Download Reteach Complex Numbers and Roots

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

System of linear equations wikipedia , lookup

Root of unity wikipedia , lookup

Elementary algebra wikipedia , lookup

Factorization wikipedia , lookup

History of algebra wikipedia , lookup

System of polynomial equations wikipedia , lookup

Equation wikipedia , lookup

Quadratic equation wikipedia , lookup

Quartic function wikipedia , lookup

Cubic function wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Transcript
Name
Date
Class
Reteach
LESSON
5-5
Complex Numbers and Roots
An imaginary number is the square root of a negative number.
Use the definition 1 i to simplify square roots.
Simplify.
25
25 1 Factor out 1.
25 1
Separate roots.
5 1
Simplify.
5i
Express in terms of i.
48
48 1 Factor out 1.
48 1
Separate roots.
16 3 1
Factor the perfect square.
4 3 1
Simplify.
4i 3
Imaginary
Real
Express in terms of i.
Complex numbers are numbers that can be written in the form a bi.
Write as a bi
Find 0 5i 5i
The complex conjugate of a bi is a bi.
The complex conjugate of 5i is 5i.
Express each number in terms of i.
1. 72
2. 445
3. 100
36 2 1 4 9 5 1 6i 2
12i 5
4. 5 54
5. 264
15i 6
10i
6. 98
16i
7i 2
Find each complex conjugate.
7. 9i
8. 1 4i
9. 12 i
1 4i
9i
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c05-5_rt.indd 38
38
12 i
Holt Algebra 2
12/15/05 4:38:11 PM
Process Black
Name
LESSON
5-5
Date
Class
Reteach
Complex Numbers and Roots (continued)
You can use the square root property and 1 i to solve quadratic equations with
imaginary solutions.
Solve x 2 64.
x 2 64
Take the square root of both sides.
2
Remember: 1 i 2 1
Express in terms of i.
x 8i
2
2
Check each root: 8i 64i 64 1 64
8i 2 64i 2 64 1 64
2
Solve 5x 80 0.
2
5x 80
x 16
2
2
Subtract 80 from both sides.
Divide both sides by 5.
x 16 Take the square root of both sides.
x 4i
Express in terms of i.
Check each root:
2
5 4i 80
5 16 i 2 80
80 1 80
0
2
5 4i 80
2
5 16 i 80
80 1 80
0
Solve each equation.
10. x 2 18 0
11. 6x 2 24 0
x 2 18
