Download MOSFET layout

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CMOS Analog Design Using
All-region MOSFET Modeling
Chapter 3
CMOS technology, components, and
layout techniques
CMOS Analog Design Using All-Region MOSFET
Modeling
1
Simplified CMOS process flow
Oxide
Photoresist
Nitride
Photoresist
p-type substrate
STI
(a)
STI
STI
STI
STI
n+
n+
poly
STI
(b)
STI
p-well
STI
STI
Oxide
spacer
p+
n+
STI
+
STI
n-well
(f)
p+
poly
nwell
p+
STI
STI
(g)
(d)
p+ poly
n+ poly
n+
STI
n
n+
poly
p-type substrate
p-type substrate
n+
STI
STI
n-well
p-well
Photoresist
Poly
p-well
p+
p-type substrate
(c)
Photoresist
Poly
p+
poly
STI
n-well
p-type substrate
STI
p+
n+
pwell
p-type substrate
STI
Oxide
spacer
STI
p-well
p-type substrate
p+
p+
n-well
STI
STI
(e)
CMOS Analog Design Using All-Region MOSFET
Modeling
2
CMOS structure
Triple-well process
Transistors in deepsubmicron process
n+
p+
p+
n+
n-well
p-well
deep n-well
p-substrate
CMOS Analog Design Using All-Region MOSFET
Modeling
3
180 nm technology node
Parameters of a six-metal-layer 180-nm CMOS technology node
nMOS
pMOS
Supply voltage
1.3 - 1.5V
1.3 - 1.5V
Thin oxide
3 nm
3 nm
Lgate
130 nm
150 nm
VT
0.3 V (130 nm)
-0.24 V (150 nm)
IDsat (1.5V)
0.94 mA/m
0.42 mA/m
Ioff
3 nA/m
3 nA/m
gmsat
860 mS/mm
430 mS/mm
Cj (0V)
0.65 fF/m2
0.95 fF/m2
Silicide ( S, D and poly)
3 - 5 /sq
3 - 5 /sq
CMOS Analog Design Using All-Region MOSFET
Modeling
4
Integrated resistors
R
V
FL
L


I ( hW )qnv ( hW )qn 
L
R
W
1
SH
R
 1  L
  RSH

 hq  n  W
 q nh 
h
W
h
L

In the general case
h
1
SH
0
R
 q   ndx
CMOS Analog Design Using All-Region MOSFET
Modeling
5
Resistivity of some metals
Metal (bulk)
Resistivity at 20 oC
TCR
Aluminum
2.8·10-6 -cm
3800 ppm/oC
Copper
1.7·10-6 -cm
4000 ppm/oC
Gold
2.4·10-6 -cm
3700 ppm/oC
Sheet resistance of a copper layer of 1000 nm depth
RSH

1.7  106   cm
 
 17 mΩ/sq
4
h
10 cm
CMOS Analog Design Using All-Region MOSFET
Modeling
6
Polysilicon resistors
CMOS Analog Design Using All-Region MOSFET
Modeling
7
Summary of resistors in CMOS technology
Resistor type
Sheet resistance
(/sq)
Temperature
coefficient
(ppm/oC)
Voltage
coefficient
(ppm/V)
n+ Polysilicon
100
-800
50
p+ Polysilicon
200
200
50
n+/ p+ Polysilicon
(silicided)
5
n+ Diffusion
50
1500
500
p+ Diffusion
100
1500
500
n-Well
1000
2500
10000
CMOS Analog Design Using All-Region MOSFET
Modeling
8
The MOS transistor as a resistor
dI
1
 D
R VDS 0 dVD

VDS  0
dI D
dVS
 g ms 
VDS  0
2I S
t


1 i f 1
Example: Verify that, in strong inversion, the equivalent resistance
between source and drain of an MOS transistor at VDS=0 is
given by
1
W  VG  VT 0


 g ms ( d )   Cox n 
 VQ 
R VDS 0
L
n

VQ is the dc potential at the source.
CMOS Analog Design Using All-Region MOSFET
Modeling
9
Metal-insulator-metal capacitors
C=C1+C2+C3
Top view
Metal 4
C1
Metal 3
C2
Metal 2
C3
Metal 1
Cparasitic
Cross section
Substrate
(a)
(b)
(a) vertical parallel plate structure, (b) lateral flux capacitor.
CMOS Analog Design Using All-Region MOSFET
Modeling
10
Metal-oxide semiconductor capacitors
 
C gb
(a) Poly-semiconductor
C ox2
VCC  
3q s N A
1
1
1

Cc Cox
(b) poly-poly capacitors
 dCc 1 d  ox
 1 dA 1 dtox  Cox
1 d  ox
TCC  





2
 ox dT
 A dT tox dT  Cc dT  ox dT
VCC is typically around 100 ppm/V
TCC is of the order of 20 ppm/oC.
CMOS Analog Design Using All-Region MOSFET
Modeling
11
MOSFET gate capacitors - 1
Gate capacitors in a p-well CMOS technology
CMOS Analog Design Using All-Region MOSFET
Modeling
12
MOSFET gate capacitors - 2
experiment
theory
CMOS Analog Design Using All-Region MOSFET
Modeling
13
MOSFET gate capacitors - 3
In strong inversion
Cgs  Cgd
1
 Cox
2
Cgb  0
In accumulation
Cgs  Cgd  0
Intrinsic capacitances of the
MOS transistor for VDS=0
Cgb  Cox
CMOS Analog Design Using All-Region MOSFET
Modeling
14
MOSFET gate capacitors - 4
 In accumulation

