* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Reteach Complex Numbers and Roots
System of linear equations wikipedia , lookup
Root of unity wikipedia , lookup
Elementary algebra wikipedia , lookup
Factorization wikipedia , lookup
History of algebra wikipedia , lookup
System of polynomial equations wikipedia , lookup
Quadratic equation wikipedia , lookup
Quartic function wikipedia , lookup
Name Date Class Reteach LESSON 5-5 Complex Numbers and Roots An imaginary number is the square root of a negative number. Use the definition 1 i to simplify square roots. Simplify. 25 25 1 Factor out 1. 25 1 Separate roots. 5 1 Simplify. 5i Express in terms of i. 48 48 1 Factor out 1. 48 1 Separate roots. 16 3 1 Factor the perfect square. 4 3 1 Simplify. 4i 3 Imaginary Real Express in terms of i. Complex numbers are numbers that can be written in the form a bi. Write as a bi Find 0 5i 5i The complex conjugate of a bi is a bi. The complex conjugate of 5i is 5i. Express each number in terms of i. 1. 72 2. 445 3. 100 36 2 1 4 9 5 1 6i 2 12i 5 4. 5 54 5. 264 15i 6 10i 6. 98 16i 7i 2 Find each complex conjugate. 7. 9i 8. 1 4i 9. 12 i 1 4i 9i Copyright © by Holt, Rinehart and Winston. All rights reserved. a207c05-5_rt.indd 38 38 12 i Holt Algebra 2 12/15/05 4:38:11 PM Process Black Name LESSON 5-5 Date Class Reteach Complex Numbers and Roots (continued) You can use the square root property and 1 i to solve quadratic equations with imaginary solutions. Solve x 2 64. x 2 64 Take the square root of both sides. 2 Remember: 1 i 2 1 Express in terms of i. x 8i 2 2 Check each root: 8i 64i 64 1 64 8i 2 64i 2 64 1 64 2 Solve 5x 80 0. 2 5x 80 x 16 2 2 Subtract 80 from both sides. Divide both sides by 5. x 16 Take the square root of both sides. x 4i Express in terms of i. Check each root: 2 5 4i 80 5 16 i 2 80 80 1 80 0 2 5 4i 80 2 5 16 i 80 80 1 80 0 Solve each equation. 10. x 2 18 0 11. 6x 2 24 0 x 2 18 x 2 49 6x 2 24 x 9 2 1 x 3i 2 13. x 2 100 0 x 49 x 2i x 7i 14. 