# Download Lecture Notes - Bandpass Circuits File

Document related concepts

405-line television system wikipedia, lookup

Mathematics of radio engineering wikipedia, lookup

Klystron wikipedia, lookup

Analog television wikipedia, lookup

Amplifier wikipedia, lookup

Crystal radio wikipedia, lookup

Transistor–transistor logic wikipedia, lookup

Spectrum analyzer wikipedia, lookup

Audio crossover wikipedia, lookup

Oscilloscope history wikipedia, lookup

Schmitt trigger wikipedia, lookup

Operational amplifier wikipedia, lookup

Equalization (audio) wikipedia, lookup

Analog-to-digital converter wikipedia, lookup

Switched-mode power supply wikipedia, lookup

Integrating ADC wikipedia, lookup

Resistive opto-isolator wikipedia, lookup

Bode plot wikipedia, lookup

Power electronics wikipedia, lookup

Mixing console wikipedia, lookup

Valve RF amplifier wikipedia, lookup

Superheterodyne receiver wikipedia, lookup

Opto-isolator wikipedia, lookup

Regenerative circuit wikipedia, lookup

Index of electronics articles wikipedia, lookup

Wien bridge oscillator wikipedia, lookup

Rectiverter wikipedia, lookup

Radio transmitter design wikipedia, lookup

Heterodyne wikipedia, lookup

Phase-locked loop wikipedia, lookup

Transcript
```Chapter 4
Bandpass Circuits
 Limiters
 Mixers, Upconverters and Downconverters
 Detectors, Envelope Detector, Product Detector
 Phase Locked Loops (PLL)
Huseyin Bilgekul
Eeng360 Communication Systems I
Department of Electrical and Electronic Engineering
Eastern Mediterranean University
Eeng 360 1
Limiters
 Limiter is a nonlinear circuit with an output
saturation characteristic.
 It rejects envelope variations but preserves the
phase variations.
vin(t )  R(t ) cos(ct   (t ))
vout (t )  KVL cos(ct   (t ))
Ideal limiter characteristic with illustrative input and unfiltered
output waveforms.
Eeng 360 2
Mixers
 Ideal mixer is a mathematical multiplier of two input signals. One of the signals is
sinusoidal generated by a local oscillator. Mixing results in frequency translation.
SSB mixer

Bandpass Input Signal vin  t   Re gin  t  e jct

Eeng 360 3
Mixers
Bandpass Input Signal

vin  t   Re gin  t  e jct

Mixer Output


v1  t    A0 Re g in  t  e jct  cos 0t
A0
 gin  t  e jct  gin*  t  e  jct  e jct  e  jct

4
A
j   t
 j   t
j   t
 j   t
 0  gin  t  e  c 0   gin*  t  e  c 0   gin  t  e  c 0   gin*  t  e  c 0  

4 
1
1 *
Re 
  
  

2
2
A
A
j   t
j   t
v1  t   0 Re g in  t  e  c 0   0 Re g in  t  e  c 0 
2
2
fu  f c  f 0
fd  fc  f0



UPCONVERSION
BANDPASS FILTER



DOWNCONVERSION
BASEBAND OR BANDPASS Eeng
FILTE
360 R
4
Choosing LO Frequency of Mixers
v1  t  



A0
A
j   t
j   t
Re gin  t  e  c 0   0 Re gin  t  e  c 0 
2
2
Up-conversion

Down-conversion
f d  fc  f0
fu  fc  f0
Baseband/bandpass
Filter (fc-f0)
Bandpass Filter
 If (fc- f0) = 0  Low Pass Filter gives baseband spectrum
 If (fc- f0 )> 0  Bandpass filter  Modulation is preserved
Filter Output: v2 t   Reg 2 t e j 
c
  0 t
  A2 Reg t e 
j  c   0 t
0
in

 If fc>f0  modulation on the mixer input is preserved
 If fc<f0 



A
A
v1 t   0 Re g in t e j  c   0 t  0 Re g in* t e j  0  c t
2
2

‘’ needs to be
positive
Complex envelope is conjugated ~ sidebands are exchanged
*
dt    gin  t  e
dt   Gin*   f 
 

- f  Upper & lower sidebands are exchanged
F  g
*
in

 t    g  t  e
