* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Small Signal * Low Frequency Transistor amplifier Circuits
Flexible electronics wikipedia , lookup
Audio power wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Index of electronics articles wikipedia , lookup
Oscilloscope history wikipedia , lookup
Integrated circuit wikipedia , lookup
Surge protector wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Negative resistance wikipedia , lookup
Power MOSFET wikipedia , lookup
Integrating ADC wikipedia , lookup
RLC circuit wikipedia , lookup
Power electronics wikipedia , lookup
Zobel network wikipedia , lookup
Voltage regulator wikipedia , lookup
Current source wikipedia , lookup
Radio transmitter design wikipedia , lookup
Regenerative circuit wikipedia , lookup
Wilson current mirror wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Transistor–transistor logic wikipedia , lookup
Schmitt trigger wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Valve audio amplifier technical specification wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Operational amplifier wikipedia , lookup
Current mirror wikipedia , lookup
Network analysis (electrical circuits) wikipedia , lookup
Two-port network wikipedia , lookup
UNIT-IV Small Signal – Low Frequency Transistor amplifier Circuits contents Transistor as an Amplifier Analysis of Transistor Amplifier Circuits using h – parameters Miller’s theorem and it’s dual Simplified CE and CC hybrid model The CE amplifier with emitter resistance Darlington pair Analysis of Single Stage Amplifiers Hybrid Parameter Model Ii Io Linear Two port Device Vi Ii 1 Vi 1' Vo Io hi hrVo hfIi ho 2 Vo 2' Vi h11Ii h12Vo hi I i hrVo I o h21Ii h22Vo h f I i hoVo h-Parameters Vi h11 Ii Io h21 Ii Vo 0 Vi h12 Vo Ii 0 Vo 0 Io h22 Vo Ii 0 h11 = hi = Input Resistance h12 = hr = Reverse Transfer Voltage Ratio h21 = hf = Forward Transfer Current Ratio h22 = ho = Output Admittance Use of h – parameters to describe a transistor have the following advantages. h – parameters are real numbers up to radio frequencies They are easy to measure They can be determined from the transistor static characteristics curves. They are convenient to use in circuit analysis and design. Easily convert able from one configuration to other Readily supplied by manufactories Analysis of CE amplifier using hybrid model hre VS vce - For finding h parameters quantities Vbe and ic are taken independent variables For finding voltage gain, current gain, input impedance, output impedance h parameter equations are vbe = hie ib + hre vce --------------------------------(1) ic = hfe ib + hoe vce---------------------------------- (2) Putting vce =0 in above equations we will get hie and hfe , ib =0 in above equations we will get hre and hoe current gain output current input current iL Ai ib Ai Apply current divider rule to the output circuit 1 ho e 1 ho e h f eib iL RL iL h f eib 1 ho e RL from eqn h fe Ai 1 ho e RL To find input resistance vs Ri ib Applying KVL to input circuit Vs = hie ib + hre vce Vs = ib hie + hre iL RL (vce = iLRL) Vs = ib hie + hre Ai ib RL ( iL =Ai ib ) Substituting in equation (2) Ri = hie + hre Ai RL Ri ib hie C + hfe ib RL hre vce VS - 1/hoe E vce - To find voltage gain Av = output voltage vce inputvoltage vs i R Av L L ib Ri since RL Av Ai Ri Ri vs ib To find output resistance ib hie + RO vce iC hre vce hfe ib 1/hoe RL vce Applying KC L to the output circuit. iC = hfe ib + i1 iC = hfe ib + vce hoe Applying KVL to input circuit - ( hie ib + hre vce) =0 hrevce ib hie substituting for ib in equation RO1 - RO iC h fe ( hrevce ) vce hoe hie substituting in equation RO 1 h fe hr e hie hoe To find output resistance with RL RO1 = RO||RL (Since RL is in parallel with the voltage source, total