3x 2 108 0 x 2 36 x 100 x 36 x 10i x 6i Copyright © by Holt, Rinehart and Winston. All rights reserved. a207c05-5_rt.indd 39 x 4 x 2 100 12. x 2 49 0 39 15. x 2 12 0 x 2 12 x 4 3 1 x 2i 3 Holt Algebra 2 12/15/05 4:38:12 PM Process Black *À>VÌViÊ #OMPLEX.UMBERSAND2OOTS ,%33/. xx xx !NSWEREACHQUESTION %XPRESSEACHNUMBERINTERMSOFI ^ #IRCLETHECOMPLEXNUMBERS SD I I I I A BI ^ 7HATISTHEREALPARTOFTHECOMPLEXNUMBERABI 7HATISTHEIMAGINARYPARTOFTHECOMPLEXNUMBERABI ^ ^ ^ I I I I XÊÊ{]ÊYÊÊx FSXDX X GSXDX X ^ ^ XrSOXIANDI I 0OSSIBLEANSWER9OUCOULDMULTIPLYTXIETXIETOGETTHE ORIGINALEXPRESSION I ÎI A 7HATARETHEROOTSOFTHEEQUATIONX ^ {ÎI 0OSSIBLEANSWER9OUCOULDMULTIPLYTXIETXIETOGETTHE ORIGINALEXPRESSION ^ ÎÊÊIÊÊr ££ÊÊ xx (OLT!LGEBRA xx !NIMAGINARYNUMBERISTHESQUAREROOTOFANEGATIVENUMBER ^ 5SETHEDEFINITIONq ITOSIMPLIFYSQUAREROOTS ^ 3IMPLIFY ^ ^ XIr q ^ ^ GSXDXX ^ XIr XÊÊI HSXDXX ^ Y X?? IXSYDI XY ^ 3IMPLIFY I %XPRESSINTERMSOFI ^ ^ XY &ACTOROUT q SDSD ^ ^ 3EPARATEROOTS q SDq ^ I??? ^ Ir q q &INDEACHCOMPLEXCONJUGATE qI 3EPARATEROOTS ^ XIr YISXDI ^ qSDq &INDTHEVALUESOFXANDYTHATMAKEEACHEQUATIONTRUE XISYDI &ACTOROUT qSDSD &INDTHEZEROSOFEACHFUNCTION FSXDX X I ??? ^ ^ &ACTORTHEPERFECTSQUARE q q q I ÌÊ}iLÀ>ÊÓ ,iÌi>V #OMPLEX.UMBERSAND2OOTS ,%33/. X XIr #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED *À>VÌViÊ #OMPLEX.UMBERSAND2OOTS 3OLVEEACHEQUATION X ?? ££I 4HEIMPEDANCEOFANELECTRICALCIRCUITISAWAYOFMEASURINGHOWMUCHTHE CIRCUITIMPEDESTHEFLOWOFELECTRICITY4HEIMPEDANCECANBEACOMPLEX NUMBER!CIRCUITISBEINGDESIGNEDTHATMUSTHAVEANIMPEDANCETHAT SATISFIESTHEFUNCTIONFSXDX XWHEREXISAMEASUREOFTHE IMPEDANCE&INDTHEZEROSOFTHEFUNCTION B (OWCOULDYOUCHECKTHATTHESEROOTSARECORRECT ,%33/. I 3OLVE XrSOXIANDI #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED XÊÊÎÊÊIÊÊrxÊÊ &INDEACHCOMPLEXCONJUGATE B (OWCOULDYOUCHECKTHATTHESEROOTSARECORRECT ^ XÊÊ£ÊÊIÊÊrÎÊÊ A 7HATARETHEROOTSOFTHEEQUATIONX £Ê]ÊYÊÊÊÊÚÚ £Ê XÊÊÊÊÚÚ Î Ó &INDTHEZEROSOFEACHFUNCTION 3OLVE IXSYDI XISYDI I XÊÊIÊÊrÓ£ÊÊ &INDTHEVALUESOFXANDYTHATMAKEEACHEQUATIONTRUE I I ^ XÊÊ{IÊÊrÎÊÊ X ^ ^ I q ^ XÊÊIÊÊrÇÊÊ X ?? 