Download Test 1 - La Sierra University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
Transcript
Math 251, 15 October 2002, Exam I
Name:
.
Instructions: Complete each of the following eight questions, and please explain and
justify all appropriate details in your solutions in order to obtain maximal credit for your
answers.
1. (2 pts) What is your birthday (Month & Day)? (This data will be used in class later so
please enter your true birthday)
2. (2 pts) If your instructor were to compute the class mean of this test when it is graded,
and use it to estimate the mean for all tests written by this class during the entire quarter,
would this be an example of descriptive or inferential statistics? Explain.
3. (a) (2pts) In a survey of a sample of parents, 53% said they protect their children from
sun exposure using sunscreen. Is 53% a parameter or statistic? Explain.
(b) (2 pts) In a union’s vote, 55% voted in favor of ratifying a contract proposal. Is 55% a
statistic or parameter? Explain.
(c) (1 pt) A study on attitudes about smoking is conducted at a college. The students are
divided by class, and then a random sample is selected from each class. What type of
sampling technique is this (e.g. simple random, convenient, stratified, systematic,
cluster)?
4. (5 points) (True or False)
(a)
right.
The median is (generally) to the left of the mean in data that is skewed to the
(b)
The Empirical Rule for bell-shaped distributions says that about 95% of the
data lies within two standard deviations of the mean.
(c)
The 70th percentile of a set of data is the number so that 70% of the data lie
above that number, and 30% of the data are below that number.
(d)
The z-score for a number 4 standard deviations below the mean is -4.
(e)
Chebychev’s Theorem says that exactly 8/9 of the data in any distribution will
lie within 3 standard deviations of the mean.
5. At a large university, 5000 students wrote a mathematics placement test one day. Given
that  x = 306,250 and  (x-)2= 451,250 for these test scores:
(a) (4 pts) Find the mean and population standard deviation for these scores.
(b) (2 pts) Find the test score that is 2 standard deviations below the mean.
(c) (2 pts) If the distribution is normal (bell-shaped), according to the empirical rule, what
is the approximate percentile of a score that is two standard deviations above the mean?
6. Consider the following data of 26 numbers.
33
66
90
35
70
90
47
72
93
48
76
94
51
78
96
57
80
97
60
82
64
84
64
85
65
89
(a) (2 pts) Find the median of the data.
(b) (4 pts) Given that Q1 = 61, and Q3 = 88 find the IQR and construct a box and whisker
plot for the data.
(c) (6 pts) Construct a relative frequency histogram for the data where the first class has
limits 30-44, be sure to list all class limits and boundaries, and class width.
7. A doctor is interested in the relationship between age (x) and blood pressure (y) in
men.
So far the doctor has collected the following data.
Age (x)
Blood Pressure (y)
16
109
25
122
39
143
45
132
49
199
57
175
64
185
70
199
For this data: x =365, x2 =19073, y=1264, y2 =208690, xy = 61807
(a) (4 pts) Find the equation of the least squares regression line.
(b) (2 pt) Use the regression line equation to predict the blood pressure of a 40-year-old
man.
(c) (2 pt) Use the regression to predict the age where a man’s blood pressure is 140.
(d) (2 pt) The correlation coefficient for this data is .888. Does this indicate that there is a
good linear fit? Explain.
8. (2 pts) In studying the relation between hours of TV watched per week (x) and GPA’s
(y), it was found that GPA’s tended to decreases as the hours of TV watched increased.
Would you expect the correlation coefficient to be positive or negative for the data
collected? Explain.