Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometry Review Angle Measurement 360 2 radians, so 180 radians To convert from degrees to radians, multiply by To convert from radians to degrees, multiply by 180 180 . . Special Angles 2 3 120 3 135 4 5 150 6 180 2 90 0 r=1 3 / 2 270 60 3 45 4 30 6 Special Angles - Unit Circle Coordinates 1 , 3 2 2 1 , 1 2 2 3 , 1 2 2 1,0 0,1 1 3 , 2 2 π/2 3π/4 π/3 2π/3 π/4 5π/6 π/6 0 π 3π/2 0,1 r=1 1 ,1 2 2 3 1 , 2 2 1,0 Trig Functions - Definitions y sin r r csc y x cos r r sec x y tan x x cot y r r (x,y) x y 2 2 Trig Functions - Definitions opp sin hyp adj cos hyp opp tan adj hyp opp adj Trig Functions - Definitions opp sin hyp hyp csc opp adj cos hyp hyp sec adj opp tan adj adj cot opp Trig Functions Signs by quadrants sin, csc positive tan, cot positive all functions positive cos, sec positive Trig Identities Reciprocal 1 csc sin 1 sec cos 1 cot tan Quotient sin tan cos cos cot sin Trig Identities Pythagorean sin cos 1 2 2 tan 1 sec 2 2 1 cot csc 2 2 Trig Identities Double Angle sin 2 2 sin cos cos 2 cos sin 2 2 2 cos 1 2 1 2 sin 2 Inverse Trig Functions y sin1 x arcsin x is equivalent to x sin y y cos 1 x arccos x is equivalent to x cos y Solving Trig Equations Use algebra, then inverse trig functions or knowledge of special angles to solve. 1 example: if sin 2 0 2