4HECOMPLEXCONJUGATEOFABIISABI7HATISTHECOMPLEX CONJUGATEOFEACHOFTHEFOLLOWING X XÊÊÎIrÎÊÊ I ^ I Î X ^ q I £ÊI ÊÚÚ 3OLVEEACHEQUATION q q ÈIÊÊr ÓÊÊ ^ q I q ^ {IÊÊr ÓÊÊ %XPRESSEACHNUMBERINTERMSOFI ^ ?? q q 7HATISTHEVALUEOFTHESQUAREOFI r ^ ^ q X ^ 7HATISANOTHERWAYOFEXPRESSINGq *À>VÌViÊ #OMPLEX.UMBERSAND2OOTS --" ^ ^ 3IMPLIFY qq ^ Iq I )MAGINARY 2EAL %XPRESSINTERMSOFI #OMPLEXNUMBERSARENUMBERSTHATCANBEWRITTENINTHEFORMABI 3OLVE $OESTHEFUNCTIONFSXDSXD HAVEREALORIMAGINARYZEROS(OW CANYOUDETERMINETHATWITHOUTANYCALCULATIONSORGRAPHING 4HECOMPLEXCONJUGATEOFIISI )MAGINARYPOSSIBLEANSWERSINCEAISPOSITIVETHEPARABOLAOPENS UPWARDANDTHEVERTEXISATTHEMINIMUM3INCETHEFUNCTIONISINVERTEX FORMYOUCANTELLTHATTHEVERTEXISATTE7ITHAMINIMUMATTHE FUNCTIONNEVERCROSSESTHEXAXISSOTHEZEROSHAVETOBEIMAGINARY %XPRESSEACHNUMBERINTERMSOFI ^ ^ Ir 4HEBEGINNINGANDENDOFTHEFLIGHTWHENTHESPEEDOFTHEROCKETIS Copyright © by Holt, Rinehart and Winston. All rights reserved. AK4up.indd 83 I ^ Ir ^ q I ^ Ir &INDEACHCOMPLEXCONJUGATE I .OPOSSIBLEANSWERTHEZEROSAREIMAGINARYBECAUSETHEGRAPHNEVER CROSSESTHEXAXISSOTHEFUNCTIONNEVEREQUALS4HESPEEDOFTHEROCKET MUSTBEBEFORETAKEOFFANDAFTERLANDING #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED Ir q ^ C )S*OELSFUNCTIONCORRECT%XPLAIN ^ TI q ^ qSDSD SD ^ q B 3OLVETHEEQUATIONTOFINDTHEZEROSOFTHEFUNCTION ^ q ^ DSD qSDS A 7HATDOESSSTDREPRESENT ^ q *OELWROTETHEFUNCTIONSSTDTTTOAPPROXIMATETHESPEEDOFAMODEL ROCKETTHATHEBUILT4HEFUNCTIONMODELSTHESPEEDOFTHEROCKETSATAGIVENTIMET 7RITEASABI &INDII 4HECOMPLEXCONJUGATEOFABIISABI (OLT!LGEBRA I I #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED 83 I I I (OLT!LGEBRA Holt Algebra 2 5/20/06 2:39:40 PM ,iÌi>V #OMPLEX.UMBERSAND2OOTSCONTINUED ,%33/. xx xx )FAQUADRATICEQUATIONWITHREALCOEFFICIENTSHASNONREALROOTSTHOSE ROOTSARECOMPLEXCONJUGATES"UTWHATIFTHECOEFFICIENTSOFTHEQUADRATIC EQUATIONAREALSOCOMPLEXORIMAGINARYNUMBERS#ONSIDERTHEFACTORED EQUATION SXIDSXID 4HESOLUTIONSOFTHISEQUATIONAREIANDI4HEEXPANDEDPOLYNOMIALIS XIX .OTICETHATTHECOEFFICIENTSARENOTALLREALNUMBERS4HATISWHYTHE