Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
SECTION 10-3 Double Angle and Half-Angle Formulas TRIGONOMETRIC FUNCTIONS IN REALLIFE   Review how trigonometric functions are use in science and engineering to study light and sound waves. Review graphs on p. 380. SIN 2X AND SIN ½X   If you know the value of sin α, you do NOT double it to fine sin 2α. Nor do you halve it to find sin ½α. Complete activity on p. 380 – notice that the values are not the same for each graph. DOUBLE-ANGLE FORMULAS The following double-angle formulas are special cases of the formulas for sin (α + β), cos (α + β), and tan (α + β). If we let β = α in these formulas we obtain the following formulas.  sin (α + β) = sin α cos β + cos α sin β  sin (α + α) = sin α cos α + cos α sin α  sin 2α = 2 sin α cos α  DOUBLE-ANGLE FORMULAS cos (α + β) = cos α cos β- sin α sin β  cos (α + α) = cos α cos α – sin α sin α  cos 2  cos 2   sin 2   Using the fact thatsin 2   cos 2   1we can obtain alternative formulas for cos 2α: cos 2  1  2 sin 2  cos 2  2 cos 2   1 DOUBLE-ANGLE FORMULAS  To express tan 2α in terms of tan α, we again let β = α. tan   tan  tan      1  tan  tan  tan   tan  tan      1  tan  tan  2 tan  tan 2  1  tan 2  HALF-ANGLE FORMULAS  To obtain the sine and cosine half-angle formulas, we use formulas (8b) and (8c), replacing α with  2 2 cos 2  1  2 sin 2   x 2 x cos 2   1  2 sin 2 2 x cos x  1  2 sin 2 2 x 2 sin 2  1  cos x 2 sin x 1  cos x  2 2 cos 2  2 cos   1  x 2 x cos 2   2 cos 1 2 2 x cos x  2 cos 2  1 2 x 2 cos 2  1  cos x 2 cos x 1  cos x  2 2 HALF-ANGLE FORMULAS  When you use the half-angle formulas choose + or – depending on the quadrant in which x lies. 2 HALF-ANGLE FORMULA FOR TAN x  To derive a formula for tan , divide equation (10) by 2 equation (11): tan  The following formulas which can be derived by simplifying the radical expression in formula (12) may be more useful. x sin x tan  2 1  cos x  x 1  cos x  2 1  cos x x 1  cos x tan  2 sin x Notice that these formulas don’t need the ambiguous sign ±. DOUBLE-ANGLE AND HALF-ANGLE FORMULAS EXAMPLE  Simplify     sin    cos 2   2 2 2 2 tan 157.7 1  tan 2 157.7 EXAMPLE  Use a half-angle formula to evaluate each expression. sin (-67.5°) cos  4 EXAMPLE 1  If sin A = 3  A and     find cos 2A and cos 2 2