x 2 49
6x 2 24
x 9 2 1 x 3i 2
13. x 2 100 0
x 49
x 2i
x 7i
14. 3x 2 108 0
x 2 36
x 100
x 36
x 10i
x 6i
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c05-5_rt.indd 39
x 4
x 2 100
12. x 2 49 0
39
15. x 2 12 0
x 2 12
x 4 3 1 x 2i 3
Holt Algebra 2
12/15/05 4:38:12 PM
Process Black
*À>V̈ViÊ
#OMPLEX.UMBERSAND2OOTS
,%33/.
x‡x
x‡x
!NSWEREACHQUESTION
%XPRESSEACHNUMBERINTERMSOFI
^
#IRCLETHECOMPLEXNUMBERS
SD
I
I
I
I
A
BI
^
7HATISTHEREALPARTOFTHECOMPLEXNUMBERABI
7HATISTHEIMAGINARYPARTOFTHECOMPLEXNUMBERABI
^
^
^
I
I
I
I
XÊÊ{]ÊYÊÊx
FSXDX X
GSXDX X
^
^
XrSOXIANDI
I
0OSSIBLEANSWER9OUCOULDMULTIPLYTXIETXIETOGETTHE
ORIGINALEXPRESSION
I
ÎI
A 7HATARETHEROOTSOFTHEEQUATIONX
^
{ÎI
0OSSIBLEANSWER9OUCOULDMULTIPLYTXIETXIETOGETTHE
ORIGINALEXPRESSION
^
ÎÊÊIÊÊr ££ÊÊ
x‡x
(OLT!LGEBRA
x‡x
!NIMAGINARYNUMBERISTHESQUAREROOTOFANEGATIVENUMBER
^
5SETHEDEFINITIONq ITOSIMPLIFYSQUAREROOTS
^
3IMPLIFY
^
^
XIr
q ^
^
GSXDXX
^
XIr
XÊÊI
HSXDXX
^
Y
X??
IXSYDI
XY
^
3IMPLIFY
I
%XPRESSINTERMSOFI
^
^
XY
&ACTOROUT
q SDSD
^
^
3EPARATEROOTS
q SDq
^
I???
^
Ir q
q &INDEACHCOMPLEXCONJUGATE
qI
3EPARATEROOTS
^
XIr
YISXDI
^
qSDq
&INDTHEVALUESOFXANDYTHATMAKEEACHEQUATIONTRUE
XISYDI
&ACTOROUT
qSDSD
&INDTHEZEROSOFEACHFUNCTION
FSXDX X
I
???
^
^
&ACTORTHEPERFECTSQUARE
q q
q
I
œÌʏ}iLÀ>ÊÓ
,iÌi>V…
#OMPLEX.UMBERSAND2OOTS
,%33/.
X XIr
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*À>V̈ViÊ
#OMPLEX.UMBERSAND2OOTS
3OLVEEACHEQUATION
X
??
££I
4HEIMPEDANCEOFANELECTRICALCIRCUITISAWAYOFMEASURINGHOWMUCHTHE
CIRCUITIMPEDESTHEFLOWOFELECTRICITY4HEIMPEDANCECANBEACOMPLEX
NUMBER!CIRCUITISBEINGDESIGNEDTHATMUSTHAVEANIMPEDANCETHAT
SATISFIESTHEFUNCTIONFSXDX XWHEREXISAMEASUREOFTHE
IMPEDANCE&INDTHEZEROSOFTHEFUNCTION
B (OWCOULDYOUCHECKTHATTHESEROOTSARECORRECT
,%33/.
I
3OLVE
XrSOXIANDI
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
XÊÊÎÊÊIÊÊrxÊÊ
&INDEACHCOMPLEXCONJUGATE
B (OWCOULDYOUCHECKTHATTHESEROOTSARECORRECT
^
XÊÊ£ÊÊIÊÊrÎÊÊ
A 7HATARETHEROOTSOFTHEEQUATIONX £Ê]ÊYÊÊÊÊÚÚ
£Ê
XÊÊÊÊÚÚ
Î
Ó
&INDTHEZEROSOFEACHFUNCTION
3OLVE
IXSYDI
XISYDI
I
XÊÊIÊÊrÓ£ÊÊ