COMPLEXSOLUTIONSARENOTCONJUGATESOFONEANOTHER%QUATIONSOFTHIS TYPEWHERETHEMIDDLETERMCONTAINSANIMAGINARYNUMBERAREFACTORED SIMILARLYTOTHOSEWITHREALCOEFFICIENTSEXCEPTTHESIGNOFTHECONSTANTTERM WILLBEDIFFERENTDUETOTHEPRESENCEOFTHEIMAGINARYNUMBERS ^ 9OUCANUSETHESQUAREROOTPROPERTYANDqITOSOLVEQUADRATICEQUATIONSWITH IMAGINARYSOLUTIONS 3OLVEX ^ ^ Xq q 4AKETHESQUAREROOTOFBOTHSIDES ^ 2EMEMBERSq D I %XPRESSINTERMSOFI XI #HECKEACHROOTSIDISD SIDISD 3OLVEX X X 3UBTRACTFROMBOTHSIDES !LL2EAL#OEFFICIENTS $IVIDEBOTHSIDESBY X X SXDSXD SXIDSXID XORX XIORXI ^ ^ X q 4AKETHESQUAREROOTOFBOTHSIDES q XI %XPRESSINTERMSOFI #HECKEACHROOT >i}i )MAGINARY#OEFFICIENTS --" 3OME)MAGINARY#OEFFICIENTS X IX 3OLVEEACHEQUATIONBYFACTORING SID SDI S D SID SDI S D ÓI]ÊÇI ÈI]ÊnI I]Ê£ÓI xI]Ê{I £ÈI]ÊÎÈI X IX X IX X IX X IX 3OLVEEACHEQUATION X X Xq SDSD SD ^ XIr XI Xr XI X X ^ Xr ,OOKATEQUATIONSOFTHEFORMIX XI)NTHISCASEBOTH THESQUAREDTERMANDTHECONSTANTCONTAINIMAGINARYCOEFFICIENTS4HIS EQUATIONFACTORSINTOTHEBINOMIALSSIXDANDSXIDANDTHE -ULTIPLYTHENUMERATORANDDENOMINATOROFTHE SOLUTIONSAREIAND?? I I FRACTIONBYITOOBTAIN?? X ^ ^ X X X IX X 3OLVEEACHEQUATIONBYFACTORING7RITETHESOLUTIONSINABIFORM X ÊÚÚ Ê{ÊI]ÊI Î ÚÚ Ê£ÊI]ÊÓI x IX XI X X ^ ^ Xr XI X ^ Xr XI XrTETE TE ^ ÎI]ÊxI XIr IXXI IX XI ÊÚÚÚ Ê£ÎÊÊÊI]ÊxI { x ÎÊI ÚÚ Ê ÊI]ÊÊÊÚÚ È Ó IX XI IX XI #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED --" xx (OLT!LGEBRA *ÀLiÊ-Û} #OMPLEX.UMBERSAND2OOTS xx 4HESQUAREROOTOFAREALNUMBERCANBEPOSITIVEORNEGATIVE4HE ^ IMAGINARYNUMBERIREPRESENTSq 9OUCANUSEITOFINDTHESQUARE ROOTSOFIMAGINARYNUMBERS +ATEWATCHESSOMEOFTHECONTESTANTS3HETHEORIZESTHATIFTHE PLATFORMLAUNCHESACONTESTANTWITHATAKEOFFVELOCITYOFATLEAST FEETPERSECONDTHECONTESTANTCANRINGTHEBELL TÊÊ£ÊÚÚIÊ Ó A &INDTHEZEROSFORTHEFUNCTIONUSINGFEET PERSECONDASTHETAKEOFFVELOCITY ^ q q SD q q Iq ^ ^ 3OLVE X ÆÊ«ÃÃLiÊ>ÃÜiÀ\ÊÌ iÊÀÌÃÊ>ÀiÊ>}>ÀÞÊÕLiÀð &UNCTION 2OOTS DSTDTT £ÊTÎÊIr^ ÊÊÊÚÚ ££ÊÊEÊ { £ÊÊÊÊÚÚIÊ Ó ^ £ ÚÚ Ê Ê ÊTxÊr xÊÊEÊ { ^ ÚÚ ÊÎÊ ÊÊr £ÊÊ Ó DSTDT ??T B &ORWHICHVALUESOFBINTHETABLE ARETHEROOTSREAL DSTDT??T BÊÊ{äÊ>`Ê{n DSTDT??T