Download Ch. 6 - Chemical Bonds I. Why Atoms Combine

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Physical organic chemistry wikipedia , lookup

Stability constants of complexes wikipedia , lookup

Acid dissociation constant wikipedia , lookup

Homoaromaticity wikipedia , lookup

Enzyme catalysis wikipedia , lookup

Nucleophilic acyl substitution wikipedia , lookup

PH wikipedia , lookup

Ionic liquid wikipedia , lookup

Acid–base reaction wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Ion wikipedia , lookup

Ionic compound wikipedia , lookup

Chemical bond wikipedia , lookup

Transcript
Ch. 6 - Chemical Bonds
I. Why Atoms Combine
(p.298-302)
 Chemical Formula
 Chemical Bond
 Stability
A. Chemical Formula
• Shows:
1) elements in the compound
2) ratio of their atoms
H2O
1 oxygen atom
2 hydrogen atoms
B. Chemical Bond
• Strong attractive force between atoms or
ions in a molecule or compound.
• Formed by:
– transferring e- (losing or gaining)
– sharing e-
C. Stability
• Octet Rule
– most atoms form bonds in order to have 8
valence e– full outer energy level
– like the Noble Gases!
Ne
 Stability is the driving force behind bond
formation!
C. Stability
• Transferring e-
 Sharing e-
Ch. 6 - Chemical Bonds
II. Kinds of Chemical Bonds
(p.304-308)
 Ionic Bond
 Covalent Bond
 Comparison Chart
A. Ionic Bond
• Attraction between 2 oppositely
charged ions
– Ions - charged atoms
– formed by
transferring efrom a metal
to a nonmetal
A. Ionic Bond
– ions form a 3-D crystal lattice
NaCl
B. Covalent Bond
• Attraction between neutral atoms
– formed by sharing e- between two nonmetals
B. Covalent Bond
– covalent bonds result in discrete molecules
Cl2
NH3
H2O
B. Covalent Bond
 Nonpolar Covalent Bond
• e- are shared equally
• usually identical atoms
B. Covalent Bond
 Polar Covalent Bond
• e- are shared unequally between 2
different atoms
• results in partial opposite charges
+


B. Covalent Bond
 Nonpolar
 Polar
 Ionic
View Bonding Animations.
C. Comparison Chart
IONIC
transferred from
metal to nonmetal
COVALENT
shared between
nonmetals
Melting
Point
high
low
Soluble in
Water
yes
usually not
Electrons
Conduct
Electricity
Other
Properties
yes
no
(solution or liquid)
crystal lattice of ions, molecules, odorous
liquids & gases
crystalline solids
Ch. 6 - Chemical Bonds
III. Naming Molecular
Compounds
 Molecular Names
 Molecular Formulas
A. Molecular Names
 Write the names of both elements.
 Change the final ending to -ide.
 Add prefixes to indicate subscripts.
 Only use mono- prefix with oxide.
A. Molecular Names
PREFIX
monoditritetrapentahexa-
SUBSCRIPT
1
2
3
4
5
6
A. Molecular Names
 CCl4
• carbon tetrachloride
 N2O
• dinitrogen monoxide
 SF6
• sulfur hexafluoride
B. Molecular Formulas
 Write the more metallic element first.
 Add subscripts according to prefixes.
B. Molecular Formulas
 phosphorus trichloride
• PCl3
 dinitrogen pentoxide
• N2O5
 dihydrogen monoxide
• H2O
B. Molecular Formulas
 The Seven Diatomic Elements
Br2 I2 N2 Cl2 H2 O2 F2
Ch. 6 - Chemical Bonds
IV. Naming Ionic Compounds
(p. 314-320)
 Oxidation Number
 Ionic Names
 Ionic Formulas
A. Oxidation Number
• The charge on an ion.
• Indicates the # of e- gained/lost to
become stable.
1+
2+
3+ 4+ 3- 2- 1-
0
B. Ionic Names
 Write the names of both elements,
cation first.
 Change the anion’s ending to -ide.
 Write the names of polyatomic ions.
 For ions with variable oxidation #’s,
write the ox. # in parentheses using
Roman numerals. Overall charge = 0.
B. Ionic Names
 NaBr
• sodium bromide
 Na2CO3
• sodium carbonate
 FeCl3
• iron(III) chloride
C. Ionic Formulas
 Write each ion. Put the cation first.
 Overall charge must equal zero.
• If charges cancel, just write the symbols.
• If not, crisscross the charges to find
subscripts.
 Use parentheses when more than one
polyatomic ion is needed.
 Roman numerals indicate the oxidation #.
C. Ionic Formulas
 potassium chloride
• K+ Cl-

KCl
 magnesium nitrate
• Mg2+ NO3-

Mg(NO3)2
 copper(II) chloride
• Cu2+ Cl-

CuCl2
C. Ionic Formulas
 calcium oxide
• Ca2+ O2-

CaO
 aluminum chlorate
• Al3+ ClO3- 
Al(ClO3)3
 iron(III) oxide
• Fe3+ O2-

Fe2O3
Ch. 6 - Chemical Bonds
V. Naming Acids
 Definition
 Acid Names
 Acid Formulas
A. Definition
 Acid
• Compound that forms H+ in water.
• Formula usually begins with ‘H’.
 Examples:
• HCl, HNO3, H2SO4
B. Acid Names
Anion
Ending
Acid Name
-ide
hydro-(stem)-ic acid
-ate
(stem)-ic acid
-ite
(stem)-ous acid
B. Acid Names
 HBr
• -ide

hydrobromic acid

carbonic acid

sulfurous acid
 H2CO3
• -ate
 H2SO3
• -ite
C. Acid Formulas
 hydrofluoric acid
• -ide

HF

H2SO4

HNO2
 sulfuric acid
• -ate
 nitrous acid
• -ite