow. 1. Work with one side of the equation at a time. It is often better to work on the most complicated. 2. Look for opportunities to factor, add fractions, square binomials or multiply a binomial by it’s conjugate to create a monomial. 3. Look to use fundamental identities. Look to see what trig functions are in the answer. 4. Convert everything to sines and cosines 5. Always try something! Sect 5.2 Verifying Trig identities Verify. cot 1 csc cos sin Work on the right side first. Distribute the cosecant. csc cos csc sin 1 1 cos sin sin sin cos 1 sin cot 1 cot 1 Rewrite to sine and cosine. Simplify the fractions. Quotient Identity for cotangent. Sect 5.2 Verifying Trig identities Verify. tan x 1 cot x sec x 2 2 2 tan 2 x csc 2 x sin x 1 2 2 cos x sin x 2 Work on the left side first. Pythagorean Identity 1 + cot2x = csc2x Rewrite to sine and cosine. Simplify the fractions by canceling . 1 cos 2 x Reciprocal Identity for secant. sec 2 x sec 2 x Sect 5.2 Verifying Trig identities tan cot sec 2 csc 2 Verify. sin cos tan cot sin cos sin cos sin cos cos sin sin cos sin cos Work on the left side first. Rewrite the fraction as subtraction of two fractions with the same denominators. Rewrite to sine and cosine. Simplify the fractions by multiplying by the reciprocals and cancel. sin 1 cos 1 cos sin cos sin sin cos 1 1 cos 2 sin 2 sec 2 csc 2 sec 2 csc 2 Reciprocal Identity for secant and cosecant. Sect 5.2 Verifying Trig identities Verify. sec2 1 2 sin 2 sec tan 2 sec 2 sin 2 cos 2 1 cos 2 sin 2 cos 2 2 cos 1 sin 2 sin 2 Work on the left side first. Pythagorean Identity 1 + tan2x = sec2x tan2x = sec2x – 1 Rewrite to sine and cosine. Rewrite as multiplication. Cancel and Simplify. Sect 5.2 Verifying Trig identities Verify. 2sec2 1 1 1 sin 1 sin Work on the right side first. Two terms need to be condensed to one term. Find LCD and combine the fractions. LCD 1 sin 1 sin 1 sin 2 1 1 sin 1 1 sin 1 sin 1 sin 1 sin 1 sin 1 sin 1 sin 2 1 sin 1 sin 2 2 1 sin 2 2 1 2 2 cos cos 2 2 sec 2 2 sec 2 Pythagorean Identity sin2x + cos2x = 1 cos2x = 1 – sin2x Reciprocal of cosine. Sect 5.2 Verifying Trig identities 2 2 2 Verify. tan tan 1 cos 1 sec sin 2 2 1 2 sin 2 cos sin 2 cos 2 tan 2 tan 2 Work on the right side first. Pythagorean Identities. sin2x + cos2x = 1 cos2x – 1 = – sin2x 1 + tan2x = sec2x Convert to cosine. Multiply. Sect 5.2 Verifying Trig identities Verify. tan cot sec csc sin cos cos sin sin sin cos cos cos sin sin cos sin 2 cos 2 cos sin 1 cos sin 1 1 cos sin sec csc sec csc Work on the left side first. Try to combine the two terms into one. Convert to sine and cosine. LCD cos sin Pythagorean Identity sin2x + cos2x = 1 Rewrite as two fractions multiplied together. Reciprocals. Sect 5.2 Verifying Trig identities Verify. cos sec tan 1 sin 1 sin cos cos Work on the right side first. Two terms need to be condensed to one term. Convert to sine and cosine. Combine. 