C 7HATDIFFERENCEDOESITMAKEIF THEROOTSAREREAL 5SINGTHERESULTSFROMTHETABLEANDTHEFUNCTION ESTIMATETHEMINIMUMTAKEOFFVELOCITYNEEDEDFOR ACONTESTANTTOBEABLETORINGTHEBELL # $ XI SD !NSWEREACHQUESTION #IRCLETHEIMAGINARYNUMBERS ^ ^ Iq q ^ I q ^ q SD 5SEITOREPRESENTANUMBERWHOSESQUAREIS ÎIÊÀÊÎI #ONSIDERTHEEQUATIONX A &INDTHESOLUTIONSFORTHEEQUATION ^ LÕÌÊÎÈÊviiÌÊ«iÀÊÃiV` XÊÓÊÊ£]ÊÃÊXÊÊr£ÊÊ]ÊXÊÊIÊ>`ÊI B 7HYDOESNTTHISEQUATIONHAVEREALROOTS -IRKOSUGGESTSUSINGFOURBELLSAT HEIGHTSOFANDFEETFROM THEPLATFORM(OWMANYOFTHEBELLSCAN ACONTESTANTREACHIFTHETAKEOFFVELOCITY ISFEETPERSECOND ! Xq SD "OTHIANDIARESOLUTIONSOFX #HOOSETHELETTERFORTHEBESTANSWER " ^ SIDSDI *ÃÃLiÊ>ÃÜiÀ\Ê,i>ÊÀÌÃÊi>ÊÌ >ÌÊÀ}}ÊÌ iÊLiÊÃÊ«ÃÃLi° #HECKTHESOLUTION SIDI X A #OMPLETETHETABLETOSHOWTHE ROOTSFORDIFFERENTVALUESOFB ^ ^ 9OUCANALSOUSEITOSOLVEQUADRATICEQUATIONSTHATHAVENOREAL SOLUTIONS B )S+ATESTHEORYVALID%XPLAIN -IRKOSUGGESTSTHEYVARYTHEVALUEOF B BANDDETERMINEFORWHICHVALUESOFB THEROOTSAREREAL ÌÊ}iLÀ>ÊÓ ,i>`}Ê-ÌÀ>Ìi}Þ 5NDERSTAND3YMBOLS --" !TACARNIVALANEWATTRACTIONALLOWSCONTESTANTSTOJUMPOFFA SPRINGBOARDONTOAPLATFORMTOBELAUNCHEDVERTICALLYINTOTHEAIR 4HEOBJECTISTORINGABELLLOCATEDFEETOVERHEAD4HEDISTANCE FROMTHEBELLINFEETISMODELEDBYTHEFUNCTION DTTBTWHERETISTHETIMEINSECONDSAFTERLEAVINGTHE PLATFORMANDBISTHETAKEOFFVELOCITYFROMTHEPLATFORM #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED !TWHATHEIGHTMUSTABELLBEPLACEDFOR ACONTESTANTTOREACHITWITHATAKEOFF VELOCITYOFFEETPERSECOND iV>ÕÃiÊÌ iÊõÕ>ÀiÊvÊ>ÊÀi>ÊÕLiÀÊV>ÌÊLiÊ>Êi}>ÌÛiÊÕLiÀ ^ ^ 3HOWTHATIq ANDIq ARETHESOLUTIONSOFX ^ ^ Ó Ó ^ Ó ! FEETORLESS " FEETORLESS )SIIAREALORANIMAGINARYNUMBER%XPLAIN # FEETORLESS Ó ^ Ó Ó ÊTÊrxÊÊIEÊ ÊÊÊÊTÊr xÊÊEÊ ÊTIEÊ ÊÊxÊÊT£ÊEÊÊxÆÊÊÊTr xÊIEÊ ÊÊÊÊTr xÊÊEÊ ÊTIEÊ Ê ÊxÊÊT£ÊEÊÊx Ó ,i>ÊÕLiÀÆÊÊÊTÎIETxIEÊÊ£xÊIÊ ÊÊ£xÊÊT£ÊEÊÊ£x $ FEETORLESS #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED Copyright © by Holt, Rinehart and Winston. All rights reserved. AK4up.indd 84 ÌÊ}iLÀ>ÊÓ #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED 84 ÌÊ}iLÀ>ÊÓ Holt Algebra 2 5/20/06 2:40:07 PM