Download tut15 138 KB

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

CMOS wikipedia , lookup

Decibel wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Operational amplifier wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Standing wave ratio wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Surge protector wikipedia , lookup

Power MOSFET wikipedia , lookup

TRIAC wikipedia , lookup

Power electronics wikipedia , lookup

Ohm's law wikipedia , lookup

Electrical ballast wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Current mirror wikipedia , lookup

Current source wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
Tutorial 15 Question
Ch 31: Pr. 48 (revised).
A resistor R, capacitor C , and inductor L are connected
in parallel across an ac generator as shown below. The
source emf is V = V0 sin ωt. Determine the current as a
function of time (including amplitude and phase) (a) in
the resistor, (b) in the inductor, (c) in the capacitor. (d)
What is the total current leaving the source? (Give
amplitude I0 and phase.) (e) Determine the impedance
Z defined as Z = V0 /I0 . (Bonus) What is the power
factor?
V
R
L
C
C
Hint: C sin(x + φ) = A sin x + B cos x looks like
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
φ
A
B
.
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 1/8
Solution
(a) Determine the current in the resistor.
From Kirchhoff’s loop rule the voltage across the
resistor is V = V0 sin ωt.
The current is in phase with voltage in resistors, so
IR = IR,0 sin ωt.
Ohm’s law tells us IR,0 = V0 /R so
V0
sin ωt.
IR (t) =
R
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 2/8
Solution, contd
(b) Determine the current in the inductor.
Again, the voltage drop is V . But this time the voltage
leads the current by φ = 90◦ (CIVIL) so
π
IL = IL,0 sin ωt −
= −IL,0 cos ωt.
2
The current amplitude is related to the voltage by
reactance, IL,0 = V0 /XL so
V0
cos ωt.
IL (t) = −
XL
(Note: XL = ωL.)
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 3/8
Solution, contd
(c) Determine the current in the capacitor.
Same V . Now the current leads by φ = 90◦ (CIVIL) so
π
IC = IC,0 sin ωt +
= IC,0 cos ωt.
2
Again, the amplitude is given by reactance,
IC,0 = V0 /XC so
V0
cos ωt.
IC (t) =
XC
(Note: XC =
1
ωC .)
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 4/8
Solution, contd
(d) What is the total current leaving the source?
The total current I splits (Kirchhoff’s branch rule) so
I = IR + IL + IC = IR,0 sin ωt + (IC,0 − IL,0 ) cos ωt.
To equate this to I = I0 sin(ωt + φ) we use the hint. The
amplitude is
q
2 + (I
2
I0 =
IR,0
C,0 − IL,0 )
s
2
1
1
1
.
+
−
= V0
2
R
XC
XL
Let’s wait with determining the phase φ until we’ve
found the impedance Z .
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 5/8
Solution, contd
(e) Determine the impedance Z .
If Z = V0 /I0 then
"
1
+
Z=
2
R
1
1
−
XC
XL
2 #− 21
.
Notice how this is similar (but not identical, because of
the squared powers) to the formula for parallel resistors,
1
1
= 2+
2
Z
R
1
1
−
XC
XL
2
.
Also notice that Z ≤ R, always.
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 6/8
Solution, contd
(d) contd
Now we can write down the current’s phase in a more
familiar form,
IR,0
Z
V0 /R
cos φ =
= .
=
I0
V0 /Z
R
Weird, that’s the inverse of what we got for series LRC
circuits.
(Bonus) What is the power factor?
The power factor is the ratio
P
.
Power factor =
IRMS VRMS
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 7/8
Solution, contd
(Bonus) contd
The average power (lost through the resistor is given by
2
VRMS
.
P =
R
From part (d) we get R =
Z
cos φ
so
VRMS
P =
VRMS cos φ.
Z
Since IRMS = VRMS /Z we find
P = IRMS VRMS cos φ.
So the power factor is still cos φ (same as series).
http://www.zoology.ubc.ca/˜rikblok/phys102/tutorial/
UBC Physics 102: Tutorial 15, July 22, 2003 – p. 8/8