&INDTHEVALUESOFXANDYTHATMAKEEACHEQUATIONTRUE
I
I
^
XÊÊ{IÊÊrÎÊÊ
X ^
^
I
q
^
XÊÊIÊÊrÇÊÊ
X
??
4HECOMPLEXCONJUGATEOFABIISABI7HATISTHECOMPLEX
CONJUGATEOFEACHOFTHEFOLLOWING
X XÊÊÎIrÎÊÊ
I
^
I
Î
X ^
q
I
£ÊI
ÊÚÚ
3OLVEEACHEQUATION
q q
ÈIÊÊr ÓÊÊ
^
q
I
q
^
{IÊÊr ÓÊÊ
%XPRESSEACHNUMBERINTERMSOFI
^
??
q
q
7HATISTHEVALUEOFTHESQUAREOFI
r
^
^
q
X
^
7HATISANOTHERWAYOFEXPRESSINGq
*À>V̈ViÊ
#OMPLEX.UMBERSAND2OOTS
--"
^
^
3IMPLIFY
qq
^
Iq I
)MAGINARY
2EAL
%XPRESSINTERMSOFI
#OMPLEXNUMBERSARENUMBERSTHATCANBEWRITTENINTHEFORMABI
3OLVE
$OESTHEFUNCTIONFSXDSXD HAVEREALORIMAGINARYZEROS(OW
CANYOUDETERMINETHATWITHOUTANYCALCULATIONSORGRAPHING
4HECOMPLEXCONJUGATEOFIISI
)MAGINARYPOSSIBLEANSWERSINCEAISPOSITIVETHEPARABOLAOPENS
UPWARDANDTHEVERTEXISATTHEMINIMUM3INCETHEFUNCTIONISINVERTEX
FORMYOUCANTELLTHATTHEVERTEXISATTE7ITHAMINIMUMATTHE
FUNCTIONNEVERCROSSESTHEXAXISSOTHEZEROSHAVETOBEIMAGINARY
%XPRESSEACHNUMBERINTERMSOFI
^
^
Ir 4HEBEGINNINGANDENDOFTHEFLIGHTWHENTHESPEEDOFTHEROCKETIS
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 83
I
^
Ir ^
q
I
^
Ir &INDEACHCOMPLEXCONJUGATE
I
.OPOSSIBLEANSWERTHEZEROSAREIMAGINARYBECAUSETHEGRAPHNEVER
CROSSESTHEXAXISSOTHEFUNCTIONNEVEREQUALS4HESPEEDOFTHEROCKET
MUSTBEBEFORETAKEOFFANDAFTERLANDING
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Ir q
^
C )S*OELSFUNCTIONCORRECT%XPLAIN
^
TI
q
^
qSDSD
SD
^
q
B 3OLVETHEEQUATIONTOFINDTHEZEROSOFTHEFUNCTION
^
q
^
DSD
qSDS
A 7HATDOESSSTDREPRESENT
^
q
*OELWROTETHEFUNCTIONSSTDTTTOAPPROXIMATETHESPEEDOFAMODEL
ROCKETTHATHEBUILT4HEFUNCTIONMODELSTHESPEEDOFTHEROCKETSATAGIVENTIMET
7RITEASABI
&INDII
4HECOMPLEXCONJUGATEOFABIISABI
(OLT!LGEBRA
I
I
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
83
I
I
I
(OLT!LGEBRA
Holt Algebra 2
5/20/06 2:39:40 PM
,iÌi>V…
#OMPLEX.UMBERSAND2OOTSCONTINUED
,%33/.
x‡x
x‡x
)FAQUADRATICEQUATIONWITHREALCOEFFICIENTSHASNONREALROOTSTHOSE
ROOTSARECOMPLEXCONJUGATES"UTWHATIFTHECOEFFICIENTSOFTHEQUADRATIC
EQUATIONAREALSOCOMPLEXORIMAGINARYNUMBERS#ONSIDERTHEFACTORED
EQUATION
SXIDSXID
4HESOLUTIONSOFTHISEQUATIONAREIANDI4HEEXPANDEDPOLYNOMIALIS
XIX