*
in
 jt
*  Phase spectrum is inverted

 j   t
Eeng 360 5
Mixers (Up Converter and Down Converter)
 Complex envelope of an Up Converter:
g 2 t  
A0
g in t  ;
2
fu  fc  f0  0
- Amplitude is scaled by A0/2
 Complex envelope of a Down Converter:
f d  f c  f 0  0 i.e., f0<fc  down conversion with low-side injection
g 2 t  
A0
g in t 
2
- Amplitude is scaled by A0/2
f d  f 0  f c  0 i.e., f0>fc  down conversion with high-side injection
g2 
A0 *
g in t 
2
- Amplitude is scaled by A0/2
- Sidebands are reversed
from those on the input
Eeng 360 6
Mixer Realizations Without Multipliers
 Multiplication operation needed by mixers can be obtained by using a
nonlinear device together with a summer.
Nonlinear device used as a mixer.
Eeng 360 7
Mixer Realizations Without Multipliers
 Multiplication operation needed by mixers can also be obtained by using an
analog switch.
Linear time-varying device used as a mixer.
Eeng 360 8
Mixer Realizations Without Multipliers
Analysis of a double-balanced mixer
circuit.
Eeng 360 9
Frequency Multiplier
Frequency Multipliers consists of a nonlinear device together with a tuned circuit. The
frequency of the output is n times the frequency of the input.
vin(t )  R(t ) cos(ct   (t ))
v1 (t )  K n v n in(t )
 K n R n (t ) cos n (ct   (t ))
v1 (t )  CR n (t ) cos(nct  n (t )) 
Other Terms
vo (t )  CR n (t ) cos(nct  n (t ))
Eeng 360 10
Detector Circuits
 Detectors convert input bandpass waveform into an output baseband
waveform.
 Detector circuits can be designed to produce R(t), Θ(t), x(t) or y(t).
• Envelope Detector
• Product Detector
• Frequency Modulation Detector
Information
Signal g (t )
input
processing
m
Carrier
circuits
s (t )
Transmission
medium
(Channel)
r (t )
Carrier
circuits
g~ (t )
Signal
processing
~
m
Detector Circuits
Eeng 360 11
Envelope Detector
 Ideal envelope detector: Waveform at the output is a real envelope R(t) of its input
Bandpass input: vin (t )  Rt cosct   t 
Envelope Detector Output:
vout t   KR t 
Rt   0
K – Proportionality Constant
Diode Envelope Detector Circuit
Eeng 360 12
Envelope Detector
 The Time Constant RC must be chosen so that the envelope variations can be followed.
B 
1
 f c
2 RC
In AM, detected DC is used for Automatic Gain Control (AGC)
vout (t )  KR (t )
 K g (t )
 KAc 1  m(t ) 
 DC  Message
Eeng 360 13
Product Detector
 Product Detector is a Mixer circuit that down converts input to baseband.
fc- Freq. of the oscillator
θ0- Phase of the oscillator
Output of the multiplier:
v1  t   R  t  cos ct    t   A0 cos ct   0  
1
1
A0 R  t  cos   t    0   A0 R  t  cos  2ct   t    0 
2
2
LPF passes down conversion component:


1
1
A0 R  t  cos   t   0   A0 Re g  t  e  j0
g (t )  R (t )e j (t )  x (t )  jy (t )
2
2
Where g(t) is the complex envelope of the input and x(t) & y(t) are the quadrature
components of the input:
vout  t  
Eeng 360 14
Different Detectors Obtained from Product
Detector
 Oscillator phase synchronized with the in-phase component
 vout t  
if  0  0 :
1
A0 xt 
2
We obtain INPHASE DETECTOR.
 We obtain QUADRATURE PHASE DETECTOR
if  0  90
 We obtain ENVELOPE DETECTOR If the input has no
angle modulation and reference phase (θ0) =0
 We obtain PHASE DETECTOR If an angle
if
modulated signal is present at the input and reference
phase (θ0) =90
The product detector output is
