Download Black Hole Hunter Probes Our Psychedelic X-Ray Sun

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Spitzer Space Telescope wikipedia , lookup

XMM-Newton wikipedia , lookup

International Ultraviolet Explorer wikipedia , lookup

Leibniz Institute for Astrophysics Potsdam wikipedia , lookup

Advanced Composition Explorer wikipedia , lookup

X-ray astronomy satellite wikipedia , lookup

Transcript
Black Hole Hunter Probes Our Psychedelic XRay Sun
Jul 8, 2015 02:18 PM ET // by Ian O'Neill
View Related Gallery »
Flaring, active regions of our Sun are highlighted in this new image combining observations from
several telescopes. For full resolution version, click here.
NASA/JPL-Caltech/GSFC/JAXA
Gallery
ThePsychedelicAnatomyofaSolarFlare:Photos
View Caption +
View Caption +
View Caption +
View Caption +
View Caption +
View Caption +
View Caption +
View Caption +
‹›
A space telescope designed to look into the furthest-most reaches of space at some of the most
energetic phenomena in the known universe has, once again, been turned to face our nearest star,
producing a rare and beautiful insight to our X-ray sun.
Usually, NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, would be looking at
relativistic jets of material blasting from black hole behemoths millions to billions the mass of the
sun, or the superheated hearts of supernovae, but in a follow-up to arguably one of the most
beautiful space images ever created, astrophysicists have created a full-disk portrait of the highenergy X-ray-generating processes in the sun’s corona.
NEWS: NASA’s Black Hole X-Ray Hunter Could Solve Solar Mystery
In this stunning image, NuSTAR X-ray observations (in blue) have been superimposed over
ultraviolet observations made by NASA’s Solar Dynamics Observatory (SDO) and lower-energy Xrays imaged by the Japanese Hinode observatory to produce a wonderfully psychedelic solar view.
The solar corona — the sun’s multi-million degree “atmosphere” — is a hothouse of magneticallydominated processes and the focus of one of the most enduring mysteries in stellar science. Put
simply, the corona is too hot; the tenuous plasma that extends from the sun’s photosphere
(colloquially known as the sun’s “surface”) can be millions of degrees Kelvin (Celsius) hotter than
the sun’s uppermost layers. Classical thermodynamics shouldn’t allow this to happen — it doesn’t,
for example, get hotter the further you move your hand away from an open flame.
But solar scientists are hot on the trail of finding out what mysterious coronal processes must be
going on and these unique observations by NuSTAR may be able to help out.
GALLERY: NuSTAR Probes a Spinning Black Hole
One coronal heating mechanism focuses on small-scale flaring events called nanoflares. These
flares may be small on solar scales, but they are thought to dump huge quantities of energy into the
corona, heating it. Current observatories cannot see individual nanoflares as they are too small to be
resolved, but they do generate X-ray emissions right in the observing threshold for NuSTAR, so the
mission should be able to spot their high-energy X-rays.
As the sun is still fairly active in its 11-year solar cycle after reaching solar maximum in 2013, the
mission has picked out some regions in the sun’s atmosphere rumbling with X-ray activity, with
“hotspots” over active regions bustling with microflares and, possibly, nanoflares.
“We can see a few active regions on the sun in this view,” said Iain Hannah, of the University of
Glasgow, in a press release. “Our sun is quietening down in its activity cycle, but still has a couple
of years before it reaches a minimum.”
Hannah presented this observation on Wednesday at the National Astronomy Meeting in Llandudno,
Wales.
PHOTOS: The Psychedelic Anatomy of a Solar Flare
To measure a definitive nanoflare signal, however, the sun needs to calm down to a more quiescent
state, a phase that solar astronomers are anticipating over the next few years as it approaches solar
minimum. A slowdown in magnetic activity will reduce the number of active regions and quench
powerful flaring activity. In this quiescent state, the high-energy X-ray nanoflare emissions could be
detected from the noise.
“We still need the sun to quieten down more over the next few years to have the ability to detect
these events,” said Hannah.
This solar study, however, was never the focus for NuSTAR (even though it has serendipitously
become the perfect tool for coronal exploration). On it’s “to-do” list is to gather data about the highenergy processes surrounding black holes and to seek out evidence for so-far hypothetical dark
matter particles.
“What’s great about NuSTAR is that the telescope is so versatile that we can hunt black holes
millions of light-years away and we can also learn something fundamental about the star in our own
backyard,” added NuSTAR team member Brian Grefenstette of the California Institute of
Technology (Caltech) in Pasadena, Calif.
Source: Royal Astronomical Society
Tags x-rays X ray solar physics solar flare SDO NuSTAR NASA Solar Dynamics Observatory
NASA Mystery mysteries magnetism Current Events Corona Space