1 sin cos 1 sin 1 sin 1 sin cos 1 sin 2 cos 1 sin cos 2 cos 1 sin cos cos 1 sin 1 sin When working with binomials, try multiplying by the conjugate to create differences of squares which will incorporate the Pythagorean Identities. Pythagorean Identity sin2x + cos2x = 1 cos2x = 1 – sin2x Cancel cosine. Sect 5.2 Verifying Trig identities Verify. cot 2 1 sin 1 csc sin csc 2 1 1 csc csc 1csc 1 1 csc csc 1 1 1 sin 1 sin sin sin 1 sin 1 sin sin sin Work on the left side first. Pythagorean Identity and convert to sine and cosine. 1 + cot2x = csc2x cot2x = csc2x – 1 csc2x – 1 is Diff. of Squares. Factor. Cancel (csc x + 1) Convert to sine. Combine to one term. cosA B, sin A B Sect 5.3 Sum and Difference Formulas cos B, sin B A cos A, sin A A– B Using Distance Formula A– B x2 x1 2 y2 y1 2 (1,0) B Dist. from (cos(A-B), sin(A-B)) to (1,0) = Dist. from (cosA, sinA) to (cosB,sinB) cos A B 12 sin A B 02 cos A cos B2 sin A sin B2 F.O.I.L. F.O.I.L. F.O.I.L. cos A B 2 cos A B 1 sin A B cos A 2 cos A cos B cos B sin 2 A 2 sin A sin B sin 2 B 2 Pythagorean Identity Subtract by 2. 2 Pythagorean Identity Pythagorean Identity 1 2 cos A B 1 1 2 cos Acos B 1 2 sin Asin B 2 2 cos A B 2 2 cos A cos B 2 sin Asin B – 2 Divide by –2. 2 2 – 2 2 cos A B 2 cos A cos B 2 sin Asin B 2 2 2 cos A B cos A cos B sin A sin B The Cosine of the Difference of Two Angles The Cosine of the Difference of Two Angles cos A B cos A cos B sin A sin B Substitute (-B) for B in the formula to make the Cosine of the Sum of Two Angle. cos A B cos A cos B sin A sin B cos (– B) = cos (B) The Cosine of the Sum of Two Angles sin (– B) = – sin (B) cos A B cos A cos B sin A sin B To make the Sine of the Sum & Difference of Two Angles we will need the Cofunction Identities for Sine and Cosine. sin cos90 cos sin 90 Start with A B . sin A B cos90 A B cos90 A B cos90 A B cos A B cos A cos B sin A sin B cos90 A B cos90 Acos B sin 90 Asin B sin A B sin Acos B cos Asin B Substitute (-B) for B in the formula to make the Sine of the Sum of Two Angle. sin A B sin A cos B cos Asin B cos (– B) = cos (B) sin (– B) = – sin (B) sin A B sin A cos B cos Asin B To make the Tangent of the Sum & Difference of Two Angles we will need the Quotient Identities for Tangent. sin A B sin A cos B cos A sin B cos (A) cos (B) tan A B cos A B cos A cos B sin A sin B This is what we need divide by cos (A) cos (B) all the factors. Tricky manipulation: We want this fraction to have tangents in the formula. Need to divide by the same factor in both the top and bottom to make tangents. Start with where we need to divide by cosine. sin A cos B cos A sin B tan A tan B cos A cos B cos A cos B tan A B cos A cos B sin A sin B 1 tan A tan B cos A cos B cos A cos B tan A tan B tan A B 1 tan A tan B sin A B sin A cos B cos A sin B tan A B cos A B cos A cos B sin A sin B This is what we need divide by cos (A) cos (B) all the factors. sin A cos B cos A sin B cos A cos B cos A cos B tan A tan B cos A cos B sin A sin B 1 tan A tan B cos A cos B cos A cos B tan A tan B tan A B 1 tan A tan B 7 Find the exact value of cos 12 . cos105 cos60 45 cos A B cos A cos B sin A sin B 7 7180 715 105 12 12 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. cos60 45 cos60cos45 sin 60sin 45 2 1 45 1 1 2 3 2 2 2 2 2 2 6 2 