If the phase difference is small
vout t  

1
A0 Ac t 
2
if  t   0
1
A0 y t 
2
 vout 
1
A0 Rt 
2
0  90 vin (t )  A cos ct    t  
1
A0 Re Ac e j  t  90 
2
vout t  
 vout 
c

or
vout t  
1
A0 Ac sin  t 
2
sin  t    t 
The output is proportional to the Phase difference (Sinusoidal phase characteristics)
Eeng 360 15
Frequency Modulation Detector
 A ideal FM Detector is a device that produces an output that is
proportional to the instantenous frequency of the input.
Frequency demodulation using slope detection.
vin (t )  A(t ) cos[ct   (t )]
t
 (t )  K f  m( )d

d (t ) 

v1 (t )  VL cos[ct   (t )] v2 (t )  VL c 
sin[ct   (t )]

dt 

d (t ) 
d (t ) 


vout (t )  VL c 

V



L  c


dt 
dt 


VLc  VL K f m(t )  DC  AC (Proportional to m(t ))
• The DC output can easily be blocked
Eeng 360 16
Frequency Detector Using Freq. to Amplitude Conversion
Figure 4–16 Slope detection using a single-tuned circuit for frequency-to
amplitude conversion.
Eeng 360 17
Balanced Discriminator
Eeng 360 18
Balanced zero-crossing FM detector.
Eeng 360 19
Phase Locked Loop (PLL)
 PLL can be used to Track Phase and Frequency of the carrier component of the incoming
signal
 Three basic components:
- Phase Detector : Multiplier (phase comparator)
- VCO : Voltage Controlled Oscillator
- Loop filter: LPF
 Operation is similar to a feedback system
Basic PLL.
Eeng 360 20
PLL, Voltage Controlled Oscillator (VCO)
Voltage Controlled Oscillator (VCO):
 Oscillator frequency is controlled by external voltage
 Oscillation frequency varies linearly with input voltage
 If e0(t) – VCO input voltage, then its output is a sinusoid of frequency
(t)=c+ce0(t)
 c - free-running frequency of the VCO.
 The multiplier output is further low-pass-filtered & then input to VCO
 This voltage changes the frequency of the oscillator & keeps it locked.
Eeng 360 21
Phase Locked Loop (PLL)
Let input signal be :
vin (t )  Ai sin[ ct   i (t )]
t
 o (t )  K v  v2 ( )d
Let the VCO output be: vo (t )  Ao cos[ct   o (t )]

The phase detector output v1(t) is given by :
v1 (t )  K m Ai Ao sin[  ct   i (t )] cos[ ct   0 (t )] 
K m Ai Ao
sin[  i (t ) - 0 (t)]  sin[2 ct   i (t )   0 (t)]
2
The sum frequency term is rejected by LPF so the filter output v2(t) is:
v2 (t )  K d [sin  e (t)]  f (t )
where
 e (t)   i (t) -  o (t)
and
Kd 
K m Ai Ao
2
 e(t) is called the Phase Error. The Phase Error voltage characteristics is SINUSOIDAL.
A PLL can track the incoming frequency only over a finite range  Lock/hold-in range
 The frequency range over which the input will cause the loop to lock  pull-in/capture
range
Eeng 360 22
Phase Locked Loop (PLL)
 Various types
of Phase Detector
characteristics used in PLL’s.
Eeng 360 23
Aplications of PLL
 PLL used for coherent detection of AM signals.
• A synchronized carrier signal is generated by the PLL.
• VCO locks with 90 phase difference so a -90 extra phase shift is needed.
• The generated carrier is used with a product detector to recover the envelope
Figure 4–24 PLL used for coherent detection of AM.
Eeng 360 24
Aplications of PLL
 PLL used as a frequency synthesizer.
Frequency dividers use integer values of M and N.
For M=1 frequency synthesizer acts as a frequency multiplier.
f x f out

M
N
f out 
N
fx
M
Figure 4–25 PLL used in a frequency synthesizer.
Eeng 360 25
```