2t
  Cox
 1 
Cgb
 2t  VFB  VG  s
VCC  



2t


C
1



ox 
2


V

V
t
FB
G 


2t
VFB  VG 
2
 In inversion, a similar expression holds
VCC 
2t
VG  VT 
2
CMOS Analog Design Using All-Region MOSFET
Modeling
15
Summary of capacitors in CMOS
Capacitor type
Capacitance per
unit area
( aF/m2)
Temperature
coefficient
(ppm/C)
Voltage
coefficient
(ppm/V)
MOM
150
20
10
MOM (combined
lateral and vertical
structure)
200
20
10
MOS gate (biased)
5000
200
10000
MOS (heavily doped
Si option)
1000
20
10
MIM (thin oxide
option)
1000
20
10
Poly-poly
1000
20
10
CMOS Analog Design Using All-Region MOSFET
Modeling
16
Inductors
Example: Inductance of a 5turn spiral inductor with an
average radius of 50 m .
L  n 2 0 r 
52  4   107  50 106  1.6 nH
Planar spiral inductor
CMOS Analog Design Using All-Region MOSFET
Modeling
17
Bipolar transistors (BJTs) in CMOS
Flow of carriers in the CMOS-compatible bipolar junction transistor
CMOS Analog Design Using All-Region MOSFET
Modeling
18
BJTs in triple-well CMOS
CMOS Analog Design Using All-Region MOSFET
Modeling
19
Latchup
Parasitic bipolar transistors in CMOS technology which may lead
to latchup. (a) Cross section of the CMOS structure; (b)
Equivalent circuit of the parasitic bipolar transistors and resistors
CMOS Analog Design Using All-Region MOSFET
Modeling
20
Optical lithography - 1
Ultraviolet light
Mask
Photoresist
Wafer
CMOS Analog Design Using All-Region MOSFET
Modeling
21
Optical lithography - 2
Wavelength used for optical lithography
Source
Wavelength
(nm)
Intended
resolution (nm)
Year of
introduction
G-line *
436
1000
I-line *
365
500
1984
KrF laser
248
250
1989
ArF laser
193
100
2001
F2 laser
157
65
**
*Filtered spectral components of high-pressure Hg or Hg-rare gas discharge lamps.
** The technology was abandoned.
CMOS Analog Design Using All-Region MOSFET
Modeling
22
Optical lithography - 3
Optical proximity correction (OPC) counteracts lithography distortions
CMOS Analog Design Using All-Region MOSFET
Modeling
23
MOSFET layout - 1
Mask layout and cross section of a CMOS inverter. N-well and P-well
contacts not shown. Dashed lines represent metal connections
CMOS Analog Design Using All-Region MOSFET
Modeling
24
MOSFET layout - 2
Source/drain implant
Shaded region
Asymmetry
Diagonal shift in the source drain regions of
a transistor due to a tilted implant
CMOS Analog Design Using All-Region MOSFET
Modeling
25
MOSFET layout - 3
Rules for minimizing systematic
mismatch of integrated devices
No
1
Rule
Same structure
2
Same shape, same size
3
Same orientation
4
Same surroundings
5
Minimum distance
6
Common-centroid geometries
7
Same temperature
CMOS Analog Design Using All-Region MOSFET
Modeling
26
MOSFET layout - 4
Unconnected dummy
Conn. dummy
Unconnected dummy
Conn. dummy
Matching improvement by the addition of dummy devices for the
layout of two resistors with a resistance ratio of 2/1: (a)
unconnected dummy resistors (b) connected dummy resistors
CMOS Analog Design Using All-Region MOSFET
Modeling
27
MOSFET layout - 5
B
A
B
A
(a)
A
Cox
B
Cox+Cox
(b)
B
Cox+2Cox
A
Cox+3Cox
Mock layouts of some possible common-centroid geometries for
improved matching. Transistors with the same label are connected
in parallel.
CMOS Analog Design Using All-Region MOSFET
Modeling
28
MOSFET layout - 6
D
A
E
A
B
B
C
A
B
D
E
D
E
C
C
A differential pair with a folded layout
CMOS Analog Design Using All-Region MOSFET
Modeling
29
MOSFET layout - 7
D
A
E
B
C
A
B
D
E
F
F
G
F
A
B
D
E
C
C
G
G
A third device is added to the differential pair
without degrading the symmetry of the layout
CMOS Analog Design Using All-Region MOSFET
Modeling
30
MOSFET layout - 8
E
A
C
D
D
B
E
A
B
C
C
Common-centroid layout of a differential pair.
CMOS Analog Design Using All-Region MOSFET
Modeling
31
MOSFET layout - 9
Iin
Iout
Iout
Iin
(a)
(b)
Current mirror with an attenuation factor of 16: (a) Schematic; (b)
Mock layout.
CMOS Analog Design Using All-Region MOSFET
Modeling
32