6 4 4 4 1 60 2 30 3 5 . Find the exact value of cos 3 4 2 1 60 2 3 45 5 5180 560 300 3 3 4 1 1 30 cos A B cos A cos B sin A sin B 45 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. cos300 45 cos300cos45 sin 300sin 45 3 2 1 2 2 2 2 2 2 6 2 6 4 4 4 Suppose that sin for a Q2 angle and sin for a 13 5 Q1 angle . Find the exact value of each of the following. A. cos B. cos C. cos D. cos 12 3 cos cos cos sin sin 12 13 5 4 5 cos 3 5 13 cos 4 5 5 4 12 3 13 5 13 5 20 36 56 65 65 65 cos cos cos sin sin 5 4 12 3 13 5 13 5 20 36 16 65 65 65 Find the exact value of sin 75 . sin 75 sin 30 45 sin A B sin A cos B cos Asin B Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. sin 30 45 sin 30cos45 cos30sin 45 2 1 45 1 1 2 3 2 2 2 2 2 2 6 2 6 4 4 4 1 60 2 30 3 Find the exact value of 60 2 1 30 3 2 1 7 tan . 12 7 7180 715 105 12 12 150 45 105 45 1 tan A tan B tan A B 1 tan A tan B Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. 1 1 1 1 tan 150 tan 45 3 3 tan 150 45 1 tan 150 tan 45 1 1 1 1 1 3 3 1 3 1 3 3 3 1 3 1 1 3 3 1 3 3 1 3 1 1 1 3 3 1 1 3 3 3 3 Find the exact value of 2 30 60 1 3 2 7 tan . 12 45 7 7180 715 105 12 12 60 45 105 Use the special right triangle angles, 30o, 45o, and 60o. We may need to use multiples of these angles. 1 1 tan A tan B tan A B 1 tan A tan B tan 60 tan 45 tan 60 45 1 tan 60 tan 45 Another approach. 3 1 1 3 1 1 3 1 3 Find the exact value of sin 40cos160 cos40sin 160. sin A B sin A cos B cos Asin B sin 40 160 sin 120 1 60 120 3 30 2 3 2 Sect 5.5 Dble Angle, Power Reducing, and Half Angle Formulas Double Angle Formulas: Revise the Sum of Sin, Cos, & Tan Formulas Substitute A in for B. sin A B sin A cos B cos Asin B sin A A sin A cos A cos Asin A => sin cos A B cos A cos B sin A sin B cos A A cos A cos A sin A sin A cos2 A 1 sin 2 A sin 2 A 2 A 2 sin A cos A cos2 A cos 2 A sin 2 A cos2 A 1 2 sin 2 A cos2 A 2 cos 2 A 1 cos2 A cos 2 A 1 cos 2 A tan A tan B tan A B 1 tan A tan B tan A tan A tan A A 1 tan A tan A 2 tan A tan 2 A 1 tan 2 A Find sin 2 ,cos 2 , tan 2 5 given cos and 13 120 12 5 2 sin 2 2 sin cos 13 169 13 119 5 12 cos2 cos 2 sin 2 169 13 13 12 2 2 tan 5 120 tan 2 2 119 1 tan 2 12 1 5 2 2 Quadrant 4. 3 2 . 2 y 132 52 12 12 sin 13 tan 12 5 5 13 12 Quadrant 2. Find the values of the six trigonometric functions of if cos2 and 90 180. cos2 cos 2 sin 2 Choose one of the double angle identities to find a value for sine or cosine. cos2 1 2 sin 2 10 1 cos2 2 cos 2 1 cos2 1 2 sin Substitute in 4/5. 4 2 1 2 sin 5 Subtract by 1. 2 1 2 sin 2 5 1 sin 2 10 1 sin 10 sin 4 5 1 10 10 10 2 10 12 3 SOH-CAH-TOA cos 3 3 10 10 10 tan 1 3 Divide by -2. cot 3 Square root both sides, but the answer will be positive, since we are Q2. sec 10 3 csc 10 Verify. cot sin 2 1 cos2 cos sin 2 sin cos 2 sin cos sin 2 cos 2 1 cos2 1 cos2 Work on the left side first. Convert to sine and cosine with Quotient Identity. Double angle identity. 2sin(x) cos(x) = sin(2x) Cancel Rewrite the double angle formula. 