.OTICETHATTHECOEFFICIENTSARENOTALLREALNUMBERS4HATISWHYTHE
COMPLEXSOLUTIONSARENOTCONJUGATESOFONEANOTHER%QUATIONSOFTHIS
TYPEWHERETHEMIDDLETERMCONTAINSANIMAGINARYNUMBERAREFACTORED
SIMILARLYTOTHOSEWITHREALCOEFFICIENTSEXCEPTTHESIGNOFTHECONSTANTTERM
WILLBEDIFFERENTDUETOTHEPRESENCEOFTHEIMAGINARYNUMBERS
^
9OUCANUSETHESQUAREROOTPROPERTYANDqITOSOLVEQUADRATICEQUATIONSWITH
IMAGINARYSOLUTIONS
3OLVEX
^
^
Xq
q
4AKETHESQUAREROOTOFBOTHSIDES
^ 2EMEMBERSq D I
%XPRESSINTERMSOFI
XI
#HECKEACHROOTSIDISD
SIDISD
3OLVEX
X
X 3UBTRACTFROMBOTHSIDES
!LL2EAL#OEFFICIENTS
$IVIDEBOTHSIDESBY
X X
SXDSXD
SXIDSXID
XORX
XIORXI
^
^
X q 4AKETHESQUAREROOTOFBOTHSIDES
q
XI
%XPRESSINTERMSOFI
#HECKEACHROOT
…>i˜}i
)MAGINARY#OEFFICIENTS
--"
3OME)MAGINARY#OEFFICIENTS
X IX
3OLVEEACHEQUATIONBYFACTORING
SID
SDI
S
D SID
SDI
S
D ÓI]ÊÇI
ÈI]ÊnI
™I]Ê£ÓI
xI]Ê{™I
£ÈI]ÊÎÈI
X IX
X IX
X IX
X IX
3OLVEEACHEQUATION
X X Xq SDSD
SD
^
XIr
XI
Xr
XI
X
X ^
Xr
,OOKATEQUATIONSOFTHEFORMIX XI)NTHISCASEBOTH
THESQUAREDTERMANDTHECONSTANTCONTAINIMAGINARYCOEFFICIENTS4HIS
EQUATIONFACTORSINTOTHEBINOMIALSSIXDANDSXIDANDTHE
-ULTIPLYTHENUMERATORANDDENOMINATOROFTHE
SOLUTIONSAREIAND??
I
I
FRACTIONBYITOOBTAIN??
X ^
^
X X
X IX
X 3OLVEEACHEQUATIONBYFACTORING7RITETHESOLUTIONSINABIFORM
X
ÊÚÚ
Ê{ÊI]ÊI
Î
ÚÚ
Ê£ÊI]ÊÓI
x
IX XI
X
X
^
^
Xr
XI
X ^
Xr
XI
XrTETE
TE
^
ÎI]ÊxI
XIr
IXXI
IX XI
ÊÚÚÚ
Ê£ÎÊÊÊI]ÊxI
{
x
ÎÊI
ÚÚ
Ê ÊI]ÊÊÊÚÚ
È Ó
IX XI
IX XI
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
--"
x‡x
(OLT!LGEBRA
*ÀœLi“Ê-œÛˆ˜}
#OMPLEX.UMBERSAND2OOTS
x‡x
4HESQUAREROOTOFAREALNUMBERCANBEPOSITIVEORNEGATIVE4HE
^
IMAGINARYNUMBERIREPRESENTSq 9OUCANUSEITOFINDTHESQUARE
ROOTSOFIMAGINARYNUMBERS
+ATEWATCHESSOMEOFTHECONTESTANTS3HETHEORIZESTHATIFTHE
PLATFORMLAUNCHESACONTESTANTWITHATAKEOFFVELOCITYOFATLEAST
FEETPERSECONDTHECONTESTANTCANRINGTHEBELL
TÊÊ£ÊÚÚIÊ
Ó
A &INDTHEZEROSFORTHEFUNCTIONUSINGFEET
PERSECONDASTHETAKEOFFVELOCITY
^
q
q SD
q q
Iq
^
^
3OLVE
X œÆÊ«œÃÈLiÊ>˜ÃÜiÀ\Ê̅iÊÀœœÌÃÊ>Àiʈ“>}ˆ˜>ÀÞʘՓLiÀð
&UNCTION
2OOTS
DSTDTT
£ÊTÎÊIr^
ÊÊÊÚÚ
££ÊÊEÊ
{
£ÊÊÊÊÚÚIÊ
Ó
^
£
ÚÚ
Ê Ê ÊTxÊr xÊÊEÊ
{
^
ÚÚ
ÊÎÊ ÊÊr £ÊÊ
Ó
DSTDT ??T