output resistance is the parallel combination of R L and RO) PROBLEM 1.A common emitter amplifier has the following h- parameters. hie =1KΩ, hre = 10-4, hfe =100, hoe = 12µmho Find current gain, Voltage gain, Ri, Ro, power gain. Take RL = 2KΩ. Also find output power take vS = 500 mV ( rms). Ai hf e 1 hoe R L 100 1 (12 10 6 2 10 3 Ai 97.656 Ai Ri hi e hr e Ai R L Ri (1 10 3 ) (10 4 97.656 2 10 3 ) Ri 980.468 Av Ai RL Ri 2 10 3 Av 97.656 980.468 Av 199.2 RO 1 h f e h re hie hoe R O 0.5M 500 K RO 1 R O || R L RO 1 RO 1 RO R L RO R L 500 2 500 2 1.992 K AP AV Ai AP 199.2 97.656 AP 19.453 10 3 2 v PO ce RL ( Av .VS ) 2 PO RL ( 1.99.2) 2 (500 10 3 ) 2 PO 2 103 PO 4.96Watt MILLER’S THEOREM Miller’s theorem states that when a resistance ( or capacitance ) is connected across input and output terminals, the same can be replaced by two independent resistances ( or capacitances ) connected one across the input terminals and the other across output terminals. These are called Miller equivalent resistances ( or capacitances). PROOF: Applying Ohm’s law VS VO R V Let A O VS i (1) i RMI VS Then VO AVS Substituting in (1) VS AVS R V (1 A) S R V S R 1 A i R VS 0 (2) RMI + RS RL + vS1 - VO Amplifier A - comparing equations (1) and (2), the same current i will flow through a resistance R when it is between input terminal and ground. Therefore, the KCL at the input terminal is not affected by replacing the resisitance R by R is called Miller equivalent resistance on the input side. MI . . MI . To find Miller equivalent resistance on the output side. V0 VS (3) R V Let A O then VO AVS VS i i 1 VO VO 1 A A R R VO VO RA A 1 V 0 i O - - - - - - - - - - - (4); RMO R i A 1 VO A R + RS RA RMO A 1 RL + vS1 VO Amplifier - A - RMO is the Miller equivalent resistance on the output side The same current I will flow through the resistance RMO if R is replaced by RMO which is connected across output terminal and ground. Replacing R by Miller equivalent resistances, the circuit is as follows. + + i RS RMI Amplifier A + i RMO + RL Vo vS1 - - - - Dual of Miller’s Theorem Consider a general amplifier as shown below. In this amplifier, the resistance R is common to the input and output circuits do not have a common resistance. The purpose of the following analysis is to remove the inter dependence of input and output circuits. So that either input circuits or output circuits can be solved independently Applying KVL to input circuit VS i1 R S Vi (i1 i2 ) R 0 But i2 = -iL VS i1 RS Vi (i1 i L ) R 0 RS + VS i1 RS Vi (i1 Ai i1 ) R 0 + VS i1 RS Vi i1 (1 Ai ) R 0 + Amplifier + VS i1 RS Vi RMI i1 0 Vi VS RMI (1 Ai ) R vO1 - (1 Ai ) R - is the resistance which when connected in series with the input circuit instead of R will not affect the input circuit. i1 - R i2 Repeating the above analysis for the output circuit. | - VO VO (i1 i 2 ) R 0 But i 2 i L VO VO (i1 i L ) R 0 | | iL iL ) R 0 Ai VO VO i L ( | RL vO From the above equation, VO VO ( iL 1 1) R 0 Ai VO VO i L (1 | 1 )R 0 Ai VO VO i L R MO 0 | A 1 R R MO i Ai From the equation, the resistance RMO when connected in the output circuit alone does not alter the KVL equation. Thus, without affecting the electrical nature of the circuit, the circuit can be redrawn a RMI = R( 1-Ai) RS RMO = R( Ai – 1) + iAi L i1 Amplifier RL VO - Approximate h-parameter equivalent circuit. hre is the reverse voltage gain or reciprocal of voltage gain. For an amplifier, voltage gain is high therefore hre is very low for approximation take hre Vce is zero or voltage source is replaced by short circuit In h parameter equivalent is open circuit 1 is hoe internal resistance of the current source hfe ib for ideal condition it is infinity so it Darlington pair • Allow for much greater gain in a circuit • β = β1 * β2