2cos2x – 1 = cos(2x) 2cos2x = 1 + cos(2x) sin 2 A 2 sin A cos A cos sin cos2 2 2 cos 2 7 x sin 2 7 x cos2 7 x cos14 x 1 2 sin 15 cos15 2 1 sin 2 15 2 1 1 1 1 sin 30 2 2 2 4 Find an identity for cos3 cos 2 cos A B cos A cos B sin A sin B Substitute Dble angle Identity. cos 2 cos ( cos2) sin ( sin 2 ) cos 2 cos (2 cos 2 1) sin (2 sin cos ) cos 2 2cos3 cos 2sin 2 cos Pythagorean Identity, rewrite with all cosines. cos 2 2 cos3 cos 2 1 cos 2 cos cos 2 2 cos3 cos 2 cos 1 cos 2 Distribute cos 2 2cos3 cos 2cos 2cos3 4 cos3 3cos cos 3 4 cos3 3cos Product to Sum & Sum to Product Formulas How to create the Product to Sum Formulas. Add and subtract Sum and Difference formulas for Sine and Cosine. cos A cos B sin A sin B cos A B cos A cos B sin A sin B cos A B 2 cos A cos B cos A B cos A B cos A cos B 1 cos A B cos A B 2 sin A cos B cos Asin B sin A B sin A cos B cos Asin B sin A B 2 sin A cos B sin A B sin A B 1 sin A cos B sin A B sin A B 2 cos A cos B sin A sin B cos A B cos A cos B sin A sin B cos A B 2 sin A sin B cos A B cos A B sin A sin B 1 cos A B cos A B 2 sin A cos B cos Asin B sin A B sin A cos B cos Asin B sin A B 2 cos A sin B sin A B sin A B 1 cos A sin B sin A B sin A B 2 Product to Sum Formulas cos A cos B 12 cos A B cos A B sin A cos B 12 sin A B sin A B sin A sin B 12 cos A B cos A B cos A sin B 12 sin A B sin A B Sum to Product Formulas cos A cos B 12 cos A B cos A B 2 cos A cos B cos A B cos A B x y Let A 2 The reason we choose these two fractions for A and B is because we need two values that add up to x and two values that subtract to be y. x y and B 2 x y x y x y x y x y x y 2 cos cos cos cos 2 2 2 2 2 2 x y x y 2 cos cos cos y cos x 2 2 A B A B cos A cos B 2 cos cos 2 2 Product to Sum Formulas cos A cos B 12 cos A B cos A B sin A cos B 12 sin A B sin A B sin A sin B 12 cos A B cos A B cos A sin B 12 sin A B sin A B Sum to Product Formulas A B A B cos A cos B 2 cos cos 2 2 A B A B sin A sin B 2 sin cos 2 2 A B A B sin A sin B 2 sin cos 2 2 A B A B cos A cos B 2 sin sin 2 2 Rewrite sin 6 x cos 2 x as a sum or difference of two functions sin A cos B 12 sin A B sin A B sin 6 x 2 x sin 6 x 2 x 12 sin 8x sin 4 x sin 6 x cos2 x 1 2 Rewrite cos 4x cos 3x using sums to product identity. A B A B cos A cos B 2 sin sin 2 2 4 x 3x 4 x 3x cos4 x cos3x 2 sin sin 2 2 7x x 2 sin sin 2 2 Half Angle Formulas cos 2 A 1 2sin 2 A cos 2 A 2cos2 A 1 2sin 2 A 1 cos 2 A 1 cos 2 A cos A 2 1 cos 2 A sin A 2 2 Let A 2 1 cos sin 2 2 2 sin 2 tan 2 cos 2 tan 2 1 cos 2 A cos A 2 tan Let A 2 2 2 cos 2 1 cos 2 1 cos 2 1 cos 2 1 cos 2 1 cos 2 1 cos tan 2 1 cos The + symbol in each formula DOES NOT mean there are 2 answers, instead it indicates that you must determine the sign of the trigonometric functions based on which quadrant the half angle falls in. 1 cos tan 2 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 2 1 cos 2 1 cos 2 sin 2 1 cos tan 2 sin 1 cos tan 2 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 2 1 cos 2 sin 2 1 cos 2 sin tan 2 1 cos Find the exact value for cos112.5. 1 cos 225 cos cos112.5 cos 2 2 2 S A T C 2 2 2 1 2 225 1 cos225 2 cos 2 2 2 2 2 2 2 2 2 2 2 4 2 1 cos 2 sin 2 1 1 2 sin 2 2 sin cos Verify the identity. tan 2 sin 2 2 sin cos tan sin cos