B &ORWHICHVALUESOFBINTHETABLE
ARETHEROOTSREAL
DSTDT??T
BÊÊ{äÊ>˜`Ê{n
DSTDT??T
C 7HATDIFFERENCEDOESITMAKEIF
THEROOTSAREREAL
5SINGTHERESULTSFROMTHETABLEANDTHEFUNCTION
ESTIMATETHEMINIMUMTAKEOFFVELOCITYNEEDEDFOR
ACONTESTANTTOBEABLETORINGTHEBELL
# $ XI
SD
!NSWEREACHQUESTION
#IRCLETHEIMAGINARYNUMBERS
^
^
Iq
q ^
I
q
^
q SD
5SEITOREPRESENTANUMBERWHOSESQUAREIS
ÎIʜÀÊÎI
#ONSIDERTHEEQUATIONX
A &INDTHESOLUTIONSFORTHEEQUATION
^
LœÕÌÊÎÈÊviiÌÊ«iÀÊÃiVœ˜`
XÊÓÊÊ£]ÊÜÊXÊÊr£ÊÊ]ÊXÊÊIÊ>˜`ÊI
B 7HYDOESNTTHISEQUATIONHAVEREALROOTS
-IRKOSUGGESTSUSINGFOURBELLSAT
HEIGHTSOFANDFEETFROM
THEPLATFORM(OWMANYOFTHEBELLSCAN
ACONTESTANTREACHIFTHETAKEOFFVELOCITY
ISFEETPERSECOND
! Xq
SD
"OTHIANDIARESOLUTIONSOFX
#HOOSETHELETTERFORTHEBESTANSWER
" ^
SIDSDI
*œÃÈLiÊ>˜ÃÜiÀ\Ê,i>ÊÀœœÌÃʓi>˜Ê̅>ÌÊÀˆ˜}ˆ˜}Ê̅iÊLiÊˆÃÊ«œÃÈLi°
#HECKTHESOLUTION
SIDI
X
A #OMPLETETHETABLETOSHOWTHE
ROOTSFORDIFFERENTVALUESOFB
^
^
9OUCANALSOUSEITOSOLVEQUADRATICEQUATIONSTHATHAVENOREAL
SOLUTIONS
B )S+ATESTHEORYVALID%XPLAIN
-IRKOSUGGESTSTHEYVARYTHEVALUEOF B
BANDDETERMINEFORWHICHVALUESOFB
THEROOTSAREREAL
œÌʏ}iLÀ>ÊÓ
,i>`ˆ˜}Ê-ÌÀ>Ìi}Þ
5NDERSTAND3YMBOLS
--"
!TACARNIVALANEWATTRACTIONALLOWSCONTESTANTSTOJUMPOFFA
SPRINGBOARDONTOAPLATFORMTOBELAUNCHEDVERTICALLYINTOTHEAIR
4HEOBJECTISTORINGABELLLOCATEDFEETOVERHEAD4HEDISTANCE
FROMTHEBELLINFEETISMODELEDBYTHEFUNCTION
DTTBTWHERETISTHETIMEINSECONDSAFTERLEAVINGTHE
PLATFORMANDBISTHETAKEOFFVELOCITYFROMTHEPLATFORM
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
!TWHATHEIGHTMUSTABELLBEPLACEDFOR
ACONTESTANTTOREACHITWITHATAKEOFF
VELOCITYOFFEETPERSECOND
iV>ÕÃiÊ̅iÊõÕ>ÀiʜvÊ>ÊÀi>Ê˜Õ“LiÀÊV>˜˜œÌÊLiÊ>ʘi}>̈ÛiʘՓLiÀ
^
^
3HOWTHATIq ANDIq ARETHESOLUTIONSOFX
^
^
Ó
Ó
^
Ó
! FEETORLESS
" FEETORLESS
)SIIAREALORANIMAGINARYNUMBER%XPLAIN
# FEETORLESS
Ó
^
Ó
Ó
ÊTÊrxÊÊIEÊ ÊÊÊÊTÊr xÊÊEÊ ÊTIEÊ ÊÊxÊÊT£ÊEÊÊxÆÊÊÊTr xÊIEÊ ÊÊÊÊTr xÊÊEÊ ÊTIEÊ Ê
ÊxÊÊT£ÊEÊÊx
Ó
,i>Ê˜Õ“LiÀÆÊÊÊTÎIETxIEÊÊ£xÊIÊ ÊÊ£xÊÊT£ÊEÊÊ£x
$ FEETORLESS
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 84
œÌʏ}iLÀ>ÊÓ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
84
œÌʏ}iLÀ>ÊÓ
Holt Algebra 2
5/